
K msmm



INTRO IW CT ION

We present this introductory chapter injto two 

parts. In PART-I, we give some basic concepts, and fixed 

point theorems which are needed for our investigations. 

PART-II of this chapter deals with applications of some 

fixed point theorems.

PART-I

1. Basic concepts, and fixed point theorems :

1.1 Hilbert spaces :

The origin of the theory of Hilbert spaces goes 

back to the work of the great German mathematician of 
twentieth century D. Hilbert [l7] on integral equations.

An axiomatic basis [ll] for Hilbert space was provided by 

the famous mathematician J.Von. Neumann in 1926. Neumann 

[3o] employed Hilbert spaces and the spectral expansion of 

self adjoint operators to establish a regorous foundation 

of quantum mechanics. We give the following axiomatic 
definition of Hilbert space [13] due to Von.Neumann.

Definition 1.1.1 (Inner product space, Hlllbert Spacey
Let H be a linear space over the field K of scalars (real 

or complex), and to any pair of elements x, y f H, let
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there correspond a scalar (x,y) f K, called inner product
h-

of x and y satisfying the following conditions :

(i) (x + y, 2 ) » (x, z ) + (y, s) ?

(ii) (a x* y ) « a (x, y), oc (■ K?

(iii) (x, y) * (y#x)# where bar denotes complex conjugation?

(iv) (x,x) 0;

(v) (x» x) »0 <«=> x * 0. Then H is called an inner 

product space or pre-Hilbert space.

An inner product on H is a function (;):H x H -----» k

satisfying the conditions (i) to (v) and defines a norm on 

H given by

J| x || = V (x,x) ( £ 0 )

and a metric on H given by

<3(x,y) » II x - y |j = V <x-y, x-y) .

H is called a normed linear space. If H is complete

with respect to the distance j|x-y|| (i.e. -----> o,

(m#n) —> oo implies the existence of Lim xn * xj), then 

H is called Hilbert space. Thus the mmmmm complete inner 

product space is a Hilbert space. H is called real or 

complex Hilbert space according as K is real or complex.
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The concept of Hilbert space [4o] is of great 
importance in many branches of mathematics and theoretical 
physics. It is closely related to the concept of Banach 
spaces. In fact every Hilbert space is a Banach space.

Definition 1.1.2 (Convex Set) : A subset C of a Hilbert 
space H is said to be convex if x, y^CandO^A^l 

imply that Ax + (l-A) y (- C.

Definition 1.1.3 (Fixed Point ) : A fixed point of a self- 
mapping T of a set X is a point x (* X such that

Tx * x,
i.e. the image Tx coincides with x.

Example (i) A mapping x —■■■■» x3 of R into itself has three 

fixed points (o# -1 and 1) .

(ii) a translation has no fixed point.

(iii) a rotation of the plane has a single fixed point i.e. 
the centre of rotation.

The following definitions in Hilbert space are due 
to Browder and Petryshyn [7].

Let c be a convex subset of a real Hilbert space H 
and T be a nonlinear (possibly)mapping from c into H, then
Definition 1.1.4 : T is said to be strictly contractive if
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there exists a constant K with 0 < K < 1 such that

}|Tx - Ty || ^ K || x - y JJ for all x, y (• C.

Definition 1.1.5 : T is said to be contractive (or non- 

expansive) if for all x, y f C,

|| Tx - Ty jj $ || x-y ]| .

Definition 1.1.6 : T is said to be strictly pseudocontractive 

if there exists a constant o < K < 1 such that

|| Tx - Ty || 2 $ ||x-y || 2 + K ||(I-T) x-(I-T) y || 2,

for all x, y f C.

Definition 1.1.7 : T is said to be pseudocontractive if 

for all x, y f C,

|| Tx ~ Ty || 2 < ||x-y || 2 + || (I-T) x-(I-T) y || 2.

These mappings adnit iterative methods for the 

construction of their fixed points.

Definition 1,1.8 ( Reasonable wanderer map): A self-mapping 

of a closed convex subset C of H is said to be reasonable 

wanderer in C if starting at any point x© in C, its 

successive steps * Tx^ (n * 1,2, 3... ) are such that 

the sum of squares of their lengths is finite l.e.
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f it it 2 _2 *n+l ' *n II < °°*m=o
Definition 1,1, 9 (Asymptotically regular map): A self­
mapping T of C, where C is closed convex subset of H, is 
called asymptotically regular at x if and only if

|| Tx - Tx*1 || ——> 0, as n —> oo.

It follows that every operator which is a reasonable 
wanderer is asymptotically regular? see [7]

Definition 1.1.10 : A mapping T : C—» C is said to belong 
to Lipschitz class (Lip.) if there exists a constant L > o 
such that for all x and y in C

|| Tx - Ty |j « L |j x-y ff .

Definition 1.1.11: A mapping T : C—* C, where C is 
subset of H is said to be deroicontractive [l6] if there 
exists a constant (o < K < 1) such that, for each fixed 
point P of T and each x f C.

|| Tx - P || 2 4 || x—P || 2 + K jjx - Tx || 2.

K is known as contraction coefficient.

Definition 1.1.12 : A mapping T j c—■> C, where C is 
subset of H is said to be hemicontractive if for each 
fixed point P of T and each x f C
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|Tx - P || 2 $ ||x-P || 2 + ||x - Tx||

Definition 1.1,13 s A mapping T s C —> H is called demi- 
compact (petryshyn [341 if it has the property that when­
ever ^3%^ is a bounded sequence in H and ^Txn “ xn ^ 

is strongly convergent sequence, then there exist a sub­
sequence | Xn^ which is strongly convergent.

1.2 Fundamental Fixed Point Theorems s

In the area of fixed point theory and its applications, 
Brouwer's [8] and Schauder's [39] fixed point theorems are 

regarded as most fundamental theorems. Though Brouwer 
obtained his result in 1910 [21, P.116], Poincare proved 

a slightly different version of it much earlier in 1886 which 
was subsequently rediscovered by Bhole in 1904.

A fixed point theorem [4o] in general is one which 
states that a certain type of mapping of a set in to itself 
leaves at least one point fixed. Brouwer's fixed point theorem 
is the classical example of such a theorem.

Theorem 1,2.1 (Brouwer's Fixed Point Theorem ) s Every 
continuous map of the closed unit ball S * £xs Jjx|| < 1 ^ 

in Rn to itself has a fixed point.

Brouwer's theorem does not give any computational 
scheme [2l] for obtaining a fixed point. Scarf [4l] considered
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some additional conditions and developed a computational 
scheme in 1967 for computing a fixed point of a mapping, 
Sincethen many algorithms for the construction of fixed 
points have been devised.

Definition 1,2,2 [22] : A subset c of a normed linear space 
X is said to be (sequentially) compact if every infinite 
sequence of elements of C has a subsequence which converges 
to an element of C.

Definition 1,2,3 [22] ; A subset C of X is said to be 
relatively (sequentially) compact if every sequence in C 
has a subsequence converging to an element of X,

Definition 1,2,4 [26] : A linear topological space E is 
called locally convex; and its topology is called a locally 
convex topology, if and only if the family of convex 
neighbourhoods of zero is a local base.

Birkhoff and Kellog [9j were the first to prove 
fixed point theorems in infinite-dimensional spaces. They 
considered continuous self-maps defined on convex compact 
subsets of C [o, l] and L2 [o,l] and established the 
existence of fixed points for then. Schauder [39] generalised 
these results.

Theorem 1,2,5 (Schauder*s Fixed Point Theorem ) : Let c be
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a non-empty compact convex subset of a normed linear space 
X. Then every continuous self-map of C has a fixed point.

Many author's have extended Schauder's theorm in 
different spaces. Tychonoff [42] considered a general locally 
convex topological vector space instead of normed linear 
space and extended Schauder's theorem. He has further shown 
that his result includes Schauder's theorem as a special 
case. BroWder [2] established a new generalisation of 
Schauder and Tychonoff fixed point theorems which follows 
from an argument that uses the conjugate space E* of the 
locally convex topological vector space E.

1.3 Motivation of the Work s

Since the last three decades the mathematical commu­
nity deals with great interest in fixed point theory. There 
are a number of eminent scholars in the field of fixed 
point theory who have fully devoted to study the properties 
of fixed points of various types of contractive mappings in 
Hilbert space. Browder [3,4,5,6] initiated the study of 
fixed point theory of non-expansive mappings in Hilbert 
space without compactness conditions. Petryshyn [ 35] studied 
an iteration method for the actual construction of fixed 
points of a nonlinear contraction map T of a closed ball 
Br of radius r > 0 in to real or complex Hilbert space H
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under the additional assumption that T is deraicompact. 
Browder and Petryshyn [7] introduced the four classes of 
mappings (for the mappings 1.1.4, 1.1.5, 1.1.6 and 1.1.7) 
which admit iterative methods for the construction of their 
fixed points. They established the following basic existence 
result.

Theorem 1,3.1 [7] : Let T be a self-map of a closed bounded 
convex subset of a Hilbert space H such that

|)Tx - Ty || $ || x-y || for all x, y f C. Then T has
atleast one fixed point in C.

Based upon this theorem a number of results have 
been proved by the authors. Before quoting a few of them, 
we give the following definitions :

Definition 1.3.2 (Strongly Convergence) [22] : A sequence
Xjj 1 in a normed space X is said to be strongly convergent 

(or convergent in the norm) if there is an x ^ X such that

Lira 1!lx - x j * 0n—*•<*>' 1 n I t

Lira *n * x or Xj
n—>00

x.

we say that converges strongly to x and x is called
strong limit of .
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Definition 1,3.3 (weak convergence) f] 22] : A sequence £ x^ 

in a norrned space X is said to be weakly convergent if there 

is an x f X such that for every f fX' (dual space of X)

Lim fCxjj ) « f(x) 
n—>co

i • e • -> x or Xa x.

We say that converges weakly to x and x is called the

weak limit of ^x^ .

Theorem 1.3.4 j if T is contractive (non-expansive) mapping 

of C in to C, where C is closed convex subset of a Hilbert 

space H and the set F(T) of fixed points of T in C is non­

empty, then the mapping defined by T^ * XI + (1 - X)T for 

any given X with 0 < k < 1 is a reasonable wanderer from 

C into C with the same fixed points as T,

The following corollary is a consequence of above 

theorem.

Corollary 1.3,5 : If T is contractive (non-expansive) 

mapping of C in to C with non-empty set F(T) of fixed points 

of T in C, then the mapping defined by T^ * XI + (l-X)T for 

a given X with o < X < 1, (i) maps C into C, (ii) has the 

same fixed points as T and (iii) is asymptotically regular.

Theorem 1,3.6 s Let T be a self-map of a bounded closed
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convex subset C of a Hilbert space H. Suppose T is (i) 
Contractive mapping, (ii) demicompact. Then the set F(T) 
of fixed points of T in C is a non-enpty convex set and 
for any given Xq in C and any fixed X > 0 with 0 < X < 1 
the sequence Xjj * t” Xq ^ determined by the process

xn = \ Txn_iL + (l-XJx^j, n - 1,2,3,........... (1.3.7)

converges strongly to a fixed point of T in C.

Hicks and Huffman [is] generalized theorem (1.3.4) 
and theorem(1,3.6)in generalized Hilbert space (see Theorem^
6, 7 of [l5] ).

Ishikawa [l9] introduced a new iteration scheme 

(I-scheme) for the construction of fixed points of contractive 
type mapping and obtained the following result.

Theorem 1.3.8 : If T is a lipschitizian pseudo-contractive
self-map of C, where C is a convex oompact subset of a
Hilbert space H and x^ is any point in C, then the sequence 
f *1 00J Xjj l converges strongly to a fixed point of T, where L Jn«l

xn is defined iteratively for each positive integer n by

*n+l " *n T?n + (1-an)xn

yn “

(1.3.9)

Pn Txn + (1 * Pn>*n (1.3.10)
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where
oo

n=l
and

| oo
8_ V are sequences of positiveJ n«l

numbers that satisfy the following three conditions :

(i) 0 $ «n

(ii) Lira
n—»* oo

(iii) ooz: an=l

n * pn

... (1.3.11)

Ishikawa derived the following technique and used it to 
prove above theorem.

For any x# y# z in a Hilbert space H and a real 
number t,

jl tx + (l-t)y-z ]| 2 * t ||x-z If 2 + (1-t) || y - z |J 2 -

- t(l-t) || x - y || 2 ...(1.3.12)

Mann [29] gave the following iteration process. For a 

self-mapping T of a compact interval of the real line having 
a unique fixed point the iteration process

xn+l = (1 “ *h + an Txn ••• (1.3.13)
1

with an * , converges to the fixed point of T.
n+1

Hicks and Kubicek [l6] studied Mann iteration process
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(1.3.13) in Hilbert space and employing Ishikawa technique 

(1.3.12) established the following interesting results.

Theorem 1.3.14 : Suppose (i) T : C—> C, where C is a convex 

subset of a Hilbert space H, (ii) T is demicontractive 

(1-1.1.11) with contraction coefficient K, (iii) Set F(T) 

of fixed points of T in C is nonempty, (iv) an(l-«n)
diverges and (v) on —» a < 1 - K. Then Lim j|xn - Tx^l * 0 

for each x^ f C, where x^+j is defined by (1.3.13).

For their second result the following lemma due to 
Opial [ 33] is employed.

Lemma [33] : Suppose H is a Hilbert space and the sequence 

| Xyj j is weakly convergent to Xq, then for any x 0 xQ,

— II3'” * xo|| < MS' ||*n “ * || •

Theorem 1.3.15 : Suppose T : C —¥ C, where C is a closed 

convex subset of H such that

(i) F (T) fi 0,

(ii) T is demicontractive with contraction coefficient K,
/

(iii) If any sequence |xn j converges weakly to x and 

(I-T)(xn) converges strongly to zero then (I-T) x * 0.

Das and Debata [l2j studied the Ishikawa [l9j itera­

tion scheme which converges to a fixed point of a lipschitzian
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pseudo-contractive map and convergence of an iteration scheme 

to a fixed point of demicontractive maps in Hilbert space 

considered by Hicks and Kubicek [16]. They gave a generali­

sation of Ishikawa iteration scheme and obtained common fixed 

points of a family of less restrictive hemieontractive 

(1-1.1.12) maps. Their result states as follows :

Theorem 1.3.16 : Let C be a convex, compact subset of a 

Hilbert space H. Let t 1 * 1# 2, ... K, K > 2 be a

family of hemieontractive maps defined on C and have atleast 

one common fixed in C. Let the family of maps £ T^j satisfy

||Tj_x ~ Tjy U £ M )j x-y |J for all x and y in C.

and all pairs (i,1), M being a positive constant. Then 

the sequence ^x^ converges to a common fixed point of the 

family of maps , where xn is defined iteratively

for each positive integer n by

f- C
) 
)

*n+l * U - «n> *n + «n Tk “k-l (») )

.. (1.3.17)

where uQ(n) = xn, uA(n) = (1 - pn)^, + ^n'^iui.1(n)

for i * 1, 2, ... 

[o, l] such that

... (1.3.18)

} ' {Pn}are real sequences inK and
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U) 0 « «n * Pn < 1# for n ** 1.2,3 ...)
)

(ii) Lim. ®n 
n—» oo

* 0
)
)
)

(iii)
n=roo
2ZT k-1

«n sn * oo for each CMAX

)...
)
)

n

The authors claimed that for k * 2, * T2„ the

above theorem includes the result of Ishikawa [l9] as a 

corollary. They further claim that the Ishikawa iteration 

can be extended to Lip, hemicontractive mappings.

Johnson [20] used Mann iteration scheme (1.3.13) 

and obtained a fixed point of a strictly pseudocontractive 

(I.1.1.6) mapping defined on a convex compact subset of a 

Hilbert space.

Theorem 1,3.20 [ 20] : If T j C—*«■» C, where C is a comp?c

convex subset of a Hilbert space H is a strictly pseucb

contractive mapping and is any point in C, then tbpolnt

sequence f x_ ] °° converges in the norm of H to aiXe<^
1 " J n-1

point of T# where for each positive integer n, x is 

defined by (1.3.13).

Definition 1.3.21 (Quasiaontraction) : A sel/ipping T of 

a Banach space X is said to be a quasicont- ive if there 

exists a constant K, 0 ^ K < 1 such that GaCh X# y ** x

.19)
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|| Tx - Ty|| $ K max | ||x-y|l , ||x-Tx|| ,

||y-Ty|J , Ifx-Tyjj , jjy - Txj) J

Definition 1.3.22 : A mapping T • C ——> C, where C is 

nonempty subset of a Hilbert space H is said to satisfy 

Tricomi condition (T) if for all x {- C and P (*F(T) *

^ x f C s Tx * x J ,
||Tx-P|] $ j|x - P|| . ... (1.3.23)

Naimpally and Singh [32] considered Ishikawa scheme 

defined by (1.3.9. 1.3.1C. 1.3.11) with further assumptions 

that (1) 0 ^ an $ pn £ 1, (2) Llm an * a > 0. (3) Lim pn *

P < 1 and shown that if the sequence of Ishikawa iterates 

converges, it converges to the fixed point of T, where T is 

self-map of a nonempty subset of a Banach space X which 

satisfies either of the following two conditions :

(I) T is quasicontraction, ... (1.3.24)

(II) At least one of the following conditions holds 

for each x, y f X
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The authors claim that these results extend the 
results of Rhoades [36], and Hicks and Kubicek [l6] in the 

following way.

Theorem 1.3.26 : Let T be a self map of a closed convex 
subset C of a normed linear space X and satisfies condition 
(I), 136 sequence of Ishikawa scheme associated
with T and such that £cen} hounded away from zero. If 
|xn} converges to P, then P is a fixed point of T,

Theorem 1.3.27 : Let T : C—> C, C is a convex subset of a 
Hilbert space H such that

(1) T satisfies tricomi condition (T)
(ii) P(T) j# 0.

Suppose y^an pn diverges and —» @ < 1. Then

Lim Jjxn - fXjjJj = 0 for each x0 (* C, where xn+^ is the
sequence of Ishikawa iterates with further assumptions (1),
(2) and (3}.
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PART-II

2. Applications of fixed point theorems *

2.1. Introduction :

The fixed point theory is applied in general to 
establish existence theorems for non-linear differential 
and integral equations and in particular to the theory of 
positive matrices. Many of the most important non-linear 
problems [7] of applied mathematics reduce to finding solutions 
of non-linear functional equations such as non-linear 
integral equations, boundary value problems for non-linear 
ordinary or partial differential equations etc. which can 
be formulated in terms of finding the fixed points of a 
given non-linear mapping of an infinite dimensional function 
space X in to itself.

The well known Banach contraction principle [l] is 
applied to establish existence and uniqueness theorems [ll] 
for (i) Linear equations (ii) differential equations (Picard’s 
existence and uniqueness theorem for ordinary differential 
equations ) (iii) Integral equations (Fredholm and Voltera 
integral equations). Parron’s Theorem [ll] is an application 
of Brouwer's fixed point theorem to the theory of matrices 
which play an important role in many applied fields.
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Schauder's theorem (1.2-5) is applied [ll] to solve nonlinear 
integral equations of the form

b
u(x) = / K(x,y) f(y, u(y)) dy ... (2.1.1)

a
where K and f are given functions and u is unknown. Equation 
(H*3*D is known as the Hermestein equation.

For further applications of fixed point theorems 
we need the following definitions and fixed point theorems.

Definition 2.1,2 : A closed, convex subset c of a real 
Banach space X is called a (positive) cone if the following 
conditions are satisfied.

(i) x (* C, then \ x f C for A >, o,

(ii) if x f C and - X f C, then x * 0.

A cone C in X induces a partial ordering ^ in X by 
x ^ y if and only if y • x f C,

Definition 2.1.3 (ordered Banach Space) : A Banach space X 
with a partial ordering ,< induced by a cone C is called an 
ordered Banach space*

Definition 2.1.4 : A completely continuous map means a 
continuous function which takes bounded sets in to relatively 
compact sets.
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Definition 2^1. 5 : Let C be a cone of an ordered Banach 
space X. A map T : C —* C is called a comparison of the
cone if T(o) * 0 and if there exists numbers
such that (i) Tx ^ x if x f C, (ii) U x || ^ S and x ft C.# 
(iii) for all £> 0, (1 + £ ) x ^ Tx if x K and

\\x 1 > q*

Krasnoselskii [23] proved the following result

Theorem 2.1.6 : If T is (i) a comparison of the cone C,
(ii) completely continuous on C, then T has atleast one 
non-2ero fixed point x in C with s 4 \\ x II $ q.

Rothe [38] established the following fixed point 
theorem.

Theorem 2,,1.7 (Rothe*s fixed point theorem) s If a continuous 
map f : BN—* R13 (BN the unit ball in RN) satisfies
f( 9 BN) C BN# then f has a fixed point.

2 .2 Infectious Disease Model s

Leggett [27] considered the following integral equation
tx (t) * Tx (t) » J f(v, x (v)\ dvt-f ; (2.2.1)

as a model for the spread of certain infectious disease 
with periodic contact rate that varies seasonally. In equation



21

(2-2.D x(t) represent the proportion of infectives in the 

population at time t, f. (t#x(t) ) is the proportion of new 

infectives per unit time (f (t,o) = 0) and T is the dura­

tion of time an individual remains infections.

As consequence of the comparison of the cone theorem 
(£.1.6) Leggett [2?] established the following theorem :

Theorem 2.2.2 : Let T : Cs—» C be a completely continuous 

operator with T(0) ■ 0. If (i) there exist a number q,
0 < q < S and a vector u (* C \ ^0 ]■, such that

Tx ^ x if x f C (u) and H x 1) * q

(ii) for each £> o,

(1 + £ ) x | Ax if x f C and \\ x || « S, then T 

has a fixed point in C with q ^ x |\ ^ S.

He further applied this theorem to establish the following 

existence theorem for solution of integral equation (2.2.1) 

with the assumption that 't and w are positive constants.
Theorem 2,2.3 : Suppose (i) the function f(t, x) is continuous 
from (- oo, oo ) X [ 0, oo ) in to [ 0, oo ),

(ii) for each t (• R and x^o, f(t#x) = f(t + w, x) and 

f (t,o ) - 0,

(iii) there exists s > o such that f (t, x) $ S/*C for all
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(iv)
(t,x) f [ O, w ] X [ O, s],
for each t, a(t) * Lim (f(t,x)/x), and for each

x—> 0

K f (o, 1) there exists > O such that f(t, x) >y

K a(t)x, t f R, o ,< x < 6k # are satisfied and N 
is the smallest Integer such that w/N ,< ^/2.

Set i 
N

If IT 
j«l

[ ( (j-l)/»)w, (j/N)w ] for j * 0,1, 2, ...N. 

J a(v) dv > 1, then the equation (2.2.1)

has a nonzero solution.

This result implies that even if the contact rate 
is zero over some short time intervals, the disease may 
recur periodically.

Leggett [ 27] further shown that the occurrence of a 

disease modeled by equation (2.2.1) is periodic in nature 
even if average contact rate is small (even zero) daring 
some seasons. What is required is that the average effective 
rate should be high enough during the remaining seasons and 
it should offset the smaller contact rates. This means 
that a certain product of average seasonal contact rates 
should be greater than one.

2.3 Monetary Economics :

The famous mathematician J. Von Neumann [3l] initiated
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the use of fixed point theorems to establish the existence 
of general equilibrium in economic systems. Chichilnisky 
and Kalman [lo] translated mathematical assumptions in to 
natural economic conditions about the role of money in the 
economy and applied Rothe's theorem (2.1.7) to establish 
the following existence theorem of equilibria in monetary 
economics.

Theorem 2.3.1 : Suppose the economy E satisfies the following 
assumptions :

(i) The utility function uk : + R+ X —» R+ is
continuous for all K,
v(ii) u ( , , P ) is strictly quasiconcave and Monotone 
increasing for every P f ~J£

(iii) uk(x + (o, .... o, ai# 0, . .., 0 ), m,P) <

uk(x, m + Pjfcj, P)

for some £ > > 0* M > 0 and some commodity
i# l^i^N(i possibly dependent on M and £ ) 
with lPi > M, m > M and }x)> M.

Then this economy E has a general equilibrium P* in 
NR+ with a positive exchange value of money.



Here
(i) X R+ represents the space of all possible con­

sumption money vectors representing bundles of goods 
or commodities and money?

(ii) R^, R+ represent positive cones of RN and R 
resp ect ivel y;

(iii) K » 1,2,.... are traders?
N(iv) P, a vector of R+ denotes consumption goods monetary 

price?
(v) S * -^(P, 1) s P f R^ } represent space of money

prices of commodity money bundles?

(vi) H is the projection of S in to its first N co­
ordinates i.e. H = {p s (P, 1) f S } * rJ

k(vii) u * the utility function which is a real valued 
function representing agent's preferences?

(viii) u* (xk, ra\ p) - Kth trader's utility function.

There are many more applications of fixed point 
theory in other branches of mathematics and in pure and 
social sciences. It is applied to approximation theory, 
boundary value problems [28] arising in chemical reactor 
theory, for solving problems of boundary layer theory in 
fluid mechanics and in solving the stability problems of 
hydro dynamics .


