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1. Introduction

The study of symmetries like groups of motions
and collineations forms a major area of investigations in
the general theory of relativity. Katzin, Levine (1972)
enumerated sixteen types of symmetries includihg collinea~-
tions in Riemannian Spaces. The Ricci Collineation is

defined as "the point transformation
x 2= x3 + K2 5¢,

with t as the parameter which leaves invariant the form
of the Ricci tensor", (Collinson, 1970b), Its tensorial
form is

%Rab = 0, (Ricci Collineation), ces (1.1)
Here %» denotes the Lie derivative (Yano, 1953).
The conditions on eigenvalues of stress-energy tensor
descrihing the definite magnetofluid scheme admitting the
Ricei collineation are found by Shaha (1974). Oliver and
pravis (1977) have studied the time-like symmetries, with
special reference to conformal motions and family of -
contracted Riccl €ollineations, for the sgpace~times £fill@d
with perfect fluid. The perfect fluid space~times including
electromagnetic fields adnitting symmetry mappings belonging

to the family of contracted Ricci collineations were studied
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by Norris, Green and Davis (1977). Nunez, Percoco and
villalba (1990) discussed the Ricci and the contracted

Ricci collineations of the Robertson-wWalker space-~time,

The Lie derivative of second order tensor is

expressible in terms of covariant derivative in the fomm

C C

c
'Q Rab = Rab;c X©+ Rbc X ra + Rac X :tb -’

X

Consequently the equation (1.1) yields

c c c
Rab;c X" + RpcX ;a + Ry X o = 0, ese (1.2)

According to Trautman (1962) the conservation law like

(rab Xa),p = O exists only when X is ¥illing vector. It is
proved in Section 2 that the Ricci collineation along X
leads to a conservation law (Rg Xa),b = 0, (Collinson, 1970)
even if X 1is not a Xilling vector. This conservation law
is examined in the space-time of ferrcfluid adnitting the
Ricci collineations along the flow vector and also along
the magnetic field. Section 3 deals with the Ricci collinea-
tions and contracted Ricci collineaticns corresponding to
the ferrofluid space-time, We have established the explicit
impact of variable magnetic pemmeability on the kinematical
and dynamical quantities like @, Wape 6;b and ?, P, HZ
respectively. We have also proved that the Ricci collinea-~

tions imply the infinitesimal isometries under the restric-
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tion that the magnetic permeability is invariant along the
flow. In Section 4, Ricecl collineations and isometries
are studied simultaneously to prove the results like

b

Hb=0, H‘.b=o.

e=0 uy;=0 E=0, ¥ =0, LIRS

2, The Local Conservation Laws

Einstein had to introduce the pseudoenergy tensor
tsp in order to express T?g = 0, in terms of an ordinary
divergence for the generation cf conservation laws without
postulating such pseudo-tensors, conservation laws can be
generated when the gpace-time admitts collineation or
motion. If X is the Killing vector then the corresponding
conservation law (Trautman, 1962) (rab xa)gb = (0 exists,
In the similar way the conservation law based on the Ricci
collineation (Collinson, 1970) when X is not Xilling vector
is derived. This can be obtained by using contracted
Bianchi igdentities in the following way. The ceontraction

of (1,2) with gab leads to the result

c a ¢ b ¢
R o X® + Rg X, + R X;p = 0,

c b C
i.e,., R,cx + 2 Rc X;b s 0,

b-

b ,c 1 b
or (Rc X ):b + (2 6c

Led
RC )}bx '0. oee (201)

The last term in (2.1) will vanish by virtue of the

contracted Blanchl identities and so it is stated that



35

if a space~time acnits a Ricecl collineation then there

exists a conservation law generator of the form
b «C =
(RC X ),b - 00 o e (2‘2)

Further, it should be noted that (2.2) holds good only
when both the indices in (1.,1) are in co-variant position,

The Ricci tensor (1II.2.3) can be written as

1 b
Rg = e + P + vHZ) uaub - 5 ( ? - P 4 uHZ) 6a -

b
- “Ha }{ XX (203)

on replacing arbitrary vector x€ in (2.2) by flow vector
in space-tiﬁe of ferrofluld, cne can get the conservation

law to £ R, = 0 in the form
u
(RZ u%),,, = 0,
i.e. [{( o+P+ w2)yuu® - % (g-p+ w?) 62 -
- wH Py uw® ] = 0, (vide, 2.3)

=1,

i,e. { ( ? + 3P + ﬁHz)ub 1;b = 0, "' Hq_ = 0, uu

a a

Here (2.4) is considered as a consequence of the Ricci
collineation along a world line, The similar consequence
of the Ricci collineation along the magnetic field using

{2.3) in (Rg Ha)’b = (0 is obtalined as
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1
[ {( Q+ P+ nﬁz)uaub -3 ( e~ P+ vHZ) 62 -
- w P} u® ], = o,

[ ] L a =
ie.[ (p-P- pH2) HP b = 0 KoHg= - H?, uwdHg= o,

b
or (p~-P-~ sz);b K> + ( e~ P - i) H,p

0. ove (2,5)

3, The Ricecl Collineations In Ferrofluid

(A) Ricci Collineation Along The Fluid Flow

.

We have the Ricel tensor expression for the ferro-

£lui” as given by (11.2.3)

Ry, = - K [Augquy - Bggp - PHaFy 1, eer (3.1)

where A = o+ P + uﬂz, B = % ( ? - P + nHZ ) . ese (3.2)

Further if the space=-time of ferrofluid adnits the Ricci
collineation along the fluid flow U, then we write from

equations (1,2) and (3.1)

c
(Aujuy, = Bggp = BHaHp),- u~ + (Auju, - Bg,. ~

- uHch)uc:b+ (Aupu, = Bgpe = WHpH )u?a = 0,
lee. A wu_u - B’cucgab - v’cuCHaHb + Alug, o ucub +

+ uaub:cuc) - B( Ug,pt “b:a) - u[Ha (Hb:cuc +

+ HouC,p)) + Wy (H

C, C 3
a,C\I‘rch ’a) i =0,
(
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This after simplification gives
5& ugup - égab - ﬁ- HaHb + A(ﬁaub + uaﬁb ) -

C C
= B (ug,pt+ Upyg) = ¥ [Hy (Hy, "+ HuS ) +

-+

Hy (Ha, ou® + Hau® o) 1 = o, eer (3.3)

Step 1

By taking the inner multiplication of (3.3) with u®
and using the results uaHa = (G, &aua = (0 generates the

ecquation
(a=B) "uy + (A-B)u, - 8 [Hy (Hy, uu®+ chc:aua)?n 0.

1f we use the result Hg,. . w’a - Ug, e H®, then this

equation immediately produces

(A-B)* uy + (A—B)&b = 0,

i.e. ( 0 + 3p + nHZ)' u o+ ( Q + 3P + ﬂHz) ﬁb = 0,
(vide, 3.2) ees (3.4)
This implies the following tyeP consequences
(p+ 3P+ uH2)* = 0, and i = o. eee (3.5)

Step II :

The equation (3.3) after transvecting with H® ana

using (3.5) we obtain
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2

- 8 Hy+ ¥ HH - BH® (ug,ptup, s ) +

+

2 c c c c a -
WH (Hy, € + Hou® ) = B(Hg, cu® + HC, ) HHy, = 0,

2

fee. - dHp + UHOH - BH? (ug,pt up,g) 4

1 .
+ uHZ(Hb,CuC + chcxb) + En(nz) Hy = uﬁcuc,aaanb = 0.

1

(Since Hy, M = - 2 (#)°, W= - 17 ), ce. (3060

This equation (3.6) when transvected with 1P profuces

.2 2.2 . .ab 2 b, o
84 - fiH°4® - 2BR%H Vg, pt 2WHS (M, HuS 4

+ uc,bﬁbﬁc ) =0,

where HaHa = - HZ,

2 2.2

" WHH &

: a : 2,..2,"
i.e. B H 28 H'H ua;b PHE(HT) +

2.ab
+ 2B H'H H ug,p= 0,

a c 1 2 a 2
(Since H ’CHau = - 5 (H™) and H Ha = - H” ),

t.e. (3 - wi?)n?- 2 (8 - wu?) WéHPu,,, = o,

ie. (@-P-~ up?) ' 2(¢ - B = wH?) WPy, = cC.

[vide, (3.2) ] ees (3.7)

Step III :

If we contract (3.3) with gab

2
aua = {, gabuaub = ], gabHaHb = - H~ , then we obtain

and use the conditions

u



39

2

- A -48 + 0 H a

jol

A o JONP c c a c c
- w[H° (Hy, uC+ Hou yp) + H(Hg, u€ +H U ) 1 = o.
b c 1 .2 e _ 1 2y
Further since H Hb’cu = - 5 (H ):c u-= 5 (H<) *,
the above equation becomes

A - 48 + fn? - 280 + w(a?) - 2Pu, )= o,

f.e. (A= 4B+ 1HY)" - 8 @ - MmuPu_ = 0.
By using (3.2) in this equation we have

( 9 - 3p)°* + (Q - P + qu) € + anaHbua;bﬂ 0 .

eee (3.8)
Lemma (1) : {(Kinematical Conditions) :

If the space~time of ferrofluid admits the Riceil
collineation along flow lines then the flow is geodesic

and expansion free.

Proof : We i?fer from the equation (3.5) that

u, = 0. eoe (3.9)

Further the conservation law (2.4) produces the result

with the help of (3.5)
( o+ 3+ wu?) @ = 0.

As u is time~like congruence © + 3P + up? # 0, hence
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this equation ylelds

e =0 . eee (3.10)

Thus we have proved the required conditions (3.9) and (3.10)

Remark : These conditions direct that the flow lines are

geocdesic and exvansion free.
Lemma (2) : For ferrofluid
% Rgp = 0 ==m> 1) P, = 0 <mmm> 3,40 = 0,
b -~ b
11) P,pH® = 0 <===> U H° = 0,

Proof : when the equation (3.5) is applied in the Maxwell's
equation (II.2.6) then these will give

b
vﬁfb + u,b HY = 0,

fe. HOp =0 <==m wyH =0, e (3.11)

Again if we use the result (3.5) ir the continuity equation
{(II.3.7) we get

b 1.2, .b
Pyp H + 3 HOMHD = 0,

fee PP =0 <> u,HP =0, oo (3.12)

Hence (3.,11) and (3.12) are the recuireqd results,

Interpretation : If the space~time of ferrofluid adnits
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the Ricci collineation along the flow vector u then,

i) the mzanetic lines are Adivergence free i1iff the
magnetic permeability is preserved along the magnetic

lines [vide, (3.11) J].

ii) the isotropic pressure is constant along the
magnetic lines 1ff the magnetic permeability is pr-served

along these lines [vide, (3.12)]. -

Lemma (3) : (pynamical Conditions)

For the space-time of ferrofluid adnitting the Ricei

collineation with respect to flow lines
é =B = (H2)* ®» 0 <===> §i = 0, when 9 # p + 5/3 nHZ,

Proof : Applying (3.10) in the continuity ecquation (II.3.3)

we aget the result

[

 -<1u2=no,

N

t.e. § =0 === i =0, eee (3.13)

If we use this in the equation (3.5), we get

W

3£)+‘2'ﬁ 2+“(H2 ). = O, ..co (3-14)

[vige, (3.13) ]

Further by using equations (3.10) and (3.,13) in the equaticn

{3.,8) we find the result

9 ﬁ 3,#.‘.;

A
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2uHHPu,,p, = - % iu? s 38 ... (3.15)

Also the equatiéns (3.7), (3.10) and (3.15) produce
P (3¢~ 3 - 2uH?) + % #H2 (- o+ P+ 20 4
+v2m%) =0 ., ee. (3.16)
Now b? eliminating (H2)* from (3.14) and (3.16) we get
3( o -P ~5/3 ) B - % HY (o - P + wHA)u= o,
If 0 £ P + 5/3 112, then |

P=o0 <=mm> §l =0, vee (3.17)
since o - P + “Hz £ 0.

In similar way by eliminating P from equations (3.14) and

(3.16) and supposing o ¥ P + 5/3 uH?, we get
(H2)® = 0 <=ma=> U =0 , ve. (3.18)
Thus (3.13), (3.17) and (3.18) are the required results.

Interpretations : If the gpace~time of ferrofluilf adnits

the Riceci collineation along U and when e £ P + 5/3 112
then (1) the energy density is conserved along the flow
lineg iff the magnetic permeabllity is constant along the

flow [vide, (3.13) 1.

(11i) the necessary and sufficient condition for the
isotropic pressure to be constant along the flow lines is
that the maqgnetic permeability is preserved along the flow

[vide, (3.17)].
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(1i4) 1if the magnetic permeahilitv is conserved along
the flow then the magnitucde of the magnetic lines is constant

along the flow and conversely [vide, (3.18) 1,

2

Theorem (1) : For ferrofluid with © o P + UH® and

3o A 3P+ suHZ, if i = 0, then
L Rab = () <=z==> £’, gab = (O,
u u

Procf : It is clear from the definition of Ricci tensor

that

£g. =0== £ r, =c. ee. (3.19)
- ab = ab
Now from the definition of Ricci ecollineation (1.2) we write

= R

gitn
o

[ Lo C
ab ab',cu + Racu :b + Rbcu sa°

For the expression (II.2.3) of Ry, we write from the above
emquation undfer the imposed condition i =0

é Ry = A gy, - B Qap + A(ﬁaub +uaﬁb ) -

u

c c
= B (ug;p + Upya ) = B[H_(Hp,cu™ + Haufy ) +

1
4

C C
+ Hb{Ha,cu + uc\l ra )

=T) + Ty + T3 + T4 (say),

-

where T; = A ugup = 3 ab ¢
T, = A( Gaub + uaab ).

T3 == B(ua;b + Uppg ) o
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C C <
Ty = = ¥ [Ha(Hp,cu® + Hu®,y) + Hy(Hg, cu€ + HuS, )1,

Thus to prove £ R, = 0 == £ g, =0, we start with
u u

f R... = 0,
i ab
i.e. T3 + Tp+ T3 + Ty = 0. «oo (3.20)

According to Lemma (3) we can sasily verify that
s > — 2 . *
Q—P—(H) =0, foriu =0,

i-e. Tl = 0. s e (3021)

Also for the condition % = 0, Lemma (1) innlies

LN (3.22)

Hence from the e~uations (3.20) to (3.22) we get
T3+T4 = (0,

. c c

i.es  Blug,p + up,a) + ¥ [Ha(Hb’cu + Hu",p) +

1

+ Hy (Hg, u + HC ] =0,

?a)
i.e, BH?2 (ua:b + ub:a) - VHZ(Hb:Cuc + chc:b) -
- 3w+ wgHE, | KR =
27 b pHcu za 0.

tee.  BH(ug,p + Uy g)- PHAGHE, u€ + H®, ) = 0. ...(3.23)

using Maxwell (II.2.4).
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Applying (3.9) and (3.6) with the understanding that U= o,
é = 0, P = 0 and (Hz)' = 0 we obtain

a
(o-P-~- pH?) (ug,p+ vy, ) H = 0.
[vige, (3.2)7.

Hence for ? # P + sz' we write
a
(ua’b + ub’a ) HY = 0.

Consequently (3.23) implies

Hb:c u® + chc’b = 0, oo (3.24)
So finally we get
T4 = (‘- 9o e (3025)

Thus by using (3.21), (3.22) and (3.25) in (3.20) we get
i.e. _f_:_ gab = 0‘
u

Here the proof is complete.

(B8) Ricci Collineation Along The Maonetic Tield Lines :

.

If the space~-time of ferrofluid admits the Riceil
collineation along the magnetic lines F then we write from

the ecuations (1.2) and (3.1)
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c
(Auguy, - Bggy = WHalp),;e H +(Auque - Bgac =

- C
- UH He JHS,p+ (Aupug = Bape = WHRHRIHS, o= ¢,

C c C
+ A[ua(ucﬁc’b +up, HE )+ oy (ug, HE + uH :a)}+
+ W[H (Hy, HE + HHT ) + Hy (Hy, H + H .M, ) ]=0,
LR N ] (3.26)
Step I : The deductions of ( % Ryp)HS = 0, ( % R ) H3HP =0,

( £ Ry, HWP = 0 :
H
By contracting (3.26) with H® we obtain
C 2 a
- B, HCHy + u,cncn Hp = BH(Hg,yp, +Hy, o) +
a c a c 2 c c
+ A(H ub“a;cH + Huu H :a* + UH (Hb:cH + H Hc:b) -

- WHBHy, (Ha,HS + HHC ) = 0,

2

-

HAHD = = p

- L ] uaHa - O' gab

Now changing Aummy suffix a <-——=> ¢ whenever necessary and

C 1 2 C c
using the results H Hc;a =-3 (H")2a and u Hae g™ = U ;ch

we get
a a 2 a
- B,aH Hb + v’aH HpH™ = BH (Ha:b + Hp, a5 ) +

+ wa? (g, + Hy, OB + w(H?),, v, = O,
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Further by emploving (3.2) and simplifving we deduce
( -pP - uaz) H3H, - ( - P - vnz) X
Q sa’ b Q ‘

a
X (H + sa JH™ = 0, eee (3.27)

asb * Hp

Further contracting (3.27) with HP and using the results

Hbe = - H2 and HaHa;b = - % (Hz),b we write

b
(g-P -1 Hz)’beHz +(po=-P -~ ﬂHz)(Hz)’bH = 0,

Alsc by contracting (3.27) with uP ana using ubﬁb = Q

provides
(o = P = WH?) (Hy,) + Hp, g)H%P= O,

But the conservation Law (2.5) ==> o - P - 1HZ # 0,

So we write

Step II : The deduction of g3P ( % Rgp) = O
By inner multivlving (3.26) with qab we infer

c _ c Cy2 _ o) a
A’CH 4B’CH + ﬁ’cH H B(ﬁ:b + H:a ) +

b a a b b a
+ A [vPu_H ;p+ i H :a} - v (H%H,, H +

a a b a, ..b
+ HPRGHS 4 1B iR+ HOHED, B] = o

b 2

where g° usuy = 1, gabHaHb = =« H® , ubub,c= 0 and changing
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Aummy suffixes in the last term.

Further by virtue of condition H°H_ _ = - 3

(a-4B) , H° + w WPH? = 28 WP+ 2aH,, u%P 4

+ 2m(H2) L HP = 0.

Oon using (3.2) in this relation we show
(- ®), 1+ (@ - P + wi%) HO

+ 20 @ + B+ )P - w(w?),pH = 0. ... (3.30)

Step III : The deductions of uaub ( % Rab } = 0

By transvecting (3.26) with uw?uP anc using

gabuaub = ] and ub:aub = 0 we produce

A,cﬁc - B:cﬁc - B udP (Hg,p + Hp,a) +

r

b c C _
+ A(uPu B, + uauCH:a } = 0.

Cn using the condition Ha,bub= ﬁa in this equation andg

simplifving we write

(A=B) , HP + 2(A-B) Fp u® = 0,

b

f.e. (@ + 3 + WH%) M ©

+2(g+ 3 + %) Au® =0 .
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Lemma 4 : For the space-time of ferrofluid adnitting the
Ricecli collineation along the magnetic lines implies that

the flow is expansion free and energy density is constant
along the flow iff the magnetic permeability is conserved

along the flow.
Procf : The Maxwell equation (II.2.5) can be expressed as
H2e + 1 H2 = p (Ha;b +Hpbsa YHRP,

By using (3.29) in this equation we get

2

wu? ¢ + % uZ = o,

i.e. @=0 <===> U =0, ees (3.32)

Applving (3.32) to the continuity equation (II.3.3) we et

u § - ©+ P+ % 14 Hz) i = o,

This with ? + F + HHZ # 0, implies

$ = 0 <===> =0, eee (3.33)
The results (3.32) and (3.33) justify the Lemma.

Lemma (5) : If the space=-time of ferrofluid admits the

Ricci collineation along the magnetic lines then

Hb:bs 0 <===)» p’b}-}b = Q‘

G HD = 0 <===> W,1H%= O,

provided © #£ P + 5/3 nH2,
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Proof : The conservation law (2.5) and the equation (3.28)

together imply
(-2 -wd)[ wppu? - () 1P 1 = 0.
== Wpn? =, e R e w. Ll (3.20)

After simplifying (3.28) and using (3.34) we obtain

O,pt = PypH = Y BPHZ + (@ - P - 2uHY) WO = 0.

ees (3.35)

If the equation of continmuity (I1.3.7) and the Maxwell
equation (11.2.6) are combined together then they leasd to

the result

n( < + ?)Hb’b* v P’be +( o+ P+ % !1?{2)11,be = 0,

co o0 (3.36)
By eliminating P,bﬁb between (3.35) and (3.36) we get

b 2. b
u?}bn + 28 (o= MH )H;b +

1

+(?+p--2-m12) w, H =

O » . e (3.37}

Now we apply the Maxwell equation (II1.2.6) in (3.31) in

order to obtain

b

SR (ZQ + 6P + 3unz)n,b H o+

b
+ B(2 o + 6P + 387 ) HJ= O,

Further using (3.36) in this equation we Aerive
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3
1 Q;b Hb + ( - Q + 3P + 3 uHZ ) V:bﬂb +

+ (= g+ 39+ 3und) H) = 0. ee. (3.38)

on subtracting (3.37) from (3,38), we lead to the result
- uu2 b e L 2y b
2( g - P VH )U:bH + 3u( q P 5/3uH%)H +b = 0,
s (3.39)
If Q £ P + 5/3 UH? and since Q # D + UH? then (3.39) gives

HO,p, = 0 <===> v, HP = o0, eee (3.40)

FPurther we use the Maxwell equation (I1.2.6) in (3.39) to

get the result

20 Q- P - O + (@ - P - 5/3wH%) X

« b ‘
X (v f® - w0 ) = o,
feee (g + P+ 3HADBE® - 3 (g - P - 5/3 whaH = o,
If R #P + 5/3 vﬂz, then this result implies
\..leb = 0 EmZTDH u;bﬁb = 0; LI (3-41)

Hence the proof of the Lemma is complete.

Interpretations : If the space-time of ferrofluid adnits

the Ricci collineation along the magnetic lines then

i) the magnetic lines are divergence free iff the
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magnetic permeablility is constant along the magnetic

lines [vide (3.40)].

ii) 41if the flow is geodesic along the magnetic lines
then the magnetic permeability is preserved along the

magnetic lines and vice~-versa., [vide (3.42)]

Lemma (6) : (Dynamical conditions ) : For the space-time
of ferrofluid admitting the Ricel ocollineation if

Q¥ P+ 5/3 152 then
(Hz) '.be = Q, ?:bf'{b = (0, P:bﬂb =0 <==> i il = O.

L3
L4

Proof : The ecuations (3.34) and (3.39) imply

ZHZ ( g - P - 11{.{2)‘[1:be 4+ 31 (Q -p - 5/3 “HZ) %

X (H2),, HP = 0.

If Q#P + 5/3 1H2 then this result gives

(2), HP = 0 <===> u H° = 0. e (3.42)

..t g #A P + VHZ.

The equations (3.36) and (3.39) will lead to the result

HP = <===> , H2 = 0. vee (3.43)

p:b H

Further the equations (3.37) and (3.39) imply the result

b b

g :b'ﬁ = ) <===» p‘_b H

So the proof of the Lemma is complete.

= 0. s (3.44)
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Interpretations : If the space-time of ferrofluid admits

the Ricci collineation along the magnetic lines and if the
=
magnetic permeability/along the magnetic lines then (i) the

magnitude of magnetic lines, (ii) isotroplc pressure and
(i1i) the energy density are conserved along the magnetic

lines and conversely [vide, (3.42), (3.43), (3.44) 7,

Theorem (2) : For the space-time of ferrofluid with

Q# P+ 5/3 vH2 1€ w,y H® = 0 then

£ R w () === C g = 0,
‘ﬁ ab ‘I'-i ab

Proof : Bv the definition of Ricci tensor it 1s clear that
£ g, =0===> Lr, =0, eee (3.45)
H H

To prove the converse part we consider the Lie derivative

of the Ricci tensor by using (1.2), alcong the magnetic

lines is given by

= c c c
% Rab = Rapy M + Racl ,p + RpHo, o
C <
i.e. % Ry, = A, cHS uguy, = B, MOy - u, HH My, -

C
- B(Hg,p + Hp,a) + A[ua(ucﬂc:b+ U, H) +
+ up(ug, HS + uc i ) - w [ (ay, B 4

1o c Lo
+ HHO ) + Mo (Ho, H + HHT, )T, L. (3.46)
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=Ty + Ty + T3 + Ty (say),

= C. - c - 1
where Tl = A'CH u Uy, A’CH dab u,cn Uty »

=]
N
]
i

B(Ha;p + Hpya )

3
W

]

>

{ua(uch;b“' ub,CHc) + ub(ua,cHC + uCHC:a)?,

o c C P o 1
B Ha (Hpy HE + HUH ,p) + Hp(Ha, cHS + HeHT,5) 1.

3

>
§
i

Here £ Ry = 0 ==> T + Ty + T3+ Ty = 0. eee (3.47)

H

To show Tl =0

From Lemma (6) we have if ‘,u,bﬁb = 0 then
2
?:bﬁb = 0, P;b = 0 and (H ):bﬂb = 0.
Conseduently, Ty =0, ese (3.48)

[vice,(3.2)].

To show Ty = 0 ¢

The equation (3.27) implies that
a a 2 a a 2
[ Pralls = Py - B(HY), H 1 By = B, HHHE +
2 a
+ (@ =P = BH") (Hg,y + Hp,a ) HO = 0.

Applying Lemma (6) to this equation and taking u‘.bmb = O

, 2
and since Q #F + BH®, we get
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a
(Ha:b + Hb;a) H Oe

Conseaquently Ty = 0. eee (3.49)
[vide, Maxwell (II.2.4)

Tc show Ty = 0 3

on contracting (3.46) with u® ané using the

conditions uaHa = 0, uaua =1 we have
c c a
A,cHuy = B, Houy, = B (Ha,p + Hp,q) u® +
e c c
+ Au H®,p+ up, H® + uH :auaub ) -

- Cuy. = 1 a
i.e. (A B)’CH U, B(Ha;b + Hbya) u® ¢
+ AlHg,pu® + uy,H ) + A fuu -
. 2 g2

vl = éa and [vide, Maxwell equation (II.2.5)].

here H
w e asc

Now we use (3.2) and Lemmas (4), (5) and (€) to get

( €+ 3P + WH?) (Hg,p + Hp,a) u? = 0, eee (3.51)
‘.Q .’l;b Hb e O.
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Consequently by Maxwell equation (II.25) this equation

vields

T3 = Oo eee (3-52)

Thus we get from the equations (3.47), (3.48), (3.49) and

(3.52) that

Ty = 0,
i.e. £ g = 0.
T ab

Hence we have estahlished the Theorem.

4., Ricci Collineaticn AnAd Isometries (Coupling) :

In this Section we study the consecuencies of the
simultaneous occurrence of Ricci collineation and iscretry
in the space-time of ferrofluid, As the claims stated
below follow directly from Lemmas and Theorems proved in

Section 3, we give only statements of the claims,
claim 1 : In the space~time of ferrofluid

%gab = 0 and %Rab = ¢ imply

1) Kinematical confitions :

8 =0, Um0, 6, =0, Hb,b=o. E # o.
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it) Dynamical conditions :

*

é =0, (H)*=0, # = O, ?;b WP = o,

P b

P’be = (, (Hz = 0, "l:b” = (0,

)b

Claim 2 : In the space-time of ferrofluic

% 9y, = 0 and £ R = 0 imply

1) Kinematical conditions :

ii) Dynamical conditions :

* -

1 = 0, g=0, (Hz).=0, P =0,

b b

2
P,y =0, (M), HP =0, w, W =o.

Claim 3 : In the space-time of ferrofluid

_f; qab =0, g gab = 0 and -f; Rab = (O j_m:)]_y
u H u
1) Kinematical Conditions :

ﬁbs 0, e = 0; 63b = O’

b 2
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ii) Dynamical conditions

(2]

i =0, ¢ = 0. (1%y* =0, B = 0,

M,y H = 0, (Hz):b H° = o, P:bﬂb = 0.

Claim 4 : In the space-time of ferrofluid

fg.=0 f£g, =9 and £ R, = 0 imply
5 ab 7 ab 4 ab

i) Kinematical Conditions :

G, =0, @=0, 63b=0,

b '
o, =0 E€%09, 7§, #o0.

i) Dynamical conditicns :

ﬁ = Q, (Hz)' = 0, é = 0, F"bﬁb = (),

Rel b

=0 o He = o, (Hz);b H

By using earlier results one can easily verify the

following statement :

Statement : If the matter energy density is preserved
along Xilling magnetic lines and the isotro-ic pressure is
conserved along the Xilling flow then

% Rab = ) (=== % Rab = ).



