CHAPTER-~-III

SPECIAL SPACE~-LIKE CONGRUENCES ON THE
STREAM LINES,
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Introduction @

In this Chapter we find the effect of vanishing of
each of the curvature scalars on the space-like congruences
associated with the stream line of a particle. It is argued

that X, = 0 corresponds to the path of a classically gravita-

tionalzy self interacting spin particle, while K2 = 0 implies
that the particle moves as a charged»particle with radiation
reaction but no external electromagnetic field. The case of
K1 =0 yields a geodesic path. Section 2, portrays the three
kinematical parameters‘of the space-like vector field pe only
after analysing the transport laws governing their definition.
Explicit evaluation of physical components of shear and rota-
tion is accomplished here. The transport laws of the space-
like congruence P2 are expressadin terms of Ricci rotation
coefficients Yﬁlhk in the next section. The generalized

Serret~Frenet formulae and physical components of the shear

and rotation look elegant when expressed in 'ﬂlhk'

Section 1 :

Special curvatures and their significance :

Case 1 ¢ The first curvature vanishes :

Here K1 = 0, that is the magnitude of P? vanishes. This
is possible only when 4% = 0. This represents the path of a free

particle, in other words, it denotes trajectory of a particle



43

upon whibh no force acts apart from the gravitational force.
This path is also referred asiht geodesic path.

Cage 2 : The second curvature vanishes and the first

curvature does not venish :

The equation

K,=0, K4 =0

implies that

w*® 0 by (2.18)
which means that

® =0
a K
or u-—-—-"—"“—-tia-K ua=0
K 2 1
1 K1
or s
X1
c:a _ *8 2 .8
u” = T u* + K1 u“. . (3.1)
Here u® is a linear combination of u® and u®. Such a.

situation exists in the case of the path of a charged particle
with radiation reaction but no externsal electromagnetic field.

Specifically

2 -—
X} e g a .b.
m°> = u® +u® (- 4™ f] 362
61 G2 J- b’ | (3.2)

where m is the mass and e is the charge of the particle
(Barut, 1964).



Remark : When K1 = constant, we have

O.

-
u

So
22 = K, 2 v, (3.3)

And this equation represents the differential equation for a
time-like circle. (Synge, 1960).

Cage 3 : The third curvature vanishes and the first

and the second do not vanish :

Here
K3 = 0’ K2 # 0: K1 = 0. (304)
This is similar to the previous case, we get that u®> should
be a linear combination of u>, a2, u® that is
W an e ua® e (R, - 3u%R,) ut (3.5)

where N and U are arbitrary.

Such a situation exists in the path of a classically gravita-
tionally self interacting spin particle with Frankel-Weyssenhoff

constraints, viz.,

o

T+ (38%,) ut = (- iP) 6 + & am
s
m2 .2 e a seq
(=5 -u%) (' u® +4?) (3.6)
s

(Goenner et al. 1967)
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b .
where Sa = S&b u-  with the spin tensor Sab
n = mass
G = Newtonian Gravitational constant.
Remark

When K3 = 0 and K1 = constant, K2 = constant

we have

K1 = O and K2= 0

These conditions implies that the path of the particle is the
time-like helix.
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Section 2 :

Shear-free, irrotational space~like congruence P2

(1) The three parameters of the space-like congruence P2

The parameters of the space-like congruence P2,
relative to the time-like congruence u® when the signature
of metric is ( - - = +) are cited below. We note that in
Chapter I, Greenberg's formulae are for the metric signature

(+ + 4+ =),

(i) The expansion parameter is defined by

o u® uP) (3.7)

1 (pa
= (P2, =P
(1) (

ja azb

here the subscript (1) below © denotes that the parameter is

for the first space-like congruence P&,

(11) The shear tensor field for P® has the expression

_ ¢ . a
§ab = |, Ly (Byq+Rg0) - Lav 9 (3.8)

where 'J—ab is the 2-dimensional projection 6perator defined
by
Aoy = 3ab - ugny, + PRy (3.9)

with properties
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‘ a b a a
-L-abz-Lba’ ..Lb_Le‘._LCS.La:Et
(3.10)

DR ST ST T BT e

a a _
(iii) The rotation temsor field for P? is characterized by

d
Ok = 1. Ly (Byuq = Bg,o)e (3.11)

These definitions are subject to the three GREENBERG'S

transport laws for P2 (after due corrections for signature):

a, pb _ p2 c_.a b.c a ch
iy P’ =P o U u Pb;e au” + P Pb;c u (3.12)
a pb _ _.a b ¢ a b e
Q" =t By, QuC + PE R Q° P (3.13)
and
a b a b ¢ a b ¢
R ;b P"¥ = -u Pb;c RV u” + P ?b;c R P~ . (%.14)

Since the index a ranges overlo t0 X, these are 12 equations
(3 of which will be shown to be identities). The significance
of these transport laws is that, they ensure the orthogonality
of the tetrad (u®, P%, Q%, R®) auring the parasllel transport

of the vector fields.

(2) The expansion, the shear and the rotation of the space-like

congruence P? in terms of u?®, 42, W? :

(i) By the expressions (2.5), (3.7) becomes
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.a a
o Wy K um
(g) = 3 ( X, 'E4§—““ K, ) (3.15)

since u> u, = K12 and ﬁaua = 0, where K1 is the first

curvature of the world line.

(ii) Using (2.5) in (3.8) we have

e 4 u K, .U_ u K, u
. Yoia _ %450V Y50 Bi;cMa
(f‘;ab-"'a Ly ¢ Ky x.2 | K X, 2 )
1 1
— Layp(§)

and by using (3.9) in above expression

- -‘L- . . - s e - o c
(gggb - K1 ( ua;b + ub;a Ugllp = Uty uéuc;b v
X
- 3 c L *
WU, .U ) + K12 ( uu, + uagb) + 2 K1uéub
+ o (a a9 +u u. ., a4
K13 a “bje a “c;b
* . (s ° » o C od
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Note : On the non-zero independent components of & b °

Since L.y u? =0 we hdve
5 . uw=0 (3.17)

and therefore (5;; b is orthogonal to ua.
1 .

thV ‘Lab Pa =0

implies that

Lap 8% = o0

therefore

(5@ a2 = 0 ‘ (3.18)

hence (67 .p 18 orthogonal to a?,
1

From (3.17) and (3.18) it follows that g~ p 18
(1)@

in the 2-plane spanned by Q2, Ba. Consequently there are at

most 2-non-zero components of & _, , since
(1)8b
\

6 . = 6
(1)ab (1)ba

)
and a (3.19)
§ 0
(1)2 0



50

(iii) Now using (2.5) in (3.11) we have

c d
1_ (2 - 1_
(C,:))ab = —La Ly ['I'(T (uc;d ud;c) + K12

(K1;cud_ Ki:a %o )]

and by using (3.9) in the above expression, we get

- 1 * . - » o » d - ] C
(%ab = KZ,’ ( Ugsb = Ualp T Balp t B4;a Wb Ugle;at )
+I_.(l(ﬁu wd, ) +—= (0a® (4 .. -u . )
2 a'b ab 3 a c;b bsc
K K,
. . *0 d o o od . _
+ Uyl U U U, U+ (ua;d ud;a)

: a ‘
(?{ab u” =0 « (3.21)
and
Gt
1
i.ee (%)ab is orthogonal to u® and 02 ,

From (3.21) and (3.22) it follows that
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in the 2-plane spanned by Qa, R®., There is atmost one non-zero

conponent of (%;ab , Since

W = - (W, . (3.23)
(1)ab (1)ba
The vorticity space-like congruence (Ua is given by
a _ 1 _abed , . (3.24)
w =37 Up Wed

(3) Physical Components of a tensor @

We define the physical components of a tensor Aabcd
to be the set of scalars

o _ A b ,c da .2

where Greek indices range over 0,1,2,3 and

a

@(4)

= { u?, P?%, Q% %

(i) Physical components of (?;éb :

From (3.25), we write

5 - a b .
M<E " L) te) (h

We have atmost two non-zero components of‘(d}ab and so0
1

we evaluate (q;éz, viz.,
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a b
a2 = ¢ %2 (fgab

Q@ QP

(f;;b

by (3.16), above expression becomes

b 1 . * a Ab
£y = Q@ Q == (u ., +8., )~ 1, Q%6
(1)22 K1 a,vb bsa ab (1)
gince Q2 u, =0, Q2 i, = 0.
or 2
u
(1)22 _ K1 ab (1)
2 . a A~b
je€e = K ax=06 .= % 0 ..+ o - (3.26).
(1)°3 (1) & Tasd (1)

Now, from (3.25)

= a Rb
by (3.16), we have
u + 10
0o = Q2 RP azb bia_ _ n Q2 Rb o
(1) 1 ab (1)

the equation (3.9), (3.19) gives that
- I N . s b
(1§E3 = + E§;32 - 'K;“ ( Uy.p * Up,a ) Q* R”, (3.27)

We summerize these results -
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0 0 0 0
6., =
2 a~b 1 (e .
o 0  Yagp Q*Q +(16) g{(ua;g u

‘1..0 . ab -
Z[{1(ua;b"'ub;a,)Q R K

Note : Shear free P® is characterized by the two conditions

= 0, =0
()22 (1°/>23

when P2 is a killing vector field.

(ii) Physical components of

From (3.25), we write

a) = 8 b
dre = Ly ey B

, these are satisfied

but we have only one non-zero independant component of g%iab,

ioen (%23 =

by using (3.20) in above equation, we have -
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- - _ ] . _2 a pb

(2%23 B §$>32 - f; ( ua;b ub;a) " R (3.28)
we sunmerize these results

0 o 0 0

_ 0 0 0o 0
(C:J)glb ) 1 b
0 o0 ) f;(ua;b -d,..) Q@R

. _ 2 a b
0 0 K1(ua;b ub;a)Q R 0

Note Irrotational congruence P® can be described through

L 1)

. °
Yasd T Ypja

L]
i.e. u, is a harmonic congruence.




Section-3 :

Serret-Frenet formuilae, transport laws and physical

components in terms of Ricei Rotation Coeffieients: :

(1) Riceci rotation coefficients (Scalars) :

The set of invariants Y,,,, defined by the equations

b :
Y‘lhk = 6(1)l a;b e(h)l a e(k)l (Elsenhart,1960)
(3.29)

where 1, h, k range over (0, 1, 2, 3) and where

o(0)® =u% e(1)® =% (5% = Q% o5y =B*  (3.30)

is called as Ricti rotation coefficients (Scélars) with

properties

Tlhk?rhlk =0 (3.31)

Tilk = 0 (1 is not dummy) ° (3.32)

(2) Transport laws of the space~like congruence P2 in

terms of u?; 4?, Y&

(i) By using (2.5) in (3.12) we have

a b _ u®
u,-bPzr;

»

or
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a b a I ec D a
u ;bP =K2Q + (K12 Uy, W )P (3.33)

We now express these 4 equations in terms of I 1hk®

(1i) By using (2.5) in (3.13), we have

Qa;b PP = K, u? + ( K:KZ ﬁb;c a¢ Q) 2. (334)

(ii1) By using (2.5) in (3.14), we get

a b _ _ 1 eas sc blmn_ o s
R’bl’ = K5K u ub;cu rt u.lumun
1 72
i.e., B% PP = (L5 iy, , 6° RP) P& - (3.35)
s K1 ]

(3) GSF formulae in terms of Ricci rotation coefficients :

By contracting expressions (2.10), (2.11), (2.12) and
(2.13) with ua, Pa‘, Qa‘, R® we get

- Yo10 = V100 = %
“Yi20= Y210 = K3
“Yo30= T3 = X3

and remaining

YOZO = r030 =r130 = Too0 = V3oo = ?‘310 = 0 (3.36)
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(4) Transport laws in terms of Ricci rotation coefficientsﬁ H

By contracting equation (3.33) with Q%

- K

r021 = 2 (E-3%F

and equation (3.34), contracting with n?

rzm = X,

and equation (3.35) gives

7‘3“ = Y‘1 31 )

T’r\i.« = Pl :‘JmHaN/ Qe SN

N A / Jes L RPN
NP . L - LV‘.a)I(‘_.;q)’ (,‘_.‘_;)
-~

ROL 9 Jleant dlatca o
i proves fng L’,‘f”!‘,‘;,“&ﬂ(, T N T R AT

(5) Physical components in terms of Ricei rotation coefficients :

The equations (3.26), (3.27) and (3.28) give that
2. = 6 ,,-8 == 0 ;-8
22— (1)22 (1) (1)73 (1)
= 4
wt 0= 3 F122+ Vis3)

which implies that
- 1
(ﬁ?_z = %V‘mz* 3 1433

and - feo3 = (?;32 = Mo+ s

a
(1)23



