CHAPTER-I1

THE THREE NATURAL SPACE-LIKE CONGRUENCES (SC) ON THE
WORLD-LINE OF A PARTICLS IN RELATIVISTIC CONTINUUM
MECHANICS AND THE THREE CURVATURES,
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Introduction :

Starting from the famous time-like congruence represent-
ing the velocity field of a particle in a contimuum, three
space-like congruences are constructed in this chapter. The
three curvatures of the stream-line are also evaluated using
the generalized Serret-Frenet formulae in the 4-dimensicnal
space-time of general relativity. In Section 2, it is shown
that when the matter is pressure free there do not exist?ﬁpace—
like congruences. A simple illustration of the three space-
like congruences as well as the three curvature scalars for
the early universe is described in Section 3. In the last
Section, the Frenet apparatus for the Definite Material Scheme

is presented.

Section 1 :

Acceleration vector field as the natural space-like

congruence :

If = is the arc-length parameter then the natural
equation for the world-line of a particle in a contimmum is

Xa = xa(‘—" )» (a=0,1,2,3).

If u? is the tangent vector to this curve then

u® --—%ii (2.1)
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The metric relation d82 = dxadxa implies
a
u ua -‘ 1. (202)

Thue u2 is the unit tangent vector field on the world-line.

It is a time-like vector field since uau > 0. The accele-
au?

ration field (which is not equal to —— dt

) is denoted by u® and
is defined by

{2 = u.‘a‘.b a? (2.3)
4

where a semicolon denotes covariant differentiation. Henceforth
an overhead dot means covariant derivative along the flow field.
It should be noted that 42 is not a unit vector field. It is a

space-like vector field since it is orthogonal to the time-like

a

vector u®, for, from (2.2)

(ua ua)‘ =0

which implies

a%a, = 0. (2.4)

This one orthogonal relation prompts us to examine whether an

orthogonal tetrad can be constructed, by introducing two more

space~like vector fields.

The three natural space-like congruences :

(1) Expressions for P2 and K.

Let P® represent the unit vector field along the

AL KHARUEKAR U mm
Mﬁiwgﬁ?guwsasm KOLHAPOR



k]

acceleration, then we have |

Pa = ‘I.la/ {1

1
or P2 = 4%/ (- ¥ Uy )% , since 0 is space-like

a
( .
u ua 0

Suppose that

;

Here K, is a scalar field called as the first curvature of

the world-line and it is given by
1
- - [ » -2.
K1 i- ( u%a) o (206)

Suppose Q®, r® represent the two unit vector fields which are

orthogonal to both u® and P%. Then we have the algebraic

~ relations

P2 Q =0 (2.7)

P p_ =Q%, = -1 (2.8)

and the differential relations (GSF formulae) as described
in Chapter-I (1.4%)

a? 0 K, 0 0 u® ]
Oa a

P K, © K, O P

1 = - a

Q o K, © K, Q

re ) 0 -K, 0 Ra
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or equivalently

w? = K1Pa (2.10)
P2 = Ku® + K, Q® (2.11)
e a a

Q® =K, P +x3x (2.12)
R® = K, Q2 (2.13)

where Kz, K3 are called the second and the third curvstures

of the stream-line.

a .
(11) Expression for Q™ and K2 :

From the expression (2.10) we write
ﬁa = ( ﬁa / K1 ).
seg . 2 .
=(u® / k) -(k,/x,9)8® |

In order to compare this with GSF formula (2.11)

we add and substract K1 ua, i.e.,

. O.a K .
P2 = K1ua+3" -—'32'"“8"1(1“&
K K
1 1
ioecy fa = K1ua + Wa, Say. (2014)

Accordingly we get
**a K . u K1
_ u 158 . a - . B -
Wawa—-(T'-"—z'u K1u)(K Tua K1ua)
1 Ky 1 K
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- Oa'. A
uu 2K K 2
a 1 ..a}i *e8 1

on using (2.4), (2.6)

o8

Convenient expression for iu%a_ and u%a :

a a

The relation

ca s _ _x 2
u ua = K1
implies
- L4 2 *
(u ua) = (- Kq)
.‘a L ] g
1¢eo n ua = —K.‘K“

On covariantly different

iating the equation

in the direction of ua, we get

. -
(%) =0
‘08 . a.
i.e. un ua = u ua
AT 2
or uu, = K1 .

Substituting (2.16) and

(2.17) in (2.15), we obtain

2

(2.15)

(2.16)

(2.17)



'ﬁa'v'. I.(12 )
WaW = a + - K
a K.° K.° 1
1 1
= -x22 , say (2.18)
in order to agree with the GSF formulae.SoThe relation
2 2
suggests that
Q2 = w2
B Ii2
Ooa ﬁ .
or ® = g (= -5 v®-Ku®) (2.19)
2 1 K1
Xy L l
ufu, K, 2 5 2
and K, =(-=—z=- (g ) + K%) - (2.20)
K, 1

Bxpression for R®

Since R? 1is orthogonal to ua, Pa, Qa, it should be
of the form

a _ abed
R® = e 1 uy Pc Qd . (2.20)

Where rf"bcd is the Levi Civita tensor and e is to be chosen
such that Raﬁa = =1, With this intention, we evaluate
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a 2 abed 1l ._.m . n
R"R, = e q Yalun “p e W W ¥ Q.

According to Stephant (1982),

o7 65 6]
abed = -
1 Mlalmn 6P 68 68 .
m m m
b c d
%n 6n %n
Hence we have
a _ a2 b c d_ ¢ . d ¢ b .4 _.b .4
R*R, = =8 { & (6lm 6, = 6, 5m)+51 (an 6y ~6p 6n)
d (b c_ b e 1 n
+ 6 (6 6, = 6, 6m) by Pc Qd a- PP QR
on expansion
= -e2 ¢ (1) ((-1)(=1) = 0) + 0 + 0 },
on expansion by (2.2) (2.7)(2.8).
a e on?
R Ra" e,

It follows from R*R_ = -1, that e = 1 and so

e =1+ 1. (2.21)

Substituting the expressions for Q% and P® in (2.20), we get

K1 ) ¢

u
R e n2bcd e ( pi- - N - — u )
q b 2y K;K; K12K2 d K, d
abcd ¢ v
. 1. u
R® = e 1 b “c "d (2.22)



since the inmner product ﬁc ﬁd qade vanishes due to the

fact that ‘;‘c'ﬁd is symmetric in (c¢,d) and r\ade is skew

symmetric in (c,d). Similarly uy Uy qabcd also vanishes.

Expression for K3 :

By GSF formula

e _ a a
Q" = KZP +K3R

this gives us

a _ a
) R, = 0+ Kz R®R_

implies

a : (2+23)
We note from (2.22)

w*Ry =0, WR, =0, @R, =0, (2.24)

since u, u, and W, U, are symmetric in (a,c) and (a,b)

and qabcd is skew symmetric.

Now from expression (2.19)

el i K a o«
da = ( u - 1 ﬁa - 1u )
KK 2 K
172 K1 K2 2
o e a

= + terms in 02 + terms in H® + term im 42
1 Ko

+ terms in 4% + terms in u® , on using Leibmnitz rule.
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Lidd

Q2 . +0+0+0+0+ 0.,
QR&'K.‘KZ Ra 0+0+ 0

Now (2.24) and (2.23) imply that

R P a L 22 ]
a u2 R Y,

5TURG TR

Accordingly from (2.22) we have

K, = =¢ —dt—s 0?0 u 4 i, (2.25)

Since K.., K, K3 > 0, we should have to choose e = -1,

consequently
a _ _ 1 abed o o
R% = -———--K % ] Uy U, Uy (2.26)
and
1 abed o se ese 7
K3 zm xl ub uc ud 8 * (2.27)
1 2
Finally we obtain the naturszl tetrad as
e SNSRI
a 8> w* K .2 kK 4 1 abed . -
f u - 1 - u - u .
'K TR, T E o ' Tg2g, | Uelia 3

Note : We have the completeness relation

ga'b = u? ub - p@ Pb- Q2 Qb - R® Rb' (2.28)
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Section 2

On the non-existence of natural space-like vector

fields for the pressure-free matter :

We note that, the matter as a contimmm of dust particles

(pressure~free matter) is characterized by the stress tensor

780 _ ¢ u® 4P, (2.29)
where fisthe density.
Hence the identity (energy-balance equations)

20, = 0 (2.30)
implies that

(¢ u ub)_;b =0

fee., (§ +5uPg)u®+ ¢ 4% = 0 . (2.31)

Now consider the equation of contimuity (time component of
(2.30) )

ab

which together with (2.31) gives
$§ +3 ubgb = 0.

Substituting this in (2.31) we get since § # O, that

*a

u” =0 . (2.33)
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This obviously implies that P® = 0. It means that for
pressure free matter, the natural tetrad does not exist, i.e.,

the tetrad can not be constructed, when there is no interaction

between particles of the contimous medium.

The natural space-like vector fields are thus trivial
for dust distribution of matter. We infer that the three
natural space-like congruences exist for interacting matter

only. The simplest such matter is presented in the next section.
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Section 3

Illustrations of space-like congruences for

the early universe :

The early universe is radiation dominated era and the

equation of state is given by Wald (1984):

S z';%- P (2032)

where p is the pressure and § is the density of matter. This
is referred as disordered radiation zone. The energy momentum

tensor for such a distribution of matter is

pab _ ¢ udub - ~%— ( gab - u%®)
c

or 1% o B (4uP - ). (2.33)
c

From the energy balance equations

ab -
™ = 0,
we get
4(p+poe)ut+4pi®-p2c-0 (2.34)
where O = ua;a. . The acceleration field is

ww= “(p+po) a® + p’®

. (2'35)
P 4p

The equation of contimuity
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yields

- p +p O =

oo

, since p’? u, = P . (2.36)

Substituting in (2.35) gives the equation of stream lines

a8 . - hut+p?® (2.37)
4 p

This expression gives the acceleration field of a particle

in the early universe. The relation

K1= V_ﬁaﬁa
implies ]
S *2 _ 2
L= (P°-F) (2.38)

where F represents the magnitude of pressure gradient

F= p,, 0% (2439)

Therefore, 1

PPz ($2-F) ° (- pu+pr?), (2.40)
Now for the evaluation of Q%, R®, K2 we need 3. From (2.37)

we readily have

L] LA ¢ o . 1 °
8% g (Fu® - pa%+ 5 0% + 72 (2w - 5 p'®)
or ;i = ,._1..1 (p i)‘-g- p2) ua__ﬁ_ﬁa-;-.ﬁ._’f — 1 P p’a
Ap 4p 4p 4p°



Remsrk : The inner product u° u, # 0, implies that 4%

is not space-like although 4% is space-1ike. Therefore,

18 0

1 : . . * .
K s [ (5% +K°+2p 5, 4% 525, )

= | —
2" " 16 p*,

. ‘2 ~
—-Z-I;P(p +Dp 8 -5 0% - 5 (F - 5%)
P

LX) ° . : * 2
- F (g5 (T30 ) - By (3% P

1 4p
+ 16p°E47 12 (2.42)
and
Qa' = 1 { ( - .-.i. + ii— + K ) ua
[ L .o b 02 .
+{-._2_+ —L—”(P"’i‘* I-R—-—Z—E)]ua

o2
+ (1 - ..E._....) p»a )
ap* Y

Now using (2.37) and puting in terms of u®, u®

— .2 .3
Q® = g (- 2+ —BS 4 K, = § 4 ) yP
VAL A= AN
* ° h 02
-y B (P4 ps E P -F
4p 54p3K1(p P 5 P )

+ 4p - gg, ;aa_] (2.43)
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and -
a -1 abed . oo
R? = — u P, (4pps-5P0D 4)
eee (244 a)
, 8 -1 . abed .
~1e@ey R® = K > X 16 p2 )" ub p’c P ,d’ oo (2.44 b)

1 2
abed
since p cPa is symmetric and n is skew symmetric in
s 14
(c,d).

Now for the expression of K3 » We need w &, By definition

L] [ ]
{;.& = ( aa)

and by using (2.41), we get

oo 1 s e * & [ 3] °
ey [(F-rwert -

(Pu?-pua+ 5% + (2 u+pu®-
e a ® o0
p ' ol L44 ¢« o *
e N (pua-Pua*P'a‘]
Y p B
eee(245)
therefore,
—1 abcd . oo oo




By (2.37), (2.41) and(2.45) above expression becomes

-1 abed .

G W, p D47

(2.46)

hd L b
since Py p’d, p"1 p’a and upu , are symmetric and x]a cd

is skewsymmetric.

Inferences : Some sufficient criteria for the vahishing

of K3.

(i) When » s =0
14
this gives

K3=0,

in this case K1 % 0 and K2 £ O,
This means that
'ﬁ = A, a constant,

For a comoving observer u? = (0, 0, 0, u°)

1.) = A2 + B
where < 1s arc-length parameter and B is & constant and

A2

(ii) When 4p i’,d = 5P Pg we get K3 =0 by (2.44 a)

ioeo, é = —2 *% p’

@ T 4 d .
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Section 4 :
The space-like congruences for DEFINITE MATERIAL SCHEME

Introduction :

The field of stress—-energy-momentum tensor Tab in a

. domain of spece-time is known as energy scheme. If T2P have
time~like eigen vector then the scheme is'known as normal
scheme. A normal scheme with positive eigen-value is called
material scheme. The stressQenergy momentum tensor Tab is

said to be positive definite if and only if.

0o 00 ol 00 01 02
T >0, T T >0, T T T

p10 p11 p10 11 g12
p20 p21  p22

- The corresponding energy scheme is known as definite

Scheme.

(i) Expression for the space-like vector field 18 on

the stream—-lines of a Definite Material Scheme :

Following Carter and Quintana (1977) we consider (with
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due corrections to the signature of the metric).

as° = ¢ a1 (2.47)
and
a ax®
u® = m (2.48)
where u® are the components of the 4- velocity vector, 4T

is proper time differential, for which
w®u_ = ¢ (2.49)

The energy momentum tensor for a definite material scheme

(Lichnerowicz 1955) is

where ¢ is total (relativistic) energy density of a material

b

measured by ua, and pa are the components of the pressure

tensor which satisfies

p2P o b g
and ¢ (2.51)
u® Pop = 0 §
Here 2P u, = ¢ uP and so £ 1is the time-like
eigenvalue.

Einstein field equations for gravitating matter, whose stress-
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energy-momentum is characterized by the tensor pab are
= 8WG qpab _ pab | ab

= -12— R g (2.52)
c

where G is the universal constant of gravitation. The energy

balance equation

ab
T b = 0
yields
fuP s 0® + o u® ub,b - pab.b = 0
? H
i.e., 0% = 3} (£2 - (S +§ 8 ) u?) (2.53)
where £2 = pab,b {2.54)
’
a
and 6 = u sa .
Now by the equation of local conservation of mass
ab _
T sb u, = 0
we get
4 1
§+5 08 =3 2 u, (2.55)

eliminating ( S+ 5 0 ) from (2.54) by using (2.55) we have

° 8

1 a 1 b
U = e— 7 - f
b

g c°




Equation (2.56) expresses the acceleration vector field of the

definite material scheme in terms of the dynamical tensor £2

which is the divergence of the arbitrary pressure tensor pab'

Note 1 :

Role of conservstion of mass : The State of the conti-

mous matter is sometimes subject to the conservation law

a
(uu );a=0

where U is the particle rest mass density measured by an

observer travelling with velocity u® (BEllis, 1971).

Note 2

The 4~vector ua is not a unit time~like wvector as

a 1 a
U= ¢ u | (2.57)
to get

A Ua = 1 (2.58)

where U? is the unit velocity vector of the world line of

a particle in the definite materisl scheme.
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(ii) A convenient expression for the acceleration field ﬁ? 3

Equation (2.57) gives
22 = 92
gince ¢ is constant, and therefore (2.56) becomes

72 = §-15- (£ - £50, U )

or
68 = ¢! (£2-a0%) (2.59)

where A = fk Uk'

Note H

This ﬁa is not a unit vector field. The normalization

of thie vector will be utilized in the construction of the

tetrad.
Note 4 :
The expression for 02 is an identity
(=) + (F£)ve
Sec Sec

as it is derived from the identity

Tab‘ .= 0.

’b

(iii) Expression for the space-like vector field P2 for a

definite material scheme :

We recall that (U%, P%, Q%, R®) is the tetrad on the
path of material point in the contimum. Since Ky = \jTEF;?;;
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we get

1
K, A e B (2.60)
§e &
-1
ana  P*= (a2 -8 £) 2 (£2-40%) (2.61)
Remark : We have
1
£ = (a2~ £ )% P2 v

which implies

a com

; Qa = 0 g

a —

2R =0 t

by orthogonal relations. Thus the divergence of the gemeral

pressure tensor lies in the plane of Pa,Ua.

(iv) Expression for space-like vector field Q2

for 2 definite material scheme @

For expression Q%, we require U2, therefore,
ooa'— _l_ a‘ a-—.
U -[gc(f AU)_]

gives
e gl 8- (S +cMa) 2-(a-s51c1 a2
15 vty . (2.63)

Hence, we have

.U.a.ti = —l—- ;éai -2 j/ A pe: |
a 3202[ a= 2+, )1,
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. 2 o . . 2
-2 (h-4- 85 BT+ (8 + M) e

[} 4 -
. 2 2f 3 A
4 (AT - A7 - ) -j (2.64)
» 320 52 CE |
and
Ha & 1 2 _ 3Ry (4 4 Ao A
UUa- 3202 }'f fa AT Ua(3+3)ffa+AA.J6
ess (2.65)

Using the equations (2.64) and (2.65), we have expression of

K2 as
TR (@%,)2 3
K. =( - a a 2)
s s
K1 K1
i.e. i
K, = L -2 +2(8/p+2, )22 ¢
2 > v a i f e a

. 2 p y 8 2 1
+2(A~A/J,c+ f/y A) faUa-{(f/_y +A/_5,c) +;2-—(';é}

§c 2.2

<

(2466)
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where

B=12g -at2U~ (f/y +8 ) 22 +ah

therefore,

a 1 a, Uy 42 a
Q =i‘1—Té (U +—K;-bU "K120)

becomes

* = 1 [i’a-(f/f *A/gc‘r?‘)fa

(2.67)

® 2 »
-(A‘ﬁ- 3/ A—%—f +ycx12)ua] (2.68)

(v) Expression for space-like vector field R? for

a definite material scheme :

We know that

a -1 abed e
R™ = k2% 1 Up Up Uy
2

by using (2.59) and(2.63), we have

a__~-1__ _abed 1 _
Br=rz 1 Uy 55 (B, =AU .
1 2
A7 2 A Az ¢ A
flfa= 3 v Byo ) gy = G- - L8 ) uy]
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ive. B%z—mgt o yf‘bcd U, £, £ (2.69)
. bed
since U U, U, U, and £, £, are symmetric and abcd  4s

skew symmetric.

(vi) Expression for the third curvature K.). :

For this expression we require Ua, therefore, from

expression (2.63) we have

. 0 .2 +
) 2, = Bfy = 8 /g2

[4 2 . M e .2 s 2.
$tA __ A - AL _CA iTA 34
9302 / 2,2 ) £, ( $C ¢gec +j $3c=
2D
}2—5) U, (2.70)
£%e .
Since

“1 abcd [ ] . se®

IK3 = Km13K22 o Ub Uc Ud Ua

from expressions (2.59), (2.63) and (2.70), we have
_ -1 abed 5 ‘s .
K3 = W !) Ub fc fd fa (2.719)

Since all other terms vanish = because of symmetry in (U‘o U d),

(fc fd),(fd fa) and skew symmetry in x]ab"d.



Note 5

In the limit when C =0, from the equation

(2.59) we get that

This meansg that the tetrad does not exist in the classical

{Newtonian) continuum mechanics. Thus the tetrad

1
~

C @ a2 a 1 ca -
{ V° (a%£7gp) (£°- AUa),lezxc (8% -0t - E U%,

abcd - 3

-] U £ £
where D= $_ A _ B
€ 7¢C K,
2 v
: «+ A ¢ A AB 2
and E = A-p=x - - == fcK
{c I K] 1

is a special non-Newtonian feature of relativistic continuum
mechanics; just as the concept of a gravitational radiation

is a non-Newtonian characterstic of general relativity -
Note 6 3

The tetrad {U°, P% 0% R®} descrived in -
(2.57), (2.61), (2.68), (2.69) is the most general one since
it correspondes tothe most general materizl expressed -

in (2.50) .
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