

Section IV

The a-map

In this section we change our setting from O-distributive semilattice to O-distributive lattice for the study of α -ideals. Throughout this section L will stand for O-distributive lattice. As L is O-distributive lattice, the set of annihilators of the type $\{x\}^* = (x)^* (x \in L)$ will form a lattice called as lattice of annulets of L in this direction we state,

Theorem 4.1 : $A_0(L) = \{(x)^* / x \in L\}$ is a lattice under the binary operations \wedge and \mathring{V} which are defined as,

> $(\mathbf{x})^{\star} \land (\mathbf{y})^{\star} = (\mathbf{x}\mathbf{v}\mathbf{y})^{\star}$ and $(\mathbf{x})^{\star} \quad \overline{\mathbf{v}} \quad (\mathbf{y})^{\star} = (\mathbf{x}\land\mathbf{y})^{\star}$

First we establish a relation between the set of all ideals I(L) of L and the set of all filters $\mathcal{J}(A_O(L))$ of the lattice $A_O(L)$.

Theorem 4.2 : For any ideal I in L,

 $\begin{cases} (x)^* / x \in I \\ \text{is a filter in } A_0(L) \end{cases}$ $\underbrace{\text{Proof}}_{\text{Let } F} = \{ (x)^* / x \in I \\ \end{bmatrix}$ $(i) \quad \text{Let } (x)^* \subseteq (y)^* \text{ and } (x)^* \in F \quad (x, y \in L) \end{cases}$

9023

A

As $(x)^* \notin F$, there exists $t \notin I$ such that $(x)^* = (t)^*$. Then by assumption $(t)^* \subseteq (y)^*$. Hence $(t)^* \mathring{v} (y)^* = (y)^*$. Therefore $(t \land y)^* = (y)^*$. As $t \land y \leqslant y$ and $t \notin I$ we get $t \land y \notin I$. Hence $(t \land y)^* \notin F$. Therefore $(y)^* \notin F$. Thus $(x)^* \subseteq (y)^*$, $(x)^* \notin F \Longrightarrow (y)^* \notin F$.

(ii) Let $(x)^*$, $(y)^* \notin F$ (x, y (L). As $(x)^* \notin F$ there exists t $\notin I$ such that $(x)^* = (t)^*$ and as $(y)^* \notin F$ there exists s $\notin I$ such that $(y)^* = (s)^*$. I being an ideal t $\notin I$, s $\notin I$ imply t v s $\notin I$. Hence $(t v s)^* \notin F$. This implies that $(t)^* \land (s)^* \notin F$ i.e. $(x)^* \land (y)^* \notin F$. Thus $(x)^*$, $(y)^* \notin F ==> (x)^* \land (y)^* \notin F$.

From (i) and (ii) we get, F is a filter in $A_0(L)$. //

In the reverse direction we have the following theorem :

<u>Theorem 4.3</u> : For any filter F in $A_0(L)$,

 $\left\{ x \in L / (x)^* \in F \right\} \text{ is an ideal in } L.$ Proof Denote J = $\left\{ x \in L / (x)^* \in F \right\}$

(i) Let $x \leq y$ and $y \in J(x, y \in L)$.

Since $x \leq y$, $x \vee y = y$ and hence $(x \vee y)^* = (y)^*$ is in F. Thus we get $(x)^* \land (y)^* \in F$ and $(x)^* \land (y)^* \subseteq (x)^*$. F being a filter, $(x)^*$ (F. Hence x (J. Thus x < y and y y (J ===> x (J.

(11) Let x, y (J. Hence $(x)^*$, $(y)^* (F ===> (x)^*$, $(y)^* (F ===> (x v y)^* (F ===> (x v y)^* (F ===> x v v (F ===> x v (F ===> x v v (F ===> x v (F =$

Thus x, $y \in J ==> x v y \in J$.

By (i) and (ii), we get J is an ideal in L. $\underline{//}$

Define the map,

 $\alpha : I(L) \longrightarrow \mathcal{J}(A_{0}(L)), I \in I(L)$ by,

 $\alpha (I) = \left\{ (x)^* / x \in I \right\}$

By Theorem 4.2, α is vell defined map. Now we prove α is an isotone map.

Theorem 4.4 : For any two ideals I_1 and I_2 in L, $I_1 \subseteq I_2 \implies \alpha(I_1) \subseteq \alpha(I_2)$. Proof (Z)* $(\alpha(I_1)) \implies (Z)^* ((\alpha(I_1))) = (Z)^* ((X)^*/ (X \cap I_1)))$ $= (Z)^* = (Y)^*$ for some $Y \in I_1$ $= (Z)^* = (Y)^*$ for some $Y \in I_2$ $(Since I_1 \subseteq I_2)$ $= (Z)^* ((I_2))^*$

Hence $\alpha(I_1) \leq \alpha(I_2)$ //

Define the map,

$$\beta : \mathcal{J}(A_{0}(L)) \longrightarrow I(L), F \in \mathcal{J}(A_{0}(L)) \text{ by,}$$

$$\beta (F) = \left\{ x \in L / (x)^{*} \in F \right\}$$

By theorem 4.3, β is well defined map. Clearly β is an isotone map.

As α : I(L) $\longrightarrow \mathcal{F}(A_{\alpha}(L))$ and

 β : $\mathcal{J}(A_{O}(L)) \longrightarrow I(L)$, the composition map goa maps I(L) into I(L).

Theorem 4.5 : The map, $\beta \circ \alpha$: I(L) \longrightarrow I(L) is a closure operator.

<u>Proof</u> i) $I \subseteq \beta \circ \alpha(I)$

For if z $(1 \text{ then } (z)^* + \alpha(1) \text{ and hence } z + \beta \alpha \alpha(1)$.

ii)
$$I \subseteq J ==> \beta ook (I) \subseteq \beta ook (J)$$

Let $z \notin \beta \circ \alpha$ (I). Then $(z)^* \notin \alpha(I)$. Since the map α is an isotone map by Theorem 4.4, therefore $(z)^* \notin \alpha(J)$. This implies that $z \pmod{J}$. Hence $I \subseteq J \implies \beta \circ \alpha(I) \subseteq \beta \circ \alpha(J)$.

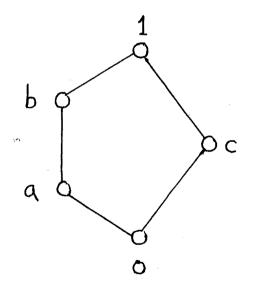
iii) $\beta o < [\beta o < I] \equiv \beta o \alpha (I)$ for some ideal I in L. Obviously $\beta o < (I) \leq \beta o < [\beta o < (I)]$ (by (i))

Next let $z \notin \beta o \ll [\beta o \ll (I)]$. Then $(z)^* \notin \alpha [\beta o \ll (I)]$ implies $(z)^* = (y)^*$ for some $y \notin \beta o \alpha (I)$ and hence $(z)^* \neq \alpha(I)$ (since $y \neq \beta \circ \alpha(I) => (y)^* \neq \alpha(I)$) proving that $z \neq \beta \circ \alpha(I)$. Hence $\beta \circ \alpha [\beta \circ \alpha(I)] \subseteq \beta \circ \alpha(I)$. Thus by combining both the inclusions we get

 $\beta \circ \alpha(I) = \beta \circ \alpha [\beta \circ \alpha(I)].$

From (i), (ii) and (iii) we get, $\beta \circ \alpha$: I(L) \longrightarrow I(L) is a closure operator. //

As by (iii) in the Theorem 4.5, $\beta \circ \alpha \left[\beta \circ \alpha(I)\right] = \beta \circ \alpha(I)$ we observe that, there are some ideals I in L for which $\beta \circ \alpha(I) = I$ (and also there are some ideals I in L for which $\beta \circ \alpha(I) \neq I$). This we illustrate by the following example. Example 4.6 : Consider the O-distributive lattice L sketched in the following diagram :



Consider the ideal, $I_1 = \{0, c\}$. $\alpha(I_1) = \{(0)^*, (c)^*\}$ $= \{L, \{0, a, b\}\}$

 $\beta \circ \alpha (I_1) = \{ \circ, c \}$. Then $\beta \circ \alpha (I_1) = I_1$ Now consider the ideal, $I_2 = \{ \circ, a \}$

$$\alpha(I_2) = \{(0)^*, (a)^*\}$$
$$= \{L, \{0, c\}\}$$
$$\beta o \alpha(I_2) = \{0, a, b\}$$

Here $\beta o \alpha(I_2) \neq I_2$.

Now we prove our main result :

Ideal I in L for which $\beta \circ \alpha$ (I) = I is nothing but an α -ideal.

Theorem 4.7: For an ideal I in L the following conditions are equivalent.

(1) I's and of ideal 2 & 1 there of the

(2) $\beta \circ \alpha$ (I) = I.

<u>Proof.</u> (1) ===> (2)

Let I be any α -ideal. By Theorem 4.5 we have I $\subseteq \beta \circ \alpha(I)$. Next let z $\neq \beta \circ \propto (I)$. Then (z)* $\neq \alpha(I)$. And therefore $(z)^* = (y)^*$ for some $y \in I$. I being an α -ideal, this will imply $z \in I$ proving that $\beta \circ \alpha(I) \subseteq I$. Hence $\beta \circ \alpha(I) = I$.

(2) ==> (1)

Let $(x)^* = (y)^*$ and x $\in I$. Since x $\in I$ we get, $(x)^* \notin \alpha(I)$. But then $(y)^* \notin \alpha(I)$ which in turn implies that y $\notin \beta \circ \alpha(I) = I$ (by assumption). Thus $(x)^* = (y)^*$ and x $\notin I ===> y \notin I$, proving that I is an α -ideal (See Theorem 3.3). //

Combining Theorem 3.3 and Theorem 4.7 we have the following :

<u>Corollary 4.8</u> : For any ideal I in L the following conditions are equivalent.

- (1) I is an α -ideal.
- (2) $I = U (x)^{**}$. x $\in I$

(3) For x, $y \in L$, $(x)^* = (y)^*$ and $x \in I ==> y \in I$.

(4) For x, y (L,
$$h(x) = h(y)$$
 and x (I ==> y (I.

(5) $\beta \circ \alpha$ (I) = I.

<u>Remark 4.9</u>: For any ideal I in L, $\beta \circ \alpha(I)$ is always an α -ideal in L (See Theorem 4.5).

Let I_1 and I_2 be any two α -ideals in L. Define,

 $I_1 \oslash I_2 = I_1 \cap I_2$ and

 $I_1 \textcircled{V} I_2 = \beta \circ \alpha (I_1 \underbrace{Y} I_2)$

Then obviously the set of all $\alpha \neq i$ deals in L, $I_{\alpha}(L)$ is a lattice under \land and \heartsuit .

Define the map,

 $\overline{\alpha} : I_{\alpha}(L) \longrightarrow \mathcal{J}(A_{0}(L)) \text{ by,}$ $\overline{\alpha} (I) = \left\{ (x)^{*} / x \in I \right\} \text{ i.e. } \overline{\alpha} \text{ is the}$

restriction of the map α to the set $I_{\alpha}(L)$. Further we have,

<u>Theorem 4.10</u>: The map $\overline{\alpha}$: $I_{\alpha}(L) \longrightarrow \mathcal{J}(A_{0}(L))$ is an isomorphism.

<u>Proof</u> As α and β are isotone maps, it follows that both $\overline{\alpha}$ and $\overline{\alpha}^{-1}$ are isotone maps. As for any I $\langle I\alpha(L), \beta \circ \alpha(I) = I$. We get $\overline{\alpha}^{-1}(\alpha(I)) = \beta(\alpha(I)) = (\beta \circ \alpha)(I) = I$ and hence $\overline{\alpha}^{-1}$ is an onto map. This proves that $\overline{\alpha}$ is an isomorphism (See Result 1.2.8).

• •

REFERENCES

1.	Birkhoff G.	7	Lattice Theory, Amer.Math.Soc.
			Collog Publ. No.25, 3rd edition
			(1979) MR 37 2638
2.	Cornish W.H.	;	Annulates and α -ideals in a

O-distributive lattice - Jour.of the Australlian Math.Soc. XV(1), 70-77, 1973.

- 3. Cornish W.H. ; A sheaf representation of distributive pseudocomplemented lattices - Proc. Amer., Math.Soc. 7(1), 1976, 11-15.
- 4. Frink O. ; Pseudocomplementedness in semilattices, Duke Math.Jour.29 (1962), 504-514 MR 25 3869.
- 5. Gratzer G. ; Lattice Theory: First concepts and distributive lattices, Freeman and Company, San Francisco, (1971).

6.

Jayaram C.

; Prime α-ideals in a O-distributive lattice. Indian J.Pure appl. Math; 17(3): 331-337 (1985)

39

- 7. Jayaram C. ; Complemented semilattices, Math.Seminar notes 8 (1980) 259-267.
- 8. Jayaram C. ; Quasicomplemented semilattices Act. Math. Acad. Sci. Hunger 39 (1-3). 1982, 39-47.
 9. Pawar Y.S. ;A Study in lattice theory, Doctoral
 - thesis (1978), Shivaji University, Kolhapur, India.
- 10. Vaglet J. ; 'A generalization of the notion of pseudocomplementedness' Bull. Soc. Roy.Sci.liege 37 (1968), 149-158.
- 11. Venkatanarasimhan P.V.; Stone's topology for pseudocomplemented and Bi-complemented lattices (1) Trans. Amer.Math. Soc. 170 (1972) 57-70.
- 12. Venkatanarasimhan P.V.; Semildeals in posets Math. Ann, 185, 338-348 (1970) 338-348
 13. Venkatanarasimhan P.V.; Pseudocomplements in posets, Proc. Amer. Math. Soc. 28 (1971)

9-17.

000