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CHAPTER - I

INTRODUCTION

1,1 Integral Transforms :

Many functions in analysis can be expressed as Lebesgue 
integrals or improper Riemann integrals of the form 

oo
F(s) = ^ K(s,x)f(x) dx ♦ (1,1-1)

o or -oo

A function F defined by an equation of this type (in which 
s may be real or complex) is called an integral transform of f , 
The function K which appears in the integrand is called the 
kernel of the transformation. It is assumed that the infinite 
integral in equation (1.1-1) is convergent. When the range of 
integration (o or -oo, oo) is replaced by a finite range (a,b), 
F(s) is called the finite integral transform of f(x).

Integral transformations are employed very extensively in 
both pure and applied mathematics. With the help of the different 
form of kernel K(s,x) and the range of integration, certain 
boundary value problems and certain types of integral equations 
can be solved. The important aspect of integral transformation 
is its inversion theorem.

The problems involving several variables can be solved by 
applying integral transformations successively with regard to 
several variables.
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There are several problems which can be solved by the 
repeated application of Laplace and Hankel transforms.

The important integral transform, the Hankel transform, 
arises as a result of separation of variables in the problems 
posed in the cylindrical co-ordinates, involving Bessel functions. 
The Hankel ,type transform of a suitably restricted function f(x) 
is defined by the integral.

oo . ,r X/2. __ ?F(y) = h^(f) = j (y/x) Jx (2Vxy)f(x)dx (1.1-2)
o

where (2 ,/xy) is the Bessel function of first kind and of 
order \ .

If we construct an integral transform for which the kernel 
is the product of two Hankel type kernels, .we may term this 
integral transform as the two-dimensional Hankel transform. If 
f(x,y) is a suitably restricted function on o<x<oo, o<y<.oo, 
then its Hankel type transform F(u,v) is defined by the 
integral

co oo
C f X/2 p/2

F(u,v) = l\fp,(f) = J J f(x,y)(u/x) (v/y) J^(2 v'ux) J}1(2 Tvy) *
o o

. dxdy (1.1-3)
ofwhere Ja is the Bessel function of first kind andKorder a with 

a real. The inversion formula for the above Hankel type transform

\/2 H/2
is given by 

00 00J F(u ,v) (x/u) (y/v) J^(2 Tux’) J^(2 Vvy)dudv *
(1.1-4)o o
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1.2 Generalized Functions. :

A collection V of elements 0, Y , 0 ... is called a 

Linear-Space if the following axioms are satisfied :

(1) There is an operation + , called "addition” by which 

pair of elements0 and 'Y'Can be combined to yield an element

0 +'V^in such a way that the foilowing properties are satisfied:

(l.a) 0 -f • V = "y + 0 (Commutativity)

(l.b) (0 + y) +9 = 0+ (y+ 0) (Associativity)

(l.c) There exists a unique element 0, called zero in V, 

such that 0+0=0 for every 06 V.

(l.d) For every 06V, there exists a unique element 

- 0 in V such that 0 + (- 0) = 0 .

(2) There is an operation, called "Multiplication by a complex 

number", by which any complex number a and any 06V can be 

combined to yield an element a 0 6 V in such a way that the 

following conditions are fulfilled :

(2.a) a.(J30) = (a0) 0, for all complex numbersa and 0.

(2,b) 1. 0 = 0 (1 denotes the number one)

(3) The following distributive laws hold :

(3.a) a( 0 + Y ) = a 0 + a-y 

(a + 0) (ft = a <p + £0'.
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Let V be a linear space. A seminorm on V is a rule Y 
that assigns a real number Y(0) to each 06V and that satisfies 
the following axioms :

(1) Y (a0) = Y(0) for every 0 6 V, a £ C*

(2) y (0 +y) 4y (0) + y(T), 0,y e v
The collection S = £y ^ ygA of seminorms on a 

linear space V is called multinorm on V if for every 06V 
with 000, there is some Y 6 S such that Y (0) 00. Here,
A denotes any finite or infinite index set. The sufficient 
condition for S to be a multinorm is that one of the seminorms 
in S is a norm.

A multinorroed space V is a linear space having a topology 
generated by a multinorm S. If S is countable, V is called <*. 

countably rnultinormed space.

Let V be a rnultinormed space with the multinorm S . A 
oo

sequence !^0^ v~i converges in V to the limit 0 if and only if,

for each Y 6 S, Y{0 - 0^) -> 0 as v -> oo. The limit 0 is 
unique.

£0^ is a Cauchy sequence in V if and only if all 0y are 

in V, and for each Y 6 S, Y (0y - 0^) O as v and tend to 
infinity independently.

Every convergent sequence in V is a Cauchy sequence. When 
every Cauchy sequence in V is convergent, V is said to be
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complete. A complete countably multinormed space is called a 
Frechet space.

Let £ 00 be a sequence of countably multinormed
m=l

spaces such that C V2 C ... . Assume that the topology of 
each Vm is stronger than the topology induced on it by Vm+^ , 

ooLet V = U V . V is a linear space. A sequence f0 ^°° is 
m='l m 1 VJv=l

said to converge in V to 0 if all the 0^ and 0 belong to some
particular Vm and £0 ^°° converges to 0 in V .. Under these

vy-l
circumstances V is called a countable-union space.

A sequence f 0 ^°° is called a Cauchy sequence in the 
VJ v=l

countable-union space V if it is a Cauchy sequence in one of 

the spaces Vm . The countable-union space V is complete, 
whenever all the Vm are complete countably multinormed spaces.

Let V be a countably multinormed space. A rule that 
assigns a unique complex number to each 06V is called a 
functional on V. This complex number is denoted by ^f, 0^ .
The functional f is said to be linear if for any 0,Y S V 
and any complex numbers a and 0 ,

<f, a 0 + 0T> = a <f, 0> + 0 <f,V> *

Generalized functions were first introduced into science 
as a result of Dirac's research into quantum mechanics, where he
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systematically used the 6-function. Delta function, 5(x), is 
equal to zero everywhere except at origin where it is infinite 
and its integral over the infinite interval is one. It is ; 
obvious that 6(x) is not a function in the sense of classical 
analysis. This led to the introduction of the concept of a 
"generalized function."

Let I be an open subset of Rn or Cn. The set V(I) 

is said to be a testing function space if the following 
conditions are satisfied :

(i) V(I) consists entirely of smooth functions defined on I.

(ii) V(I) is either complete countably multinormed space or 
complete countable-union space.

(iii) If £0^°° converges in V(I) to zero, then for every

nonnegative integer kSRn,

function uniformly on every compact subset of I.

The collection of all continuous linear functionals on a 
countably multi-normed space or a countable-union space V is 
called the dual space of V and is denoted by V*.

A generalized function on I is any continuous linear 
functional on any testing function space V(I) on I. In other 
words, f is called generalized function if it is a member of the 
dual space V*(I) of some testing function space V(I).
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Let K be any compact subset of I C Rn , D^,(l) is 3 set

of all complex-valued smooth functions defined on I which vanish 
outside of K. D^(I) is a linear space under the usual defini
tions of addition and multiplication by scalars. The zero 
element of DK(I) is the identically zero function on I . The
topology of D ^(I) is generated by the multinormfi fY,^03 

* 1 kk=o
where Y^ is a seminorm on DK(I) defined by

Yk (0) = sup | Dk 0(t)|
t e i

0 e dk (i) ,

1c “■ 01 11 2 y ••• •

The space D ^ (I) is a testing function space on I* If 
ooLKmj m=l sec!uence compact subsets of I with the 

following properties : (i) K C K"m+1 , m - 1,2, ... •
(ii) Each compact subset of I is contained in one of K ,m
then Dkf (r\ r T)

m ' ' Kjn^i(I) and the topology of DK (jj
m

stronger than the topology induced on it by (j)
m+1

is

Therefore, the countable-union space D (I) is the space 
oo

D (I) = U Dk (I) D'M m=l Km * is its dual.

A continuous linear functional on the space D (I) is 
called a distribution on I. Thus the members of D '(I), the 
dual space of D (I) are the distributions.
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E(I) is the space of all complex-valued smooth functions 
on I. For each compact subset K of I and nonnegative integer 
k 6 Rn, 'the seminorm Y^ k(0) on E (I) is defined by

\ k (0) = sup | Dk 0(t) | , 0 6 E (I) 
t e k

E (I) is a multinormed space with topology generated by the 
multinorm ^ Y^ where K traverses through the set of all
compact subsets of I and k = 0,1,2, ... in Rn .

E(I) is also testing function space. The members of the 
dual space E’(I) of E(I) are called distributions with compact 
supports on I.

The overall advantage of generalized functions and distri
butions is that by widening the class of functions, many theorems 
and operations are freed from tedious restrictions. Number of 
treatises are available on various aspects of generalized 
functions and notably among those are Gelfand and Shilov [3], 
Zemanian [8] and Vladimirov [6],

1.3 Generalized Integral Transformations :

The topic of the Generalized Integral Transformations has 
been evolved as the confluence of two mathematical disciplines, 
"The Theory of Integral Transforms" and "The Theory of Generalized 
Functions" about which a brief discussion is given in the last 
two articles.
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To extend the classical integral transformation, one has 
to construct a testing function space which satisfies certain 
properties of the kernel function of the transformation. The 
testing function spaces are different for different transforms.

There are mainly three ways in which a classical integral 
transform say

T(f)(x) = F(s) = S K (s,x) f(x)dx (1.3-1)I

can be extended to generalized functions. In the first • ?, we 
construct a testing function space V(I) containing the kernel 
K(s,x), a dual space V*(I) - the space of all continuous linear 
functionals defined on V(I) and then we define an integral 
transform F(s) of generalized functions directly as the applica
tion of a generalized function to the kernel function. Therefore, 
if f ev'(l) and K(s,x) 6V(I), then

F(s) = fU), 'K(s,x)^> .

We will call this method as direct method or - method.

If the kernel function does not belong to V(I) then one 
has to extend integral transform (1.3-1) by another way. First, 
construct a testing function space V(I) on which integral 
transformation T is defined. Again, construct another 
testing function space

V(I) = £t(0) f / 06 V(I$
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such that T is an isomorphism from V(I) to V(I). The inverse

mapping T~^ is also an isomorphism from V(I) to V(I). Then the

generalized integral transformation T' on V*(I) can be defined

as the adjoint of T_1 on V(I). More specifically, for arbitrary

$ = T(0) G V(I) and f 6 V*(I) we define F = T*(f) by

(1.3-2)

or, we write,

<T'f, |> = ^f, T"1 ($)>

This method will be called as M2-method.

Another method which we may call M^-method is to generalize 

an integral transform with kernel K2 by first reducing it to 

another transform with kernel by a suitable change of

variable, which can be generalized by the method-Mj, and then 

studying its properties with the help of the corresponding study 

of the K^ transform for generalized functions.

An important and the first achievement to the theory of 

Generalized Integral Transformation is the extension of Fourier 

Transformation to the generalized functions.

Several distinct approaches have been proposed for an 

extension of an integral transform to generalized functions.

In 1952, Schwartz extended Laplace transform to generalized

functions
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The first one to extend the Hankel transformation to 

generalized functions is J.L. Lions [5], Zemanian extended the 

Hankel transformation to generalized functions in 1966 [7],

For a real number y and a positive real number a, Koh and 

Zemanian [4] have defined H ^ a as a testing function space 

which contains the kernel, «/xy" Ju(xy), as a function on
r

o<x<oo for each fixed complex y in the strip

\ *m ^ I ^ a ’ ^ ^ 0 ora negative number ^ •

«

The Hankel transformation hp. is defined on the dual space 

H'n,a as follows : For f eH^ , V> ^ j ,

(hpf) (y) = ^f(x), v^xy- (xy)^> , (1.3-3)

where y is a complex parameter belonging to the strip -Tl_ •

Choudhary [1,2] has constructed a testing function space

H_ . for a real number \ and a positive number a which 
a t A

contains the kernel (y/x)X/2 (2 /xy”) as a function on

o Koo for each fixed y. The Hankel type transform F(y)
of a distribution f in the dual space H* , is defined by

a I A

F(y) = h^f = 4^f(x), (y/x)X//2 J^(2 /xy)^ (1-3*^)

for suitably restricted y .
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In the present work, the attempt has been made to extend 

the Hankel transformation defined by the equation (1,1-3) to 

A certain class of generalized functions.

1,4 Notations and Terminology :

The notations and terminology of this work follows that 

of [9],

Rn and Cn denote the real and complex n-dimensional 

euclidean spaces respectively.

By a compact set in Rn we mean a closed nd bound) 

set in Rn. If I is an open set in Rn and K is set

in Rn such that K C I. then K ..is called

If k is a nonnegative integer in

differential with respect to x is denoted Y
+ 1Ale shall use the notation A for D x7

A >x x /

the partial
Dk„ - *

D x x

A function whose domain is contained in either R or C 

and whose range is in either R1 or (J' is called conventional 

function. By a smooth function we meh a function that 

possesses continuous derivatives of 4-1 orders everywhere on R .

Let I be an open set in Rn, By a locally integrable 

function on I we mean a conventional function that is Lebesgue 

integrable on every open set J ii Rn whose closure J is a 

compact subset of I .

. s,# i if
w-.y*
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A function of rapid descent is a conventional function 
f(t) on R or C such that \ f(t) | = o ( J t|“m) as \t j oo for 

every integer m 6 E. A function f(t) is said to be a function 

of slow growth if it is a conventional function on R or C such 

that there exists an integer k S R for which
\ f (t} | = O ( 111 k) as \ t ) -> oo .

The support of a continuous function f(t) defined on some

open set -H- in Rn is the closure with respect to-/T_ 0f a set 
points t where f(t). ^ 0. It is denoted by sujp f .

2If f is a generalized function on R , te notation
2f(x,y), where (x,y) 6 R , is used merely to iHicate that the

testing functions, on 'which f is defined, hae (x,y) as 

their independent variable; it does not mean hat f is a 

function of (x,y). <^f, tfy. denotes the nun;er assigned to 
element 0 in a testing function space by a frmber of the dual

space.
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