CHAPTER I

FUZZY SETS, RELATIONS AND GRAPHS

In this chapter, we state the basic definitions and results which will be needed in the succeeding chapters. Throughout the discussion, X stands for the universal set and I for the closed unit interval $[0,1]$ of the real line.

1.1 FUZZY SETS

Definition 1.1.1 : A fuzzy set A on a universal set X is a function $A: X \longrightarrow I$.

Definition 1.1.2: If $A: X \rightarrow I$ and $B: X \rightarrow I$ are two fuzzy sets on X, then A is fuzzy subset of B if and only if $A(x) \leqslant B(x), \quad \forall x \in X$.

Definition 1.1.3: Two fuzzy sets, A and B on X are equal if and only if they are equal as functions, ie. $A(x)=B(x), \forall x \in X$.

Definition 1.1.4 : If A and B are fuzzy sets on X, then their union $A U B$ and intersection $A \cap B$ are fuzzy sets on X, defined by

$$
\begin{aligned}
& \text { (ArB) }(x)=\max \{A(x), B(x)\} \text { and } \\
& (A \cap B)(x)=\min \{A(x), B(x)\} \forall x \in x \text {. } \\
& \text { If }\left\{A_{1}\right\} 1(-I \quad \text { is a family of fuzzy sets on } X \text {, then } \\
& \left(U_{i \in I} A_{1}\right) \text { and, } \quad\left(\Omega_{i \in I} A_{1}\right) \text { are defined by, }
\end{aligned}
$$

$\left(\bigcup_{i \in I} A_{i}\right)(x)=\sup _{i \in I} A_{i}(x)$ and
$\left(\hat{i}_{i \in I} A_{i}\right)(x)=\inf _{i \in I} A_{i}(x) \forall x \in X$.
Definition 1.1.5 : The complement of a fuzzy set A on X is a fuzzy set on X, defined by

$$
A^{\prime}(x)=1-A(x) \forall x \in X
$$

Similar to crisp sets, fuzzy sets satisfy De-Morgan's laws and distributive laws.

Theorem 1.1.6: If A, B and C are fuzzy sets on the same universe X, then

1) $\quad(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
2) $\quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
3) $\quad A U(B \cap C)=(A U B) \cap(A U C)$ and
4) $A \cap(B \cup C)=(A \cap B) U(A \cap C)$.

Eroof : 1) $(A \cup B)^{\prime}(x)=1-(A U B)(x)=1-\max \{A(x), B(x)\}$ $=\min \{1-A(x), 1-B(x)\}=\min \left\{A^{\prime}(x), B^{\prime}(x)\right\}$ $=\left(A^{\prime} \cap B^{\prime}\right)(x) \forall x \in x$.

Therefore, (AUB)' $=A^{\prime} \cap B^{\prime}$.
2) $(A \cap B)^{\prime}(x)=1-\min \{A(x), B(x)\}=\max \{1-A(x), 1-B(x)\}$ $=\max \left\{A^{\prime}(x), B^{\prime}(x)\right\}=\left(A^{\prime} \cup B^{\prime}\right)(x) \forall x \in X$. Thus $(A \cap B)^{\prime}=A^{\prime}$ UB'.
3) $(A \cup(B \cap C))(x)=\max \{A(x), \min [B(x), C(x)]\}$
$=\min \{\max [A(x), B(x)], \max [A(x), C(x)]\}$
$=((A \cup B) \cap(A \cup C))(x) * x \in x$.

```
Hence; }AU(B\capC)=(AUB)\Omega(AUC)
```

4)

$$
\begin{aligned}
(A \cap(B \cup C))(x) & =\min \{A(x), \max [B(x), C(x)]\} \\
& =\max \{\min [A(x), B(x)], \min [A(x), C(x)]\} \\
& =[(A \cap B) \cup(A \cap C)](x), \forall x \in X .
\end{aligned}
$$

Therefore, $A \cap(B \cup C)=(A \cap B) U(A \cap C)$.

Remarks 1.1. 7: 1) The operations 'U' and ' n ' are commutative and associative.
2) We have idempotency i.e. $A U A=A$ and $A \cap A=A$.
3) If \varnothing and X are the fuzzy sets, mapping every element of X to zero and one respectively, then $A U \varnothing=A$ and $A \cap X=A$ so that \varnothing and X are the identities under ' U ' and ' Ω '.
4) Obviously $A \cap \varnothing=\varnothing$ and $A U X=x$.
5) $\left(A^{\prime}\right)^{\prime}=A$.
6) Absorption laws are satisfied.
i.e. $A U(A \cap B)=A$ and $A \cap(A \cup B)=A$.
7) For a fuzzy set $A, A U A^{\prime} \neq X$ and $A \cap A^{\prime} \neq \varnothing$ always, for, if $A(x)=a, a \neq 0$ and $a \neq 1$, then (AUA') $(x) \neq 1$ and $\left(A \cap A^{\prime}\right)(x) \neq 0$.

For this reason, the collection of all fuzzy sets on X does not form a complemented distributive lattice, but forms a pseudocomplemented distributive lattice.

Lastly, we define the cartesian product AxB of two fuzzy sets as follows :

```
Definition 1.1.8: If A : X I and B : Y M I are fuzzy
```

sets on X and Y respectively, then the cartesian product $\mathrm{AXB}, \mathrm{AXB}: \mathrm{XXY} \longrightarrow \mathrm{I}$ is defined as
$(A x B)(x, y)=\min \{A(x), B(y)\} \quad x \in X$ and $y \in Y$.

1.2. Relations

Definition 1.2.1 : A binary relation R from a set X to a set Y is a subset of $X X Y$, i.e. RC XXY.

When $X=Y, R$ is said to be a relation on X. More generally, we have the following definition.

Definition 1.2.2 : An n-ary relation is a set of ordered n-tuples which is a subset of the cartesian product $X_{1} \times x_{2} \times$ $\ldots \times x_{n}, n$ being a positive integer.

Definition 1.2.3: If $R_{1} \subseteq X \times Y$ and $R_{2} \subseteq Y \times 2$, then the composition $R_{1} \circ R_{2}$ is a relation from X to Z, defined by $R_{1} \circ R_{2}=\left\{(x, z):(x, y) \in R_{1}\right.$ and $(y, z) \in R_{2}$ for some $\left.y \in Y\right\}$.

We now define some important types of relations.
Definition 1.2.4 : If R is a relation on X, then

1) R is reflexive if (x, x) $\in R \quad \forall x \in X$,
2) R is antireflexive if $(x, x) \notin R \forall x \in X$.
3) R is non-reflexive if $(x, x) \notin R$ for some $x \in x$.
4) R is symmetric, if ($x, y) \in R$ implies ($y, x) \in R, \forall x, y \in X$.
5) R is antisymmetric, if $(x, y) \in R$ and $(y, x) \in R$ imply $x=y \quad \forall x, y \in x$.
6) R is asymmetric, if ($x, y) \in R$ implies $(y, x) \notin R$ for every $x, y \in X$.
7) R is transitive, if $(x, y) \in R$ and $(y, z) \in R$, imply $(x, z) \in R \forall x, y, z \in X$.

Definition 1.2.5 : A relation R on X which is reflexive and transitive is called a pre-ordering relation.

Definition 1.2.6 : A pre-ordering relation which is symmetric is called an equivalence relation.

Definition 1.2.7 : A pre-ordering relation which is antisymetric is called an ordering relation.

Definition 1.2.8 : The relation $R^{+}=R U R^{2} U R^{3} U \ldots$ is called the transitive closure of R.

> If the set x contains n elements, then $R^{+}=R U R^{2} U \ldots U R^{n}$. The following result is well-known in literature.

Theorem 1.2.9: R^{+}is the smallest transitive relation containing R .

Definition 1.2.10: The symmetric closure of a relation R is the relation $R U R^{-1}$, where R^{-1} is the inverse relation defined as

$$
R^{-1}=\{(y, x):(x, y) \in R\}
$$

Theorem 1.2. 11: The symmetric closure of a relation R is the smallest symmetric relation containing R.

1.3. Graphs and digraphs

Definition 1.3.1 : A graph G is an ordered pair (V,E) where V is a nonempty set of elements called vertices and E is a finite set of unordered pairs of elements of V called edges.

Definition 1.3.2 : In a graph (V,E). if $\{u, v\} \in E$ then $\{u, v\}$ is called an edge joining the vertices u and v, and u and v are said to be adjacent vertices.

Remark 1.3.3: As $\{u, v\}$ is unordered pair, the edges $\{u, v\}$ arf $\{v, u\}$ are the same. Graphically, an edge in a graph is represented by an undirected arc joining the two vertices.

Definition 1.3.4 : A path from u to v of length n in a graph $G=(V, E)$ is a sequence of vertices $u, a_{1}, a_{2}, \ldots, a_{n-1}, v$ such that each pair $\left\{u, a_{1}\right\},\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{n-1}, v\right\}$ is in . . u and v are called the endpoints.

Definition 1.3 .5 : If $\{u, u\} \in E$, then there is an arc from u to u, known as a loop.

Definition 1.3.6 : If the end points u and v of a path u, a_{1}, $a_{2}, \ldots, a_{n-1} v$ in a graph (V, E) are equal, then the path forms a circuit.

We now define digraphs and their adjacency matrices.

Definition 1.3.7: A digraph is an ordered pair (V, E) where V is a nonempty set and E is a relation on V.

Definition 1.3.8: The members of V are called vertices and the members of E which are ordered pairs are called directed edges.

Definition 1.3.9 : A directed path from u to v of length n in a digraph $G=(V, E)$ is a sequence of vertices u, a_{1}, a_{2}, \ldots. a_{n-1}, v such that $\left(u, a_{1}\right) \in E,\left(a_{1}, a_{2}\right) \in E, \ldots .\left(a_{n-1}, v\right) \in E$.
u and v are called the end points of the directed path.

Remarks 1.3.10: 1) A directed edge (u,v) in a digraph is represented by an directed arc which starts from u and ends in v.
2) Relations and digraphs are equivalent concepts. For, if $G=(V, E)$ is a digraph, then E is a relation on V and if, $R \subseteq A \times B$ is a relation, then $G=(A U B, R)$ is a digraph.
3) If the relation E in a digraph $G=(V, E)$ is antireflexive, then G is a loopfree graph.
4) A relation E in a digraph $G=(V, E)$ is transitive if and only if every directed path has shortcut, i.e. if and only if for every non-trivial directed path from a vertex x to a vertex y, there exists an edge (x, y).

The following result is well known in graph theory.

Theorem 1.3.11: If $G=(V, E)$ is a digraph, then for $n \geqslant 1$.
(u,v) $\in E^{n}$ if and only if there exists a directed path of length n from u to v in G.

Corollary 1.3.12: For any two vertices u and v in a digraph (V, E), (u, v) $\in E^{+}$if and only if there exists a nontrivial directed path from u to v where E^{+}is the transitive closure of E .

Remark 1.3.13 : The fuzzy analogues of the above two results are proved in the Theorem 3.1.8 and Corollary 3.1.9 in the Chapter III.

We now define the adjacency matrix of a digraph and state a few well-known basic results involving it.

Definition 1.3.14 : Let $G=(V, R)$ be a digraph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and R be a binary relation on V. The adjacency matrix A of R is defined to be the $n x n$ Boolean matrix where

$$
A(1, j)=\left\{\begin{array}{l}
1 \text { if }\left(v_{i}, v_{j}\right) \in R \\
0, \text { otherwise. }
\end{array}\right.
$$

Remark 1.3.15: For a given ordering on V, the adjacency matrix is unique.

As the adjacency matrix is a Boolean matrix, we define the operators \oplus and $(\otimes$ on $\{0,1\}$ as,
$x \oplus y=\max (x, y)$ and
x (X) $y=\min (x, y)$, where $x, y \in\{0,1\}$.

Definition 1.3.16 : If A and B are two $n \times n$ Boolean matrices over $\{0,1\}$, then their inner product $A \oplus \otimes$ is an $n \times n$ matrix given by
($\mathrm{A} \oplus \times$
B) $(i, j)=[A(i, 1)$ © $B(1, j)] \oplus[A(i, 2) \times B(2, j)] \oplus$ $\ldots \oplus[A(i, n) \otimes B(n, j)]$.

Definition 1.3.17 : For any $k \geqslant 1,(\Theta \otimes)^{k} A$ is defined inductively as
$(\oplus \text { (X) })^{1} A=A$,
$(\oplus \otimes)^{2} A=A \oplus(X) A, \ldots$
$(\Theta \otimes)^{k} A=\left(\left(\Theta(X)^{k-1} A\right) \oplus \otimes\right)^{(}$
where A is a Boolean matrix.

Theorem 1.3.18: If A and B are adjacency matrices of the relations R and Q on $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then $A \oplus(\otimes B$ is the adjacency matrix of the relation $R \circ Q$.

Theorem 1.3.19: If A is the adjacency matrix of a relation R then $\left(\oplus(\otimes)^{n} A\right.$ is the adjacency matrix of R^{n}.

Theorem 1.3 .20 : If A and B are adjacency matrices of the relations R and Q on V then the adjacency matrix of $R U Q$ is
$A \oplus B$, where (A
B) $(1, j)=A(i, j)$
$\pm B(1, j)$.

Theorem 1.3.21: If A is the adjacency matrix of a relation R on $v=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then the adjacency matrix of the transitive closure of R is $A \oplus\left(\oplus(\otimes)^{2} A \oplus(\oplus(X))^{3} A \oplus \ldots\right.$ $\ldots \oplus(\oplus(X))^{n} A$.

Remark 1.3.22 : The adjacency matrix of a relfexive relation R is the identity matrix and that of a symmetric relation is symmetric.

The proof of the following theorem is well known in literature. The fuzzy analogue of this theorem is proved in the Chapter III.

Theorem 1.3.23: Let $G=(V, E)$ be a digraph and A is the adjacency matrix. Let Θ and (X) denote the operations,

$$
x \oplus y= \begin{cases}x & \text { if } x>y \\ y & \text { otherwise }\end{cases}
$$

$$
x \otimes y=\left\{\begin{array}{l}
x+y \text { if } x>0, y>0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

and $L^{k}=\left\{\begin{array}{l}A \text { if } k=1 \\ L^{k-1} \oplus\left(L^{k-1}\right.\end{array}\right.$
$\oplus \otimes$
A), if $k>1$,

Then $L^{k}(1, j)$ is the length of the longest nontrivial directed path from v_{i} to v_{j} that has length less than or equal to k. $L^{k}(i, j)=0$ if there is no such path.

