CHAPTER I

FUZZY SETS, RELATIONS AND GRAPHS

In this chapter, we state the basic definitions and results which will be needed in the succeeding chapters. Throughout the discussion, X stands for the universal set and I for the closed unit interval [0, 1] of the real line.

1.1 FUZZY SETS

<u>Definition 1.1.1</u>: A fuzzy set A on a universal set X is a function A : $X \longrightarrow I$.

Definition 1.1.2 : If A : X \longrightarrow I and B : X \longrightarrow I are two fuzzy sets on X, then A is fuzzy subset of B if and only if $A(x) \leq B(x), \forall x \in X.$

Definition 1.1.3 : Two fuzzy sets, A and B on X are equal if and only if they are equal as functions, i.e. $A(x)=B(x), \forall x \in X$.

<u>Definition 1.1.4</u> : If A and B are fuzzy sets on X, then their union AUB and intersection $A \cap B$ are fuzzy sets on X, defined by

 $(AUB)(x) = \max \{A(x), B(x)\} \text{ and}$ $(A \cap B)(x) = \min \{A(x), B(x)\} \forall x \in X.$ If $\{A_i\}_i \in I$ is a family of fuzzy sets on X, then $(\bigcup_{i \in I} A_i) \text{ and}, \quad (\bigcap_{i \in I} A_i) \text{ are defined by,}$

. 1

 $\begin{pmatrix} U & A_1 \end{pmatrix} (x) = \sup_{i \in I} A_i(x)$ and $i \in I$

$$(\bigcap_{i \in I} A_i)(x) = \inf_{i \in I} A_i(x) \forall x \in X.$$

Definition 1.1.5 : The complement of a fuzzy set A on X is a fuzzy set on X, defined by

 $A^{\dagger}(x) = 1 - A(x) \forall x \in X.$

Similar to crisp sets, fuzzy sets satisfy De-Morgan's laws and distributive laws.

Theorem 1.1.6 : If A, B and C are fuzzy sets on the same universe X, then

1) (AUB) $* = A * \Omega B *$

2) $(A \cap B)^{+} = A^{+}UB^{+}$

3) $AU(B\cap C) = (AUB) \cap (AUC)$ and

$$A \cap (BUC) = (A \cap B) U (A \cap C).$$

 $\frac{\text{Proof}}{\text{Proof}} : 1) \quad (AUB)^{*} (x) = 1 - (AUB) (x) = 1 - \max \{A(x), B(x)\} \\ = \min \{1 - A(x), 1 - B(x)\} = \min \{A'(x), B'(x)\} \\ = (A^{*} \cap B^{*}) (x) \forall x \in X.$

Therefore, $(AUB)' = A' \cap B'$.

2)
$$(A \cap B)'(x) = 1 - \min \{A(x), B(x)\} = \max \{1 - A(x), 1 - B(x)\}$$

= $\max \{A'(x), B'(x)\} = (A'UB')(x) \forall x \in X.$
Thus $(A \cap B)' = A'UB'.$

3)
$$(AU(B\cap C))(x) = \max \{ A(x), \min [B(x), C(x)] \}$$

= $\min \{ \max [A(x), B(x)], \max [A(x), C(x)] \}$
= $((AUB) \cap (AUC))(x) \forall x \in x.$

Hence, $AU(B \cap C) = (AUB) \cap (AUC)$.

4)
$$(A \cap (BUC))(x) = \min \{ A(x), \max [B(x), C(x)] \}$$

= $\max \{ \min [A(x), B(x)], \min [A(x), C(x)] \}$
= $[(A \cap B)U(A \cap C)](X) \quad \forall x \in X.$

Therefore, $A \cap (BUC) = (A \cap B)U (A \cap C)$.

Remarks 1.1. 7: 1) The operations 'U' and 'A' are commutative and associative.

- 2) We have idempotency i.e. AUA = A and AAA = A.
- 3) If β and X are the fuzzy sets, mapping every element of X to zero and one respectively, then $AU\beta = A$ and $A \cap X = A$ so that β and X are the identities under 'U' and ' \cap '.

4) Obviously
$$A \cap \emptyset = \emptyset$$
 and $AUX = X$.

5)
$$(A^*)^* = A_*$$

6) Absorption laws are satisfied.

i.e. $AU(A \cap B) = A$ and $A \cap (AUB) = A$.

7) For a fuzzy set A, AUA' $\neq X$ and AAA' $\neq \emptyset$ always, for, if A(x) = a, a $\neq 0$ and a $\neq 1$, then (AUA') (x) $\neq 1$ and (AAA') (x) $\neq 0$.

For this reason, the collection of all fuzzy sets on X does not form a complemented distributive lattice, but forms a pseudocomplemented distributive lattice.

Lastly, we define the cartesian product AxB of two fuzzy sets as follows :

Definition 1.1.8 : If A : X \longrightarrow I and B : Y \longrightarrow I are fuzzy

sets on X and Y respectively, then the cartesian product AxB, AxB : XXY \longrightarrow I is defined as

 $(A \times B)(x, y) = \min \{A(x), B(y)\} \times \{ \in X \text{ and } y \in Y \}$

1.2. Relations

Definition 1.2.1 : A binary relation R from a set X to a set Y is a subset of XXY, i.e. RC XXY.

When X = Y, R is said to be a relation on X.

More generally, we have the following definition.

<u>Definition 1.2.2</u> : An n-ary relation is a set of ordered n-tuples which is a subset of the cartesian product $X_1 \propto X_2 \propto$... $\propto X_n$, n being a positive integer.

<u>Definition 1.2.3</u>: If $R_1 \subseteq X \times Y$ and $R_2 \subseteq Y \times Z$, then the composition $R_1 \circ R_2$ is a relation from X to Z, defined by

 $R_1 \circ R_2 = \{(x,z) : (x,y) \in R_1 \text{ and } (y,z) \in R_2 \text{ for some } y \in Y\}.$

We now define some important types of relations.

Definition 1.2.4 : If R is a relation on X, then

- 1) R is reflexive if $(x, x) \in \mathbb{R} \forall x \in X$,
- 2) R is antireflexive if $(x, x) \notin \mathbb{R} \lor x \notin X$.

3) R is non-reflexive if $(x, x) \notin R$ for some $x \in X$.

- 4) R is symmetric, if $(x,y) \in \mathbb{R}$ implies $(y,x) \in \mathbb{R}$, $\forall x,y \in X$.
- 5) R is antisymmetric, if $(x, y) \in \mathbb{R}$ and $(y, x) \in \mathbb{R}$ imply

 $x = y + x, y \in x.$

6) R is asymmetric, if $(x, y) \in \mathbb{R}$ implies $(y, x) \notin \mathbb{R}$ for every x, y $\in X$.

•• 5

7) R is transitive, if $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$, imply $(x, z) \in \mathbb{R} \forall x, y, z \in X$.

Definition 1.2.5 ¹ A relation R on X which is reflexive and transitive is called a pre-ordering relation.

Definition 1.2.6 : A pre-ordering relation which is symmetric is called an equivalence relation.

Definition 1.2.7 : A pre-ordering relation which is antisymmetric is called an ordering relation.

Definition 1.2.8 : The relation $R^+ = RUR^2UR^3U$... is called the transitive closure of R.

If the set X contains n elements, then $R^+ = RUR^2U...UR^n$.

Definition 1.2.10 : The symmetric closure of a relation R is the relation RUR^{-1} , where R^{-1} is the inverse relation defined as

 $R^{-1} = \{(y, x) : (x, y) \in R\}.$

Theorem 1.2. 11: The symmetric closure of a relation R is the smallest symmetric relation containing R.

1.3. Graphs and digraphs

<u>Definition 1.3.1</u> : A graph G is an ordered pair (V,E) where V is a nonempty set of elements called vertices and E is a finite set of unordered pairs of elements of V called edges.

<u>Definition 1.3.2</u>: In a graph (V, E), if $\{u, v\} \in E$ then $\{u, v\}$ is called an edge joining the vertices u and v, and u and v are said to be adjacent vertices.

<u>Remark 1.3.3</u>: As $\{u, v\}$ is unordered pair, the edges $\{u, v\}$ and $\{v, u\}$ are the same. Graphically, an edge in a graph is represented by an undirected arc joining the two vertices.

Definition 1.3.4 : A path from u to v of length n in a graph
G = (V,E) is a sequence of vertices u, a₁, a₂, ..., a_{n-1}, v
such that each pair {u, a₁} , {a₁, a₂} , ..., {a_{n-1}, v} is in E.
u and v are called the endpoints.

<u>Definition 1.3.5</u>: If $\{u, u\} \in E$, then there is an arc from u to u, known as a loop.

<u>Definition 1.3.6</u>: If the end points u and v of a path u, a_1 , a_2 , ..., a_{n-1} , v in a graph (V,E) are equal, then the path forms a circuit.

We now define digraphs and their adjacency matrices. Definition 1.3.7 : A digraph is an ordered pair (V,E) where V is a nonempty set and E is a relation on V.

<u>Definition 1.3.8</u>: The members of V are called vertices and the members of E which are ordered pairs are called directed edges.

Definition 1.3.9 : A directed path from u to v of length n in a digraph G = (V,E) is a sequence of vertices u, a_1, a_2, \dots a_{n-1} , v such that $(u, a_1) \in E$, $(a_1, a_2) \in E, \dots$, $(a_{n-1}, v) \in E$.

u and v are called the end points of the directed path. <u>Remarks 1.3.10</u> : 1) A directed edge (u, v) in a digraph is represented by an directed arc which starts from u and ends in v.

2) Relations and digraphs are equivalent concepts. For, if G = (V, E) is a digraph, then E is a relation on V and if, $R \subseteq A \times B$ is a relation, then G = (AUB, R) is a digraph.

3) If the relation E in a digraph G = (V, E) is antireflexive, then G is a loopfree graph.

4) A relation E in a digraph G = (V, E) is transitive if and only if every directed path has shortcut, i.e. if and only if for every non-trivial directed path from a vertex x to a vertex y, there exists an edge (x, y).

The following result is well known in graph theory. <u>Theorem 1.3.11</u>: If G = (V, E) is a digraph, then for $n \ge 1$,

 $(u, v) \in E^n$ if and only if there exists a directed path of length n from u to v in G.

<u>Corollary 1.3.12</u>: For any two vertices u and v in a digraph (V, E), $(u, v) \in E^+$ if and only if there exists a nontrivial directed path from u to v where E^+ is the transitive closure of E.

Remark 1.3.13 : The fuzzy analogues of the above two results are proved in the Theorem 3.1.8 and Corollary 3.1.9 in the Chapter III.

We now define the adjacency matrix of a digraph and state a few well-known basic results involving it.

<u>Definition 1.3.14</u> : Let G = (V,R) be a digraph where $V = \{v_1, v_2, ..., v_n\}$ and R be a binary relation on V. The adjacency matrix A of R is defined to be the n x n Boolean matrix where

 $A(i,j) = \begin{cases} l \text{ if } (v_i, v_j) \in \mathbb{R} \\ 0, \text{ otherwise.} \end{cases}$

<u>Remark 1.3.15</u>: For a given ordering on V, the adjacency matrix is unique.

As the adjacency matrix is a Boolean matrix, we define the operators \oplus and \bigotimes on $\{0, 1\}$ as,

> $x \oplus y = \max(x, y)$ and $x \otimes y = \min(x, y)$, where x, $y \in \{0, 1\}$.

.. 8

<u>Definition 1.3.16</u>: If A and B are two n x n Boolean matrices over $\{0, 1\}$, then their inner product $A \oplus \bigotimes B$ is an n x n matrix given by

 $(A \oplus \bigotimes B)(i,j) = [A(i,1) \bigotimes B(1,j)] \oplus [A(i,2) \bigotimes B(2,j)] \oplus \dots \oplus [A(i,n) \bigotimes B(n,j)] .$

Definition 1.3.17 : For any $k \ge 1$, ($\bigoplus \bigotimes$)^k A is defined inductively as

 $(\oplus \bigotimes)^{1} A = A,$ $(\oplus \bigotimes)^{2} A = A \oplus \bigotimes A, \dots,$ $(\oplus \bigotimes)^{k} A = ((\oplus \bigotimes)^{k-1} A) \oplus \bigotimes A,$ where A is a Boolean matrix.

<u>Theorem 1.3.18</u> : If A and B are adjacency matrices of the relations R and Q on V = $\{v_1, v_2, \ldots, v_n\}$, then A \oplus \bigotimes B is the adjacency matrix of the relation R o Q.

<u>Theorem 1.3.19</u> : If A is the adjacency matrix of a relation R then (\oplus \bigotimes)ⁿ A is the adjacency matrix of Rⁿ.

<u>Theorem 1.3.20</u> : If A and B are adjacency matrices of the relations R and Q on V then the adjacency matrix of R U Q is A \oplus B, where (A \oplus B)(i,j) = A (i,j) \oplus B(i,j). <u>Theorem 1.3.21</u> : If A is the adjacency matrix of a relation R on V = {v₁, v₂, ..., v_n}, then the adjacency matrix of the transitive closure of R is A \oplus (\oplus \bigotimes)² A \oplus (\oplus \bigotimes)³A \oplus \oplus (\oplus \bigotimes)ⁿ A. <u>Remark 1.3.22</u> : The adjacency matrix of a relfexive relation R is the identity matrix and that of a symmetric relation is symmetric.

The proof of the following theorem is well known in literature. The fuzzy analogue of this theorem is proved in the Chapter III.

<u>Theorem 1.3.23</u>: Let G = (V,E) be a digraph and A is the adjacency matrix. Let \oplus and \bigotimes denote the operations,

 $x \oplus y = \begin{cases} x & \text{if } x > y \\ y & \text{otherwise} \end{cases}$

$$\mathbf{x} \bigotimes \mathbf{y} = \begin{cases} \mathbf{x} + \mathbf{y} & \text{if } \mathbf{x} > \mathbf{0}, \mathbf{y} > \mathbf{0} \\ \mathbf{0} & \text{otherwise,} \end{cases}$$

and $L^{k} = \begin{cases} A \text{ if } k = 1 \\ L^{k-1} \bigoplus (L^{k-1} \bigoplus \otimes A), \text{ if } k > 1, \end{cases}$

Then $L^{k}(i,j)$ is the length of the longest nontrivial directed path from v_{i} to v_{j} that has length less than or equal to k. $L^{k}(i,j) = 0$ if there is no such path.

000

