CHAPTER-III

SPECIAL SPACE-LIKE CONGRUENCES ON THE

STREAM IINES.

Introduction :

In this Chapter we find the effect of vanishing of each of the curvature scalars on the space-like congruences associated with the stream line of a particle. It is argued that $K_{3}=0$ corresponds to the path of a classically gravitationally self interacting spin particle, while $K_{2}=0$ implies that the particle moves as a charged particle with radiation reaction but no external electromagnetic field. The case of $\mathrm{K}_{1}=0$ yields a geodesic path. Section 2, portrays the three kinematical parameters of the space-like vector field P^{a} only after analysing the transport laws governing their definition. Explicit evaluation of physical components of shear and rotation is accomplished here. The transport laws of the spacelike congruence P^{a} are expressed in terms of Ricci rotation coefficients $\gamma_{\text {Ihk }}$ in the next section. The generalized Serret-Frenet formulae and physical components of the she ar and rotation look elegant when expressed in $r_{\text {Ihk }}$

Section 1 :

Special curvatures and their significance :
Case 1 : The first curvature vanishes :
Here $K_{1}=0$, that is the magnitude of P^{2} vanishes. This is possible only when $\dot{u}^{a}=0$. This represents the path of a free particle, in other words, it denotes trajectory of a particle
upon which no force acts apart from the gravitational force. This path is also referred as the geodesic path.

Case 2 : The second curvature vanishes and the first curvature does not vanish :

The equation

$$
\mathrm{K}_{2}=0, \quad \mathrm{~K}_{1} \neq 0
$$

implies that

$$
W^{a}=0 \quad \text { by }(2.18)
$$

which means that

$$
Q^{a}=0
$$

or $\quad \frac{\ddot{u}^{a}}{\bar{K}_{1}}-\frac{\mathrm{K}_{1}}{\mathrm{~K}_{1}{ }^{2}} \dot{\mathrm{u}}^{a}-\mathrm{K}_{1} u^{a}=0$
or

$$
\begin{equation*}
\ddot{u}^{a}=\frac{\dot{K}_{1}}{\bar{K}_{1}} \dot{u}^{a}+{K_{1}}^{2} \dot{u}^{a} \tag{3.1}
\end{equation*}
$$

Here \ddot{u}^{a} is a linear combination of \dot{u}^{a} and u^{a}. Such a situation exists in the case of the path of a charged particle with radiation reaction but no external electromagnetic field. Specifically

$$
\begin{equation*}
\operatorname{mix}^{a}=\frac{e^{2}}{6 \pi c^{2}}\left[\ddot{u}^{a}+\dot{u}^{a}\left(-\dot{u}^{b} \dot{u}_{b}\right)\right] \tag{3.2}
\end{equation*}
$$

where m is the mass and e is the charge of the particle (Barut, 1964).

$$
44
$$

Remark : When $K_{1}=$ constant, we have

$$
\hat{\mathrm{k}}_{1}=0
$$

So

$$
\begin{equation*}
\ddot{u}^{a}=K_{1}^{2} u^{a} \tag{3.3}
\end{equation*}
$$

And this equation represents the differential equation for a time-like circle. (Synge, 1960).

Case 3 : The third curvature vanishes and the first and the second do not vanish :

Here

$$
\begin{equation*}
\mathrm{K}_{3}=0, \quad \mathrm{~K}_{2} \neq 0, \quad \mathrm{~K}_{1} \neq 0 \tag{3.4}
\end{equation*}
$$

This is similar to the previous case, we get that \dddot{u}^{a} should be a linear combination of $\ddot{u}^{a}, \dot{u}^{a}, u^{a}$ that is

$$
\begin{equation*}
\ddot{u}^{a}=\lambda \ddot{u}^{a}+\mu \dot{u}^{a}+\left(\lambda \dot{u}^{b} \dot{u}_{b}-3 u^{b \ddot{u}_{b}}\right) u^{a} \tag{3.5}
\end{equation*}
$$

where λ and μ are arbitrary.
Such a situation exists in the path of a classically gravitationally self interacting spin particle with Frankel-Weyssenhoff constraints, viz.,

$$
\begin{align*}
\dddot{u}^{a}+\left(3 \dot{u}^{b} \ddot{u}_{b}\right) u^{a}= & \left(\frac{m^{2}}{s^{2}}-\dot{u}^{b} \dot{u}_{b}\right) \dot{u}^{a}+\frac{8}{15} G m \\
& \left(\frac{m^{2}}{s^{2}}-\dot{u}^{2}\right)\left(\dot{u}^{b} \dot{u}_{b} u^{a}+\ddot{u}^{a}\right) \tag{3.6}
\end{align*}
$$

(Goenner et al. 1967)
where $S_{a}=S_{a b} u^{b}$ with the spin tensor $S_{a b}$
$m=$ mass
$G=$ Newtonian Gravitational constant.

Remark :

$$
\text { When } K_{3}=0 \text { and } K_{1}=\text { constant, } K_{2}=\text { constant }
$$

we have

$$
\dot{\mathrm{K}}_{1}=0 \text { and } \dot{\mathrm{K}}_{2}=0
$$

These conditions implies that the path of the particle is the time-like helix.

Section 2 :

Shear-free, irrotational space-like congruence P^{a} :
(1) The three parameters of the space-like congruence P^{a} :

The parameters of the space-like congruence P^{a}, relative to the time-like congruence u^{2} when the signature of metric is (- - +) are cited below. We note that in Chapter I, Greenberg's formulae are for the metric signature (+ + + -) 。
(i) The expansion parameter is defined by

$$
\begin{equation*}
\stackrel{\theta}{(1)} \equiv \frac{1}{2}\left(P_{; a}^{a}-P_{a ; b} u^{a} u^{b}\right) \tag{3.7}
\end{equation*}
$$

here the subscript (1) below θ denotes that the parameter is for the first space-like congruence P^{a}.
(ii) The shear tensor field for P^{a} has the expression

$$
\begin{equation*}
\underset{(1)}{\sigma_{a b}} \equiv \perp_{a}^{c} \perp_{b}^{d}\left(P_{c ; d}+P_{d ; c}\right)-\perp_{a b}(\stackrel{\ominus}{1}) \tag{3.8}
\end{equation*}
$$

where $\mathcal{L}_{a b}$ is the 2-dimensional projection operator defined by

$$
\begin{equation*}
\perp_{a b}=g_{a b}-u_{a} u_{b}+p_{a} p_{b} \tag{3.9}
\end{equation*}
$$

with properties

$$
\begin{align*}
& \perp_{a b}=\perp_{b a}, \perp_{b}^{a} \perp_{c}^{b}=\perp_{c}^{a} \perp_{a}^{a}=2 \tag{3.10}\\
& \perp_{a b} p^{a}=0 \quad \perp_{a b} u^{a}=0
\end{align*}
$$

(iii) The rotation tensor field for P^{a} is characterized by

$$
\begin{equation*}
\omega_{(1)}^{\omega_{a b}} \equiv \perp_{a}^{c} \perp_{b}^{d}\left(P_{c ; d}-P_{d ; c}\right) \tag{3.11}
\end{equation*}
$$

These definitions are subject to the three GREENBERG'S transport laws for $P^{\text {a }}$ (after due corrections for signature):

$$
\begin{align*}
& u_{; b}^{a} P^{b}=P^{a} ; c u^{c}-u^{a} P_{b ; c} u^{b} u^{c}+P^{a} P_{b ; c} u^{b} P^{c} \text { (3.12) } \\
& Q_{; b^{a} P^{b}=-u^{a} P_{b ; c} Q^{b} u^{c}+P^{a} P_{b ; c} Q^{b} P^{c}}^{\text {(3.13) }} \tag{3.13}
\end{align*}
$$

and

$$
\begin{equation*}
R_{; b}^{a} P^{b}=-u^{a} P_{b ; c} R^{b} u^{c}+P^{a} P_{b ; c} R^{b} P^{c} \tag{3.14}
\end{equation*}
$$

Since the index a ranges over 0 to 3 , these are 12 equations (3 of which will be shown to be identities). The significance of these transport laws is that, they ensure the orthogonality of the tetrad ($u^{a}, P^{a}, Q^{a}, R^{a}$) during the parallel transport of the vector fields.
(2) The expansion, the shear and the rotation of the space-like congruence P^{a} in terms of $u^{a}, \dot{u}^{a}, \ddot{u}^{a}$:
(i) By the expressions (2.5), (3.7) becomes

$$
\begin{equation*}
\stackrel{\theta}{(1)}=\frac{1}{2}\left(\frac{\dot{u}^{a} ; a}{K_{1}}-\frac{K_{1} ; \dot{a}^{\dot{u}^{a}}}{K_{1}{ }^{2}}-K_{1}\right) \tag{3.15}
\end{equation*}
$$

since $\ddot{u}^{a} u_{a}=K_{1}^{2}$ and $\dot{u}^{a} u_{a}=0$, where K_{1} is the first curvature of the world line.
(ii) Using (2.5) in (3.8) we have

$$
\begin{aligned}
\left(\sigma^{a b}=\right. & \perp_{a}^{c} \perp_{b}{ }^{d}\left(\frac{\dot{u}_{c ; d}}{K_{1}}-\frac{K_{1 ; d} \dot{U}_{c}}{K_{1}{ }^{2}}+\frac{\dot{u}_{d ; c}}{K_{1}}-\frac{\mathrm{K}_{1} ; \dot{c}_{d}}{K_{1}{ }^{2}}\right) \\
& -\perp_{a b(i)}^{\theta}
\end{aligned}
$$

and by using (3.9) in above expression

$$
\begin{aligned}
(1)^{a b}= & \frac{1}{\bar{K}_{1}}\left(\dot{u}_{a ; b}+\dot{u}_{b ; a}-u_{a} \ddot{u}_{b}-\ddot{u}_{a} u_{b}-u_{a} \dot{u}_{c ; b} u^{c}\right. \\
& \left.-u_{b} \dot{u}_{c ; a^{u}}{ }^{c}\right)+\frac{\dot{K}_{1}}{K_{1}^{2}}\left(\dot{u}_{a} u_{b}+u_{a} \dot{u}_{b}\right)+2 K_{1} u_{a} u_{b} \\
& +\frac{1}{K_{1}^{3}}\left(\dot{u}_{a} \dot{u}_{b ; c} \dot{u}^{c}+\dot{u}_{a} \dot{u}_{c ; b} \dot{u}^{c}+\right. \\
& \dot{u}_{a} \dot{u}_{d ; c} \dot{u}^{c} u^{d}-u_{a} \dot{u}_{b} \dot{u}_{c ; d} \dot{u}^{c} \dot{u}^{d} \\
& \left.+\dot{u}_{a ; d} \dot{u}_{b} \dot{u}^{d}+\dot{u}_{d ; a} \dot{u}_{b} \dot{u}^{d}\right) \\
& +\frac{1}{K_{1}^{5}} \dot{u}_{a} \dot{u}_{b} \dot{u}^{c} \dot{u}^{d}\left(\dot{u}_{c ; d}+\dot{u}_{d ; c}\right)-L_{a b}{ }_{(1)}^{\theta}
\end{aligned}
$$

Note : On the non-zero independent components of $\underbrace{}_{(1)^{\mathrm{fab}}}:$
Since $\perp_{a b} u^{a}=0$ we have

$$
\begin{equation*}
{\underset{(1)}{\sigma}}_{a b} u^{a}=0 \tag{3.17}
\end{equation*}
$$

and therefore ${ }_{(1)} \mathrm{I}$ ab is orthogonal to u^{a}.
Now $\perp_{\mathrm{ab}} \mathrm{p}^{\mathrm{a}}=0$
implies that

$$
\perp_{a b} \dot{u}^{a}=0
$$

therefore

$$
\begin{equation*}
\sigma_{(1)^{a b}} \dot{u}^{a}=0 \tag{3.18}
\end{equation*}
$$

hence $\underset{(1)^{a b}}{ }$ is orthogonal to \dot{u}^{a}.

From (3.17) and (3.18) it follows that $\sigma_{(1)} \mathrm{ab}$ is
in the 2-plane spanned by Q^{a}, R^{a}. Consequently there are at most 2-non-zero components of $\underset{(1)^{\text {ab }}}{ }$, since

$$
{\stackrel{\sigma}{(1)^{a b}}}^{=}{\stackrel{\sigma}{(1)^{b a}}}^{b a}
$$

and

$$
\begin{equation*}
\int_{(1)^{a}}^{a}=0 \tag{3.19}
\end{equation*}
$$

(iii) Now using (2.5) in (3.11) we have

$$
\begin{aligned}
\underset{(1)^{a b}}{\omega}= & \perp_{a}^{c} \perp_{b}^{d}\left[\frac{1}{K_{1}}\left(\dot{u}_{c ; d}-\dot{u}_{d ; c}\right)+\frac{1}{K_{1}^{2}}\right. \\
& \left.\left(K_{1 ; c} \dot{u}_{d}-K_{1 ; d} \dot{u}_{c}\right)\right]
\end{aligned}
$$

and by using (3.9) in the above expression, we get

$$
\begin{align*}
\omega_{2 b}= & \frac{1}{K_{1}}\left(\dot{u}_{a ; b}-\dot{u}_{a} u_{b}-u_{a} \ddot{u}_{b}+\ddot{u}_{d ; a} \dot{u}_{b} u^{d}-u_{a} \dot{u}_{c ; d^{u}}{ }^{c}\right) \\
& +\frac{\dot{K}_{1}}{K_{1}^{2}}\left(\dot{u}_{a} u_{b}-u_{a} \dot{u}_{b}\right)+\frac{1}{K_{1}^{3}}\left(\dot{u}_{a} \dot{u}^{c}\left(\dot{u}_{c ; b}-\dot{u}_{b ; c}\right)\right. \\
& +\dot{u}_{a} u_{b} \dot{u}_{d ; c} \dot{u}^{c} u^{d}-u_{a} \dot{u}_{b} \dot{u}_{c ; d^{\prime}} \dot{u}^{d}+\left(\dot{u}_{a ; d}-\dot{u}_{d ; a}\right) \\
& \left.\dot{u}_{b} \dot{u}^{d}\right)+\frac{1}{K_{1}^{5}} \dot{u}_{a} \dot{u}_{b} \dot{u}^{c} \dot{u}^{d}\left(\dot{u}_{c ; d}-\dot{u}_{d ; c}\right) \tag{3.20}
\end{align*}
$$

Note : Since $\perp_{a b} u^{a}=0$ and $\perp_{a b} p^{a}=0$,

$$
\begin{equation*}
{\underset{(1)}{\omega}}^{\omega}{ }^{u^{a}}=0 \tag{3.21}
\end{equation*}
$$

and

$$
{\underset{(I)}{ }}^{a b} \dot{\mathbf{u}}^{a}=0
$$

i.e. $W_{(1)^{a b}}$ is orthogonal to u^{a} and \dot{u}^{a},

in the 2-plane spanned by Q^{a}, R^{a}. There is aftmost one non-zero component of $\underset{(1)^{\omega}}{ }{ }^{\mathrm{ab}}$, since

$$
\begin{equation*}
{\underset{(1)}{a b}}^{\omega^{2}}=-\omega_{(1)^{b a}} \tag{3.23}
\end{equation*}
$$

The vorticity space-like congruence ω^{a} is given by

$$
\begin{equation*}
w^{a}=\frac{1}{2} q^{a b c d} u_{b} w_{c d} \tag{3.24}
\end{equation*}
$$

(3) Physical Components of a tensor :

We define the physical components of a tensor $A_{a b c d}$
to be the set of scalars

$$
\begin{equation*}
A_{\alpha \beta r \delta}=e_{(\alpha)}^{a} \quad e_{(\beta)}^{b} e_{(r)}^{c} e_{(\delta)}^{d} A_{a b c d} \tag{3.25}
\end{equation*}
$$

where Greek indices range over $0,1,2,3$ and

$$
c_{(\alpha)}^{a}=\left\{u^{a}, P^{a}, Q^{a}, R^{a}\right\}
$$

(i) Physical components of $\left(\begin{array}{l} \\ \\ \text { ab }\end{array}\right.$:

$$
\begin{aligned}
& \text { From (3.25), we write } \\
& \sigma^{\sigma} \alpha \beta=e_{(\alpha)}^{a} e_{(\beta)}^{b}\left(\sigma^{\mathrm{ab}}\right.
\end{aligned}
$$

We have atmost two non-zero components of σ^{ab} and so we evaluate $\underset{(1)^{22}}{\sigma}$, viz.,

$$
\begin{aligned}
{\underset{(1)}{\sigma} 22} & =e_{(2)}^{a} e_{(2)}^{b}{ }_{(1)}^{\sigma} a b \\
& =Q^{a} Q^{b}{ }_{(1)^{a b}}^{\sigma}
\end{aligned}
$$

by (3.16), above expression becomes

$$
\begin{aligned}
& { }_{(1)}^{\delta_{1}}{ }^{22}=Q^{a} Q^{b} \frac{1}{\bar{K}_{1}}\left(\dot{u}_{a ; b}+\dot{u}_{b ; a}\right)-\perp_{a b} Q^{a} Q_{(1)}^{b} \\
& \text { since } Q^{a} u_{a}=0, Q^{a} \dot{u}_{a}=0 \text {. } \\
& \text { or } \\
& \sigma_{(1)^{22}}=\frac{2 \dot{u}_{a ; b}}{K_{1}} Q^{a} Q^{b}-g_{a b} Q^{a} Q^{b} \underset{(1)}{\theta} \\
& \text { ide. }-{\underset{(1)}{\sigma} 33}^{(1)} \underset{(1)^{2}}{\sigma}=\frac{2}{K_{1}} \dot{u}_{a ; b} Q^{a} Q^{b}+\underset{(1)}{\theta} \text {. (3.26). }
\end{aligned}
$$

Now, from (3.25)

$$
(1)^{23}=Q^{\mathrm{a}} \mathrm{R}^{\mathrm{b}} \underset{(1)}{\sigma} \mathrm{ab}
$$

by (3.16), we have

$$
\sigma_{(1)^{23}}=Q^{a} R^{b} \frac{\dot{u}_{a ; b}+\dot{u}_{b ; a}}{R_{1}}-\perp_{a b} Q^{a} R^{b}(\stackrel{\theta}{1)}
$$

the equation (3.9), (3.19) gives that

$$
{ }_{(1)^{\sigma}}^{\sigma}=+{\underset{(1)}{ } 32}_{\delta_{13}}^{K_{1}}\left(\dot{u}_{a ; b}+\dot{u}_{b ; a}\right) Q^{a} R^{b} .(3.27)
$$

We summerize these results -

Note : Shear free P^{a} is characterized by the two conditions

$$
(1)^{\sigma 2}=0, \quad(1)^{23}=0 \text {, these are satisfied }
$$

when P^{a} is a killing vector field.
(ii) Physical components of $\underset{(1)}{(1)} \mathrm{ab}$:

From (3.25), we write

$$
{\underset{(1)}{\alpha \beta}}_{)^{\alpha \beta}}=e_{(\alpha)}^{a} \quad C_{(\beta)}^{b} \quad \omega_{(1)^{a b}}^{a}
$$

but we have only one non-zero independent component of $(1)^{\mathrm{ab}}$,

$$
\text { i.e. } \quad \omega_{(1)^{23}}=Q^{a} R^{b}{\underset{(1)^{a b}}{\omega}}^{\omega}
$$

by using (3.20) in above equation, we have -

$$
\underset{(1)^{\omega}}{\omega_{23}}=-\omega_{(1)}{ }_{32}=\frac{1}{K_{1}}\left(\dot{u}_{a ; b}-\dot{u}_{b ; a}\right) Q^{a} R^{b} \quad(3.28)
$$

we summerize these results

$$
\underset{(1)}{\boldsymbol{U}} \mathrm{ab}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\bar{K}_{1}}\left(\dot{u}_{a ; b}-\dot{u}_{b ; a}\right) Q^{a} R^{b} \\
0 & 0-\frac{1}{K_{1}}\left(\dot{u}_{a ; b}-\dot{u}_{b ; a}\right) Q^{a} R^{b} & 0
\end{array}\right]
$$

Note : Irrotational congruence P^{a} can be described through

$$
\dot{u}_{a ; b}=\dot{u}_{b ; a}
$$

i.e. \dot{u}_{a} is a harmonic congruence.

Section-3:

Serret-Frenet formulae, transport laws and physical components in terms of Ricci Rotation Coeffieients: :
(1) Ricci rotation coefficients (Scalars) :

The set of invariants $r_{\text {Ihk }}$, defined by the equations

$$
\begin{equation*}
r_{I h k}=e^{e}(1) \mid a ; b \quad e_{\left.(h)\right|^{a}} e_{(k) \mid}^{b} \quad \text { (Eisenhart, 1960) } \tag{3.29}
\end{equation*}
$$

where $1, h, k$ range over ($0,1,2,3$) and where

$$
\begin{equation*}
e_{(0)^{a}=u^{a}, e_{(1)^{a}}=P^{a}, e_{(2)^{a}}^{a}=Q^{a}, e_{(3)}^{a}=R^{a}, ~}^{\text {a }} \tag{3.30}
\end{equation*}
$$

is called as Ricici rotation coefficients (Scalars) with properties

$$
\begin{align*}
& r_{l h k}+r_{h l k}=0 \tag{3.31}\\
& r_{l l k}=0 \quad(1 \text { is not dummy }) \tag{3.32}
\end{align*}
$$

(2) Transport laws of the space-like congruence $p^{\text {a }}$ in terms of $u^{a}, \dot{u}^{a}, \ddot{q}^{a} \quad:$
(i) By using (2.5) in (3.12) we have

$$
u_{; b}^{a} P^{b}=\frac{\dot{u}^{a}}{K_{1}}-\frac{\dot{K}_{1}}{K_{1}^{2}} \dot{u}^{a}-K_{1} \dot{u}^{a}+\frac{1}{k_{1}^{3}} \dot{u}^{a} \dot{u}_{b ; c} \dot{u}^{c} u^{b}
$$

or

$$
\begin{equation*}
u^{a} ; b P^{b}=K_{2} Q^{a}+\left(\frac{1}{K_{1}{ }^{2}} \dot{u}_{b ; c} \dot{u}^{c} u^{b}\right) P^{a} \tag{3.33}
\end{equation*}
$$

We now express these 4 equations in terms of $r_{\text {Ink }}$.
(ii) By using (2.5) in (3.13), we have

$$
\begin{equation*}
Q^{a} ;_{b} P^{b}=K_{2} u^{a}+\left(\frac{1}{K_{1} K_{2}} \dot{u}_{b ; c} \dot{u}^{c} Q^{b}\right) P^{a} \tag{3.34}
\end{equation*}
$$

(iii) By using (2.5) in (3.14), we get

$$
R_{; b}^{a} P^{b}=\frac{1}{K_{1}{ }^{5} K_{2}} \dot{u}^{a} \dot{u}_{b ; c} \dot{u}^{c} \eta^{b l m n} u_{1} \dot{u}_{m} \ddot{u}_{n}
$$

$$
\begin{equation*}
\text { ie., } R_{; b}^{a} P^{b}=\left(\frac{1}{K_{1}^{2}} \dot{u}_{b ; c} \dot{u}^{c} R^{b}\right) P^{a} \tag{3.35}
\end{equation*}
$$

(3) GSF formulae in terms of Ricci rotation coefficients :

$$
\text { By contracting expressions }(2.10),(2.11),(2.12) \text { and }
$$

(2.13) with $u^{a}, P^{a}, Q^{a}, R^{a}$ we get

$$
\begin{aligned}
& -r_{010}=r_{100}=k_{1} \\
& -r_{120}=r_{210}=k_{2} \\
& -r_{230}=r_{320}=k_{3}
\end{aligned}
$$

and remaining

$$
\begin{equation*}
r_{020}=r_{030}=r_{130}=r_{200}=r_{300}=r_{310}=0 \tag{3.36}
\end{equation*}
$$

(4) Transport laws in terms of Ricci rotation coefficients :

By contracting equation (3.33) with Q^{a}

$$
r_{021}=-K_{2}
$$

and equation (3.34), contracting with $u^{\text {a }}$

$$
r_{201}=K_{2}
$$

and equation (3.35) gives

$$
r_{311}=r_{131}
$$

This is truk ilkritiully $\hat{i t a c}^{2}=\hat{r}_{\text {bale }}$.

- kent elaticaco.	

It p moves the ettiviknc, of free Alice Nadia.
(5) Physical components in terms of Riccio rotation coefficients :

The equations (3.26), (3.27) and (3.28) give that

$$
\begin{aligned}
2 r_{122} & =\frac{\sigma_{122}-\theta}{(1)}=-\sigma_{(1) 33}-\theta \\
\text { but } \quad \underset{(1)}{\theta} & =\frac{1}{2}\left(r_{122}+r_{133}\right)
\end{aligned}
$$

which implies that

$$
{\underset{(1)}{\sigma})=\frac{3}{2} r_{122}+\frac{1}{2} r_{133}, ~}
$$

$$
\text { and } \left.{ }_{(1)}^{\sigma_{23}}=\sigma_{(1)}^{\sigma}\right)^{2}=r_{123}+r_{132}
$$

$$
\begin{equation*}
\text { and } \omega_{(1) 23}=r_{123}-r_{132} \tag{3.38}
\end{equation*}
$$

