Charadrization of c-ideals in
 a o distributive semilattice.

Section-III

Characterization of α-ideals in a 0 -distributive semilattice.

Throughout this section S denotes a O-distributive semilattice.

Let q be the set of all minimal prime ideals in a o -distributive semilattice. For a subset β of m define as usual kernel of β by

$$
\text { Kernel of } \beta=k(\beta)=n\{R / R \notin \beta\}
$$

For a subset A of S define the hull of A as,

$$
\text { Hull of } A=h(A)=\{M(\eta / A \subseteq M\}
$$

Let M denotes the hull-kernel topology on $\mathrm{m}_{\text {. First we }}$ prove two lemmas that we need for characterizing α-ideals in S.

Lemma 3.1 : For any $x \in s$,

$$
(x)^{*}=n\{M \in m / x \notin M\}
$$

Proof - Let $y f(x)^{*}$. Then $x \wedge y=0$. For any minimal prime ideal M we have, $x \wedge y \in M$. If $x \notin M$ then $y \in M$. Therefore $y \in \cap\{M \mid x \notin M\}$. Thus $y \in(x)^{*}$ implies that $y \in \cap\{M / x * M\}$ proving that $(x)^{*} \subseteq \cap\{M \mid x \notin M\}$. Now let if possible, $(x)^{*} \subset \cap\{M / x \notin M$.$\} Then there exists$
$z \in \cap\{M / x \notin M\}$ such that $z \underset{i}{f}(x)^{*}$. Hence $x \wedge z \neq 0$. But then $z \wedge x \in F$, for some maximal filter F (See Result 1.2.6). Here $z \in F$. But then $S-F$ is a minimal prime ideal not containing z (See Result 1.2.2). This contradicts with the fact that, $z \in \cap\{M / x \notin M\}$. Hence $(x)^{*} \subset \cap\{M / x \notin M\}$ is not possible. Therefore $(x)^{*}=\cap\{M / x \notin M\}$. /l

Denote $h(\{x\})=h(x)$.
As $(x)^{*}=\cap\{M \in \eta / x \notin M\}$. we get $(x)^{*}=K[q-h(x)]$.
In the following lemma we give a necessary and sufficient condition for $h(x)=h(y)$ where $x \neq y$ in s.

Lemma 3.2 : For any x, y in $S, h(x)=h(y)$ if and only if $(x)^{*}=(y)^{*}$

Proof - Let $h(x)=h(y)$. Then $q-h(x)=q-h(y)$. Hence $\cap[q-h(x)]=n[q-h(y)]$. This implies that $n\{M \in \eta / M \notin h(x)\}=n\{M \in q / M \notin h(y)\}$ Hence $n\{m \in m / x * M\}=n\{M \in m / y * M\}$. This in turn implies that $(x)^{*}=(y)^{*}$ (by Lemma 3.1).

Conversely let $(x)^{*}=(y)^{*}$. Then by Lemma 3.1we get $n\{M \in \eta / x \notin M\}=n\{M \in q / y \notin M\}$. Hence $h[n\{M \in q / x \notin M\}]=h[n\{M \in m / y \notin M\}]$ ie.
$h[K\{M \in \eta \mid x \notin M\}]=h[K\{M \in q / Y \notin M\}]$. But as Y is hull-kernel topology we get, $h[K\{M \in q / x \notin M\}]=$ $\{M \in \eta / x \notin M\}$ and $h\left[K\left\{M \in H_{l} / Y \& M\right\}\right]=$ $\{M \neq m / y \notin M\}$ 。
Thus we get, $(x)^{*}=(y)^{*} \equiv\{M \in q / x \notin M\}=\{M \in q \mid y \notin M\}$ But this in turn implies that.

$$
\begin{aligned}
& q-\{M \in q / x \notin M\}=\eta-\{M \in m y \notin M\} \\
& \text { ie. }\{M \in \eta / x \in M\}=\{M \in m / y \in M\} .
\end{aligned}
$$

Therefore $h(x)=h(y)$. This completes the proof of if past.//

Now we state our main result
Theorem 3.3: For any ideal I in S, the following conditions are equivalent :
(1) I is an α-ideal.
(2) $I \underset{x \in I}{U}(x)^{* *}$
(3) For $x, y \in S,(x)^{*}=(y)^{*}$ and $x \in I=x=y \in I$.
(4) For $x, y \in S, h(x)=h(y)$ and $x \notin I=m \in I$.
(1) =\#=> (2)

Since I is an α-ideal, for each: $x \nmid I$ we get
$(x)^{* *} \subseteq I$. Hence $\underset{x \in I}{U}(x)^{* *} \subseteq I$. As $x \notin(x)^{* *}$ always
$I \subseteq U(x)^{* *}$. Therefore by combining both the inclusions $x \in I$
we get, $I=U \quad(x)^{* *}$ $x \notin I$
(2) $===>$ (1)

- - - - - -

By (2) we have, $I=\underset{x \neq I}{U}(x)^{* *}$. This implies that, $(x)^{* *} \subseteq I$ for each $x \notin I$. Therefore I is an $\alpha-i d e a l$.
(2) $===->(3)$

Let $(x)^{*}=(y)^{*}(x, y \in S)$ and $x \in I$. We want to prove that $y \in I$. Assume that $y \notin I$. Then by (2) we get, $y * \underset{t \in I}{ }(t)^{* *}$. This implies that $y \notin(t)^{* *}$ for all $t \in I$. As $x \notin I$ we get, $y \notin(x)^{* *}$. Hence $y \wedge z \neq 0$ for some $z \notin(x)^{*}$. But $(x)^{*}=(y)^{*}$. Therefore $z f(x)^{*}$ implies that $z f(y)^{*}$ 1.e. $Y \wedge z=0$ which is a contradiction. Hence $y \nmid I$ is not possible. Therefore $y \in I$.
(3) $===$ >

For any $x \not f S$ we know that, $x f(x)^{* *}$ always. Hence
$I \subseteq \operatorname{UfI}_{\mathrm{X} \in \mathrm{I}}(\mathrm{x})^{* *}$. Now let $y \underset{x \in I}{ }(x)^{* *}$. Then $y \in(x)^{* *}$ for
some $x \in I$. This implies that, $y \wedge z=0$ for all $z f(x)^{*}$. Now $z f(x)^{*}$ implies $y \wedge z=0$. But then $z f(y)^{*}$ and hence $(x)^{\star} \leqslant(y)^{\star}$. Therefore $(x)^{\star} \boldsymbol{Y}(y)^{*}=(y)^{*}$. But $(x)^{\star} \dot{Y}(y)^{*}=(x \wedge y)^{*}\left(\right.$ See Result 1.2.7). Hence $(x \wedge Y)^{*}=$ $(y)^{*}$. As $x \wedge y \leqslant x$ and $x \in I$ we get $x \wedge y \in I$. Using (1) we get $y \in I$. This proves that $\underset{X \in I}{U(x)^{* *} \subseteq I \text {. Combining }}$ both the inclusions we get. $I=\underset{x \in I}{U}(x)^{* *}$.
(3) $=\bar{m}=>$ (4)

Let $h(x)=h(y)$ and $x \in I$. Then We want to prove that $y \in I$. Since $h(x)=h(y)$ therefore by Lemma 3.2, $(x)^{*}=(y)^{*}$. Thus $h(x)=h(y) \Longrightarrow(x)^{*}=(y)^{*}$. Hence by using (3) we get, $Y \in I$.
(4) $===$?
(3)

Let $(x)^{*}=(y)^{*}$ and $x \in I$. Then we want to prove that $y \in I$. Since $(x)^{*}=(y)^{*}$ therefore again by Lemma 3.2 we get $h(x)=h(y)$. Thus $(x)^{*}=(y)^{\star \Rightarrow} \Rightarrow h(x)=h(y)$. Hence by using (4) we get, $y \in I$.
 the proof of Theorem. //

