

Semilattices

, . ,

Section II

a-ideals in O-distributive semilattices

For convenience we repeat the definition of a O-distributive semilattice.

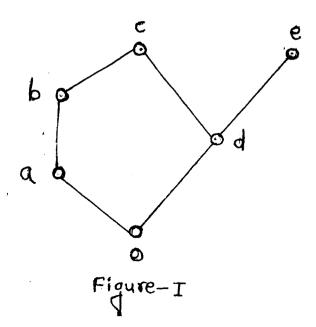
A meet semilattice $\langle S, \land \rangle$ with 0 is said to be O-distributive if $a \land x_1 = 0$, $a \land x_2 = 0$, $a \land x_n = 0$; a, x_1 , ... $x_n \notin S$ (n finite) and $x_1 v x_2 v \dots v x$, exists in S then $a \land (x_1 v x_2 v \dots v x_n) = 0$.

Throughout this section we denote a O-distributive semilattice by S.

We define

<u>Definition 2.1</u> <u> α -ideal in S</u> : An ideal I in S is said to be an α -ideal if x f I implies that $(x)^{**} \subseteq I$

Note that 4, Jayaram [6] has also defined a-ideals in O-distributive semilattices. But the definitions of ideals and O-distributivity used in [6] are different Example 2.2:



In the O-distributive semilattice S represented by Figure-I, the following are α -ideals.

$$I_{1} = \{0, a, b\}, I_{2} = \{0, d, e\}, I_{3} = \{0\}, I_{4} = \{0, a, b, c, d, e\}$$

Remark 2.3 : Obviously every α -ideal is an ideal but every ideal need not be an α -ideal. This we illustrate in the following example :

Example 2.4 :

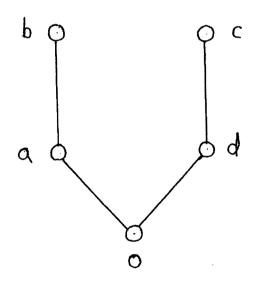


Figure-II

In the O-distributive semilattice sketched in the Figure-II, $\{0,a\}$ is an ideal but not an α -ideal.

Consider the ideal, $I = \{0, a, c, d, e, f\}$ in the following O-distributive semilattice whose diagramatic representation is as shown in Figure+III.



Figure-III

Here I is a prime ideal but not an α -ideal. The form minimal prime ideal we have the following :

<u>Theorem 2.5</u>: Every minimal prime ideal in S is an α -ideal.

<u>Proof</u> - Let M be any minimal prime ideal in S and x \in M. As M is minimal prime ideal, S-M is maximal filter (See Result 1.2.2). Since S-M is maximal filter, therefore there exists y \notin S-M such that $x \wedge y = 0$ (See Result 1.2.3). Now if: $z \in (x)^{**}$ then $z \wedge y = 0$ (since $y \in (x)^{*}$). But then $z \wedge y \in M$ and M is prime ideal will imply $z \in M$. Thus $(x)^{**} \subseteq M$ for every x in M proving that M is an α -ideal.//

For any prime ideal P in S define,

$$O(P) = \left\{ x + S / x \land y = 0 \text{ for some } y \not\in P \right\}$$

We now prove that O(P) is an α -ideal

<u>Theorem 2.6</u>: For any prime ideal P in S, O(P) is an α -ideal.

<u>Proof</u> - <u>Claim-I</u> O(P) is an ideal in S

(ii) Let
$$a_1, a_2, \ldots, a_n$$
 be the elements of $O(P)$ such
that $a_1 \vee a_2 \vee \ldots \vee a_n$ exists in S. Then by the
definition of $O(P)$ we have $a_1 \wedge p_1 = 0$, $a_2 \wedge p_2 = 0 \ldots$
 $\ldots a_n \wedge p_n = 0$ where p_1, p_2, \ldots, p_n are not in P.
As P is prime, $p_1 \quad p_2 \quad \ldots \quad p_n \notin P$.
 $a_i \wedge p_i = 0 \quad (1 \leq i \leq n) \quad \text{will imply}$

 $a_1 \wedge (p_1 \wedge p_2 \cdots \wedge p_n) = 0$

$$a_2 \wedge (p_1 \wedge p_2 \wedge \cdots \wedge p_n) = 0$$

$$\mathbf{a}_n \wedge (\mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \cdots \wedge \mathbf{p}_n) = 0.$$

As S is O-distributive we get,

 $(a_1 v a_2 v \dots v a_n) \land (p_1 \land p_2 \land \dots \land p_n) = 0$. But $p_1 \land p_2 \land \dots \land p_n \notin P$ proving that $a_1 v a_2 v \dots$ $\dots v a_n \notin O(p)$. Thus by (i) and (ii) we get O(P) is an ideal in S.

Claim-II O(P) is an α -ideal in S.

Let $x \notin O(P)$. Then $x \wedge y = 0$ for some $y \notin P$. Hence $y \notin (x)^*$. Therefore for any $z \notin (x)^{**}$, $z \wedge y = 0$. But then $z \notin O(P)$. This proves that $(x)^{**} \subseteq O(P)$ for $x \notin O(P)$. Hence O(P) is an α -ideal in S. //

As for any prime ideal P in S, $O(P) \subseteq P$ we have the following corollary.

<u>Corollary 2.7</u> : Every prime ideal in S contains an α -ideal.

For an ideal I in S define,

 $I' = \left\{ x \in S / x \in (a)^{**} \text{ for some } a \in I \right\}$

It is clear that I' not necessarily be an ideal in S. But

CARH. BALANDIEB KHARDEKAR MERABI BUIVAJI ULIVEBSITY, KOLMAPUR when I' is an ideal we have

Theorem 2.8 : For any ideal I in S if I' is an ideal in S then I' is the smallest α -ideal containing I.

Proof (I) I' is an arideal in S.

Let $x \notin I^{*}$. Then by the definition of I' there exists a $\notin I$ such that $x \notin (a)^{**}$. Therefore $(x)^{**} \subseteq (a)^{**}$. Hence for any $t \notin (x)^{**}$ we have $t \notin (a)^{**}$. Hence $(x)^{**} \subseteq I^{*}$. Thus $x \notin I^{*}$ implies that $(x)^{**} \subseteq I^{*}$ proving that I' is an α -ideal in S.

(II) I' is the smallest α -ideal containing I. As a $(\alpha)^{**}$ for any a in S we get $I \subseteq I'$. Let J be any α -ideal in S such that $I \subseteq J$. If $\alpha \in I'$ then $\alpha \in (\alpha)^{**}$ for some a $\in I$. Hence $\alpha \in (\alpha)^{**}$ for some a $\in J$. But since J is an α -ideal, a $\notin J$ implies that $(\alpha)^{**} \subseteq J$. Therefore $x \notin J$. Thus $x \notin I' \Longrightarrow \alpha \notin J$ proving that $I' \subseteq J$. Hence from (I) and (II) we get I' is the smallest α -ideal containing I. //

For any filter F in S define,

 $O(F) = \left\{ x \in S / x \land y = 0 \text{ for some } y \in F \right\}$ We now prove that O(F) is an α -ideal in S. <u>Theorem 2.9</u>: For any filter F in S, O(F) is an α -ideal

Proof (I) O(F) is an ideal in S

(i) Let
$$x_1 \leq x_2$$
 and $x_2 \neq 0(F)_{\wedge}$ Then $x_2 \wedge y = 0$ for some
y $\notin F$ implies that $x_1 \wedge y = 0$. Hence $x_1 \notin 0(F)$

$$\mathbf{x}_{n} \wedge (\mathbf{y}_{1} \wedge \mathbf{y}_{2} \wedge \cdots \wedge \mathbf{y}_{n}) = \mathbf{0}$$

But S being a O-distributive, we get $(x_1vx_2 v \dots vx_n) \land (y_1 \land y_2 \land \dots \land y_n) = 0$. Hence $x_1 vx_2 v \dots vx_n \leftarrow o(F)$.

> Thus from (i) and (ii), O(F) is an ideal in S. (II) O(F) is an α -ideal in S.

Let $\mathfrak{A} \leftarrow \mathfrak{O}(F)$. Then $x \wedge f = 0$ for some $f \leftarrow F$. Hence $f \leftarrow (x)^*$. If $y \leftarrow (x)^{**}$ then $y \wedge f = 0$. This in turn implies that $y \in O(F)$. Thus $y \in (x)^{**}$ implies that $y \in O(F)$ i.e. $(x)^{**} \subseteq O(F)$ for $x \in O(F)$ proving that O(F) is an α -ideal in S. //

For any proper α -ideal I in S we have I $\cap D = \emptyset$ where in \Im D denotes the set of all dense elements, i.e. $D = \left\{ \frac{d}{S} / (\frac{d})^* = \left\{ 0 \right\} \right\}$. This is proved in the following

Theorem 2.10 : Any proper α -ideal in S does not contain a dense element.

<u>Proof</u> Let I be proper α -ideal in S and let d be dense element in S. If possible suppose that d (1). Then I being an α -ideal (d)^{**} I. Hence $S \subseteq I$ (since (d)^{*} = $\{0\}$ (d)^{**} = S). This contradicts that I is proper. Hence d (1). Thus proper α -ideal does not contain a dense element. //

Now we state crucial result about the prime α -ideals.

<u>Theorem 2.11</u>: Let I be an annihilator ideal and F be a filter in S such that $I \cap F = \emptyset$. Then there exists prime α ideal P containing I and disjoint with F.

<u>Proof</u>: As I is an annihilator ideal in S, I = A^{*} for some A \subseteq S. Further I \cap F = Ø implies that A^{*} \cap F = \cap (a)^{*} \cap F = Ø

at A

(since $A^* = \bigcap_{a \in A} (a)^*$) Hence $\bigcap_{a \in A} [(a)^* \cap F] = \emptyset$.

This implies that (a)^{*} \cap F = Ø for some a + A.

Consider the family \mathcal{F} of all filters in S containing F and disjoint with (a)^{*}. Then obviously F $f \mathcal{F}$. Hence by Zone's lemma there exists maximal element M in such that $F \subseteq M$ and (a)^{*} $\cap M = \emptyset$

<u>Claim-I</u> a f M

If a # M then the filter generated by $M \cup \{a\}$ intersects (a)*. Hence there exists an element b in S such that b > c \land a for some c \notin M and b \land a = 0. But this gives c \land a = 0 i.e. c \notin (a)* which is a contradiction since M \cap (a)* = Ø. Hence a \notin M.

<u>Claim-II</u> M is maximal filter.

Let z \notin S such that z # M. As the filter generated by M U $\{z\}$ intersects (a)^{*} there exists an element b in (a)^{*} such that b \geq f \wedge z for some f \notin F. Now $0 = b \wedge a \geq$ f \wedge z \wedge a gives f \wedge z $\wedge a = 0$. But as f \notin M, a \notin M we have f $\wedge a \notin$ M. Thus for z # M there exists f $\wedge a$ in M such that (f $\wedge a$) \wedge z = 0. Hence M is maximal filter (See Result 1.2.3).

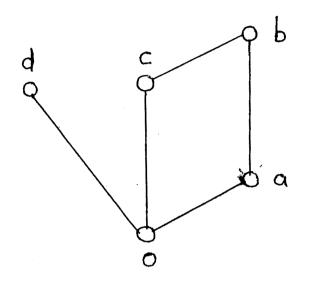
Thus we have shown that there exists maximal filter M in S such that $F \subseteq M$ and (a)^{*} $\cap M = \emptyset$. But then $A^* \cap M = \emptyset$. Since M is maximal filter, S-M is minimal prime ideal (See Result 1.2.2). Thus we have $A^* \subseteq S - M$ and F \cap (S-M) = Ø. By Theorem 2.5, S-M is a prime α -ideal. This completes the proof. //

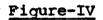
A relation between α -ideal and annihilator ideal is an follows.

<u>Theorem 2.12</u>: Every annihilator ideal in S is an α -ideal. <u>Proof</u> Let I be any annihilator ideal in S. Then I = I^{**}. If x \in I then x \in I^{**}. This implies that y \in (x)^{*} for all y \in I^{*}. Hence I^{*} \subseteq (x)^{*} gives (x)^{**} \subseteq I^{**} = I. Thus (x)^{**} \subseteq I for x \in I, proving that I is α -ideal. //

<u>Remark 2.13</u>: Every α -ideal need not be an annihilator ideal. For example if I is the proper dense α -ideal then I will not be an annihilator ideal.

There are some O-distributive semilattices in which every α -ideal is an annihilator ideal. For this consider the following example. Example 2.14 :





In the semilattice represented by Figure-IV, α -ideals are, I₁, I₂, I₃, I₄, I₅, I₆ and I₇

where,

$$I_{1} = \{0\}$$

$$I_{2} = \{0,a\}, I_{3} = \{0,c\}, I_{4} = \{0,d\}$$

$$I_{5} = \{0,c,d\},$$

$$I_{6} = \{0,a,b,c\}$$
and
$$I_{7} = \{0,a,b,c,d,e\}$$

Consider an α -ideal,

$$I_{3} = \{0, c\}$$

$$I_{3}^{**} = (I_{3}^{*})^{*}$$

$$= (\{0, a, d\})^{*}$$

$$= \{0, c\}$$

$$= I_{3}$$

Hence I_3 is an annihilator ideal. Similarly it can be verified that the remaining α -ideals are also annihilator ideals.

In the following theorem we study O-distributive semilattices in which every α -ideal is an annihilator ideal. <u>Theorem 2.15</u> : If each α -ideal is an annihilator ideal in

S then every minimal prime ideal is nondense.

<u>Proof</u> By Theorem 2.5, every minimal prime ideal M is an α -ideal. Hence by assumption M is an annihilator ideal and hence M = M^{**}. Let if possible suppose that M is a dense ideal. Then M^{*} = $\{0\}$ ==> M^{**} = $\{0\}$ * = S. Hence M = S which contradicts that M is proper. Hence M is nondense. //

A property of a dense ideal is established in the following theorem :

<u>Theorem 2.16</u>: A dense ideal I contains a dense element if I' = $\{x \in S / x \in (a)^{**} \text{ for some } a \in I \}$ is an ideal in S and each α -ideal is an annihilator ideal.

<u>Proof</u> - If possible assume that $I \cap D = \emptyset$; where D is the set of all dense elements in S. Claim that $I' \cap D = \emptyset$. If $I' \cap D \neq \emptyset$ then there exists an element d in $I' \cap D$. But then d \in (a)^{**} for some a \in I. Hence (a)^{***} = (a)^{*} \subseteq_{2} (d)^{*} =

 $\{0\}$; since d (D). Hence $(a)^* = \{0\}$ i.e. $a \in D$. This in turn implies that $a \in I \cap D = \emptyset$, a contradiction. Hence the claim.

As I' is an ideal in S, by Theorem 2.8 I' is an α -ideal. By data I' is an innihilator ideal. Since D is filter in S (See Result 1.2.5), there exists maximal filter M in S such that $D \subseteq M$ and I' $\cap D = \emptyset$ (See the proof of Theorem 2.11). Denote by P = S - M. Then P is a minimal prime ideal in S (See Result 1.2.2). Hence P is a nondense (See Theorem 2.15).

Now $I \subseteq P \implies P^* \subseteq I^* = \{0\}$, since I is a dense ideal by data. This given $P^* = \{0\}$. i.e. P is a dense ideal. This contradicts the fact that P is a nondense ideal. proves that Therefore $I \cap D \neq \emptyset$ i.e. I contains a dense element.

<u>Remark 2.17</u>: When S becomes lattice, I' is an α -ideal [6]. Hence the converse of Theorem 2.16 is always

true for a O-distributive lattice.

S is said to be quasicomplemented if for any x (S) there exists y (S such that $(x)^{**} = (y)^* \begin{bmatrix} 8 \end{bmatrix}$.

We characterize quasicomplemented semilattice in the following :

Theorem 2.18 : Following statements are equivalent :

- 1) S is quasicomplemented
- 2) For any α -ideal J in S,

$$J = U \left\{ (f)^* / f + F(J) \right\};$$

whese,

$$F(J) = \left\{ x \in S / (z)^* \leq (x)^{**} \text{ for some } z \in J \right\}$$

3) For any α -ideal J in S there exists a semifilter F in S such that J = U { (f)* / f (F }

 $\underline{Proof} - (1) ==> (2)$

Let $W \notin U \left\{ (f)^* \middle/ f \notin F(J) \right\}$. Then $w \wedge x = 0$ for some $x \notin F(J)$. This implies that $w \wedge x = 0$ and $(z)^* \subseteq (x)^{**}$ for some $z \notin J$. Hence $W \notin (x)^* \subseteq (z)^{**}$. As J is an α -ideal and $z \notin J$ indeget that $(z)^{**} \subseteq J$. Thus $W \notin (z)^{**} \subseteq J$ proving that $U \left\{ (f)^* \middle/ f \notin F(I) \right\} \subseteq J$.

Now let x \notin J. Then S being quasicomplemented there exists y \notin S such that $(x)^{**} = (y)^*$. But as x $\notin (x)^{**}$, we get x $\notin (y)^*$. Hence $x \land y = 0$. As $(x)^* \subseteq (y)^{**}$ and x \notin J, we get y \notin F(I). Hence x \notin U $\{(f)^* f \notin$ f \notin (J) $\}$ proving that $J \subseteq U \{ (f)^* / f \in F(J) \}$. By combining both the inclusions we get, $J = U \{ (f)^* / f \in F(J) \}$ for any α -ideal J in S.

(*) ===> (3) (2) ===> (3)

Let J be any α -ideal. Then by assumption we have, $J = U \{ (f)^* / f \in F(J) \}$. Only it remains to prove that, $F(J) = \{ x \in S / (z)^* \leq (x)^{**}, z \in J \}$ is a semifilter. Let $x_1 \leq x_2$ and $x_1 \in F(J)$. Then $(z)^* \leq (x_1)^{**}$ for some $z \in J$. But $x_1 \leq x_2$ implies that $(x_1)^{**} \leq (x_2)^{**}$. Therefore $(z)^* \leq (x_2)^{**}$ for $z \in J$. Hence $x_2 \in F(J)$ proving that F(J)is a semifilter.

(3) ===> (1)

Let x \notin S. Then (x)^{**} is an α -ideal. Hence by assumption there exists semifilter F such that (x)^{**} = $\bigotimes \{(f)^*/ f \notin F\}$. As x $\notin (x)^{**}$, we get x $\wedge f = 0$ for some f \notin F. Let y $\notin (x)^{**}$. Then y $\wedge z = 0$ for all z $\notin (x)^*$. As y $\notin (x)^*$, we get y $\wedge f = 0$ proving that y $\notin (f)^*$. Hence (x)^{**} $\subseteq (f)^*$.

Now obviously $(x)^{**} = U \{ (f)^* / f \in F \}$ implies that $(x)^{**} \supseteq (f)^*$. Hence $(x)^* = (f)^*$. But this in turn implies that S is quasicomplemented. //

We know that,

 $O(F) = \left\{ x \notin S / x \wedge f = 0, \text{ for some } f \notin F \right\}$ where, F is any filter in S. But then by the definition of O(F) we get,

$$O(F) = U \left\{ (f)^* / f \in F \right\}$$

Using above characterization as every filter is also semifilter we have the following :

ins we have I=O(F)

<u>Corollary 2.19</u> : If any α -ideal I $\land \odot(\alpha)$ for some filter F in S then S is quasicomplemented.