

Section-III

Characterization of α -ideals in a O-distributive semilattice.

Throughout this section S denotes a O-distributive semilattice.

Let m_{i} be the set of all minimal prime ideals in a O-distributive semilattice. For a subset β of m_{i} define as usual kernel of β by

Kernel of
$$\beta = K(\beta) = \bigcap \{ R \mid R \in \beta \}$$

For a subset A of S define the hull of A as,

Hull of $A = h(A) = \{M(m / A \leq M)\}$.

Let γ denotes the hull-kernel topology on m. First we prove two lemmas that we need for characterizing α -ideals in S.

Lemma 3.1 : For any $x \in S$,

$$(\mathbf{x})^{\star} = \bigcap \left\{ \mathsf{M} \leftarrow \mathsf{m} / \mathsf{x} \notin \mathsf{M} \right\}$$

<u>Proof</u> - Let $y \notin (x)^*$. Then $x \land y = 0$. For any minimal prime ideal M we have, $x \land y \notin M$. If $x \notin M$ then $y \notin M$. Therefore $y \notin \bigcap \{M \mid x \notin M\}$. Thus $y \notin (x)^*$ implies that $y \notin \bigcap \{M \mid x \notin M\}$ proving that $(x)^* \subseteq \bigcap \{M \mid x \notin M\}$. Now let if possible, $(x)^* \subset \bigcap \{M \mid x \notin M\}$ Then there exists

 $z \in \bigcap \{M / x \notin M\}$ such that $z \notin (x)^*$. Hence $x \land z \neq 0$. But then $z \land x \in F$, for some maximal filter F (See Result 1.2.6). Here $z \in F$. But then S-F is a minimal prime ideal not containing z (See Result 1.2.2). This contradicts with the fact that, $z \in \bigcap \{M / x \notin M\}$. Hence $(x)^* \subset \bigcap \{M / x \notin M\}$ is not possible. Therefore $(x)^* = \bigcap \{M / x \notin M\}$. $\underline{//}$

Denote $h(\{x\}) = h(x)$. As $(x)^* = \bigcap \{M \in m \ x \notin M \}$, we get $(x)^* = K [m - h(x)]$.

In the following lemma we give a necessary and sufficient condition for h(x) = h(y) where $x \neq y$ in S.

Lemma 3.2: For any x, y in S, h (x) = h(y) if and only if $(x)^* = (y)^*$

<u>Proof</u> - Let h(x) = h(y). Then m - h(x) = m - h(y). Hence $\int [m - h(x)] = \int [m - h(y)]$. This implies that $\int \{M \notin m \mid M \notin h(x)\} = \int \{M \notin m \mid M \# h(y)\}$ Hence $\int \{m \notin m \mid x \# M\} = \int \{M \notin m \mid y \# M\}$. This in turn implies that $(x)^* = (y)^*$ (by Lemma 3.1).

Conversely let $(x)^* = (y)^*$. Then by Lemma 3.1we get $n \{ M \notin m / x \# M \} = n \{ M \notin m / y \# M \}$. Hence $h [n \{ M \notin m / x \# M \}] = h [n \{ M \notin m / y \# M \}]$ i.e.

h [K { M + m / x # M }] = h [K { M + m / y # M }]. But as
$$\gamma$$

is hull-kernel topology we get, h [K { M + m / x # M }] =
{M + m / x # M } and h [K { M + m / y # M }] =
{M + m / y # M }.
Thus we get, (x)* = (y)* ==> { M + m / x # M } = { M + m / y # M }
But this in turn implies that,

$$m - \{M + m | x \# M\} = m - \{M + m y \# M\}.$$

i.e. $\{M + m | x + M\} = \{M + m | y + M\}.$

Therefore h(x) = h(y). This completes the proof of if past.//

Now we state our main result

<u>Theorem 3.3</u>: For any ideal I in S, the following conditions are equivalent :

- (1) I is an α -ideal.
- (2) I U $(x)^{**}$ x \in I
- (3) For x, $y \in S$, $(x)^* = (y)^*$ and $x \in I ==> y \in I$.
- (4) For x, y (S, h(x) = h(y) and x (I ===> y (I.

<u>Proof</u> (1) ===> (2)

Since I is an α -ideal, for each x \in I we get

 $\begin{array}{l} {(x)}^{\star \star} \subseteq \text{ I. Hence } \mathbb{U} \quad {(x)}^{\star \star} \subseteq \text{ I. As } x \not \in {(x)}^{\star \star} \text{ always} \\ \text{I} \subseteq \mathbb{U} \quad {(x)}^{\star \star} \text{. Therefore by combining both the inclusions} \\ \text{x} \not \in \text{I} \\ \text{we get, } \text{I} = \mathbb{U} \quad {(x)}^{\star \star} \\ \text{x} \not \in \text{I} \\ \end{array}$ $\begin{array}{l} (2) = = > \quad (1) \\ \text{-----} \\ \text{By (2) we have, } \text{I} = \mathbb{U} \quad {(x)}^{\star \star} \text{. This implies that,} \\ \text{x} \not \in \text{I} \\ \end{array}$ $\begin{array}{l} (x)^{\star \star} \subseteq \text{I for each } x \not \in \text{I. Therefore I is an α-ideal.} \end{array}$

(2) ===> (3)

Let (x)* = (y)* (x, y + S) and x + I. We want to
prove that y + I. Assume that y + I. Then by (2) we get,
y # U (t)**. This implies that y # (t)** for all t + I.
t+ I
As x + I we get, y # (x)**. Hence y + z = 0 for some z + (x)*.
But (x)* = (y)*. Therefore z + (x)* implies that z + (y)*
i.e. y + z = 0 which is a contradiction. Hence y # I is not
possible. Therefore y + I.

(3) ==> (2)

For any x \notin S we know that, x \notin (x)^{**} always. Hence I \subseteq U (x)^{**}. Now let y \notin U (x)^{**}. Then y \notin (x)^{**} for x \notin I x \notin I some x (I. This implies that, $y \wedge z = 0$ for all $z (x)^*$. Now $z (x)^*$ implies $y \wedge z = 0$. But then $z (y)^*$ and hence $(x)^* \subseteq (y)^*$. Therefore $(x)^* \subseteq (y)^* = (y)^*$. But $(x)^* \subseteq (y)^* = (x \wedge y)^*$ (See Result 1.2.7). Hence $(x \wedge Y)^* =$ $(y)^*$. As $x \wedge y \leq x$ and $x \in I$ we get $x \wedge y \in I$. Using (1) we get $y \in I$. This proves that $U(x)^{**} \subseteq I$. Combining $x \in I$ both the inclusions we get, $I = U(x)^{**}$. $x \in I$

(3) = (4)

Let h(x) = h(y) and $x \in I$. Then we want to prove that $y \in I$. Since h(x) = h(y) therefore by Lemma 3.2, $(x)^* = (y)^*$. Thus $h(x) = h(y) => (x)^* = (y)^*$. Hence by using (3) we get, $y \in I$.

(4) ==> (3)

Let $(x)^* = (y)^*$ and $x \in I$. Then we want to prove that $y \in I$. Since $(x)^* = (y)^*$ therefore again by Lemma 3.2 we get h(x) = h(y). Thus $(x)^* = (y)^* => h(x) = h(y)$. Hence by using (4) we get, $y \in I$.

Thus (1) <==> (2) <==> (3) <==> (4), completing the proof of Theorem. //

00