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1. Historical Contemplation

According to a general article on physics of ferro-
fluid by Mehta (1989), ferrofluid is defined as the magne-
tically soft fluid. He has presented a systematic study
of the properties of ferrofluid as a function of field
and a physical variable like temperature. A classical
theory of ferrofluid with its applications in physically
interesting magnetic materials is examined by Neuringer
and Rosenweig (1964). In 1978 Cissoko has investigated
the general relativistic equations characterizing the
ferroflui”. Following the magnetohydrodynamical system
as formulated bv Lichnerowicz (1967), Yo~czis (1971) and
Mason (1976) have Aiscussed the rate of agrowth of magnetic
energy density Aduring the gravitational collanse. This
work has prompted Ray and Banfrji (1980) for investioating
such a growth rate in ferrofluiAf. Accordinaly a result
like variation of the magnetic permeability accelerates
the growth of magnetic energy Adensity is establishe”, Here
ferrofluid means an infinitely conducting relativistic
charged fluid with tHe variable magnetic permeability.
Thus Lichnerowicz's formalism dezls with the constant
magnetic pemmeability whereas the ferrofluid ceals with

variable magnetic permeability.



The purpeose of this dissertation is to investigate
the geometrical and dynamical properties of the space-time
associated with ferrofluid, This target is accomplished
under the plausible geometrical ;estrictions like motions
and collineations and dynamical restrictions like K}lling
and harmonic physical vector fields. The corresponding

results are presented in Chapter II and Chapter III.

Section 2 includes the preliminary icdeas reqgarding
space~time congruences and corresnonding parameters. The
formulation of stress-energy tensor characterizing ferro-
flui” is presente” in 3ection 3. The enerqv conditions

regerding Tgn of ferrofluic® are stated,

Precursory Notions :

We mainly deal with four-dimensicnal space-time
Loe
manifold V4 with the[&or ntzian metric of signature

(= =, =, + ). The various symbols used are as follows :

*e

Covariant derivative,

-e

Partial derivative,

e

Covariant derivative of X with respect to

time~like vector,

Lan ]
o
(1]

Symmetrization bracket,

f L Antisymmetrization bracket,

Lie derivative along the vector X .

) ap



2. Space-Time Congruences And Corresponding

Parameters

(A congruence of #fe curvesis ahuncountahle family
of non-intersecting space~filling curves, one through each
point of space or a given manifold, The first compre;hensive
treatment of Congruences in Riemannian gecmetrv is cdue to
Eisenhart (1926f: These congruences can be separate” in
to three categories as (a) Time-like congruence, (b) Space-
like congruence and (¢) MNull-tike congruence, according
to the nature of the tangent vector fields =t every noint
of the curve of these congruences. Thus a congruence of
space-time curves is called as time-like, space-~like and
null 4ce- if tangents Arawn at every point of these curves
are time-like, space~like and null-like respectively. The
space-time geometry can well be described with the help of
these congruences and their associated sealars. fayameless

Pryovmekns
The various types of sealars corresmonding to Aifferent

tvpes of congruences that are available in the literature

may be summarised as follows :

A) Time-Like Congruence : (Greenberq, 1970 a)

The time-like congruence is characterised by its
tangent vector 3, here taken as the unit flow vector. The

scalar assoclated with this time-like flow vector u are
f%wm oS o



rg

defined and discussed by Greenberg (1970a). According to

him the exp~nsion scalar €, the acceleration vector U

Sealay
shear tenser 6;b an”? the rotaticn tensor wg, are Aefiner

al

through the following expressions :

Expansion : @ = “Eb . eee (2.1)

b

Acceleration : Uy = u,., u , ees (2.2)

. 1
Shear tensor : é;b = U(a;b) = Ya%) " 3 8 hap, «..(2.3)

Rotation tensor : wy, = u[a:b] - u[au 1. vee (2.4)

Here the 3-projecticn operator hg, is defined as

ha‘b = gab - uaub . veus (2-‘;)

This immediately gives the nroverties

ab
hapu = 0, h3 =3 and hyhe = hJ . eee (2.6)

It fellows from the equation (2,2)
6aua = O, o e ua’-‘a = lo XX (2.7)

[

This implies that the acceleration vector is normal to the

time=like flow vector ard hence it is space-like. Also

from the eaquations (2.3) and (2.4) we have

b b

6ap U = 0= w,u , (U-orthogonality) ... (2.8)

6': = O = w: . (trace-free) eos (2.9)



6ab éab = 2 6'2 . Wap wab = 2w2) (definead eee{2.10)
quantities).

Thus by utilising the expressions (2.1) to (2.4) the

gracdient of the flow vector u can be written in the form
u

. 1l
asb = 6;b + Wy, t Uguy + 3 & hyy, . eee (2.11)

These parameters defined above will Aescribe the behaviecur

of time-like congruence in the space~time,

B} Space~Like Ccngruence : (Greerberq, 1970 b).

The parameters corresponding to spvace-like congruence

(_ELQ as introduced by Greenberg (1970b) are prasented

below :
- 1 a ab
Expansion Scalar : & = 5 (mig - Mapb B W ). ees (2.12)
Shear tenéor : =1 ppd (m + my ) -EP
* jab 2 ab c:d d: c ab’
ees (2.13)
Rotation tensor : R.. = 1 Pcpd (m ma. )
* ab 5 @ b c: d dsc’ e

‘'ere the 2-space projecticn operator P,y is define~? as
Pab ® 9ap ~ Yalp * MaMp | ees (2.15)

So also the time like flow vector U, the space-like vector



™ satisfy the conditions

a
uaua =1, m®m, = -1, m u, = 0. ees (2.16)

Also from (2.15) we qget

- b b Lape a
Pop = Ppar Pap? =0 =P, m, PPl = P, eee(2.17)

Further the space-tike congruence {fﬁ} has to satisfy

natural transport laws in the form
Lo b c,.b c,,b
ua’bm = M,pd - UMy, @ UTUT + mmy,, . mu”,

eee (2.18)

¢) Null-Like Congruence : (Pirani, 1964).

The optical scalars assoclated with the null-like
congruence (:5:5 are given by Pirani (1964). Their defining

expressions are listed below :

*

1
Expansion scalar ¢ € = 5 n?a ¢ eees (2.19)

1/2

* 1 arb *2
Shear scalar : ! 6 I = [ 3 N(asp) M tb - "¢ ] .
eee (2.20)
Twist Scalar : w* = ( l n na;b )1/2
i 2 ' asb] ‘

L} (2.21)

where the null vector N@ satisfies the nulity condition

a
: L ]
n na 0

GARR. BALASAHEB KHARDTY®" ! LAR

QEIVAJ] UNIVERSITY Kiatensm



D) Congruences In-General : (Lukacevic, 1982).

According to his process, u® is a field of 4-velo-
cities and '3 2 pe any other field, which is in the sense ;’
that it may be tangent to a time-like, a space-like or

a null congruence of lines. So that

b
gy v =1, g, §3YP =, €2 cee (2.22)

Accordingly he has introduced the relative kinematical
cuantities known as the shear Xab‘ rotaticn \‘Pab and the

gcalar exponsicon/in terms of the following Aefined exnressions:

’5 -‘gfc - ucud‘fgd’c . ees (2.23)
l
Xap = §£@a,b+@b;a*“a ’%c Up, o +

+

ub—‘qﬂc Yasc ""rﬁc:aubuc + uauc _(Sjc::b " -

1
- - c L yeud -
3 (f(‘x je - WY ‘de:c J{gap = UgWyl,

ves (2.24)

1
\}}aba 5[—@37}3“ “qu:a"'ub‘zgc Ya,e -

- ua’%c Yo t uauc—qj csb = ubuc‘%c:a ].

eos (2,25)



The new space operator defined here is given by

1 2
lap = Jab - ot (1€ % Tp + AV gy
+ Aub‘ztsa -t f2 uaub )' L) (2.26)

It follows from the ecuations (2.23) to (2,25)

1
—%a:ba Xab * Yab - Sghab'* Yo —1‘jc Yase
- uauc-qjc,b . eee (2.27)

Observations :

a) If we take £2 = + 1, then (2.22) implies that =,
as time-like unit vector. Hence in this case parameters

given by (2.23) to (2.25) coingide with the parameters (2.1),
(2.3) and (2.4).

b) If we take £2 = -1 then (2.23) directs that %, is
snace~like unit vector then the parameters given by (2.23)
to (2.25) will match with parameters (2.12) to (2.14) of

the svace-like congruence { ?13 .

¢) The projection operator (2.26) becomes 3I~space—cperiter
M-space operator when f2 =1,



E) Special Type Of Congruence Due To Stachel (1980):

His process of defining new types of parameters
includes the following aspects. Let v® be an arbitrary
contravariant and Vg be the vector parallel to covariant

components vy. His choice gives

Vave = 1, v@ = € ud, vy = 1 u,, with uduy = 1,

R s any Comslant . ces (2.28)

He further defines the terms

Cp = viVy , B =83 -cp, oo (2.29)
ng ng Bg * es e (2.30)

Accordingly he has introduced new types of varameters with

respect to V as follows :

1
Shear (Including expansion}: Hoy = 3 ng (Vc:d + Vﬁ:c)‘
LI 2% 4 (2Q31)
. Jl -] .1. Cd 3 -
Rotati(}n =4 ab = 2 Bab (Jc:d Vd;c} . s (2032)

Remark : For ? = 1 these parameters coincide with the

parameters for time-like unit congruence.
3. Stress-Enerqgy Tensor For Ferrofluid

In 1967, Lichnerowicz has formulated a Relativistic
magnetohydrodynamical Scheme consisting of a space-time

filled with infinitely conducting charged fluid havina
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infinite electrical conductivity and constant magnetic
permeability (V*). It is characterised by the Stress-

enerqgy tensor

I

Top = (€ + P + U*Hz)uaub - (P + D*Hz)qab -

2

- w* H_Hy . eer (3.1)

According to the new Scheme introduced by Cissoko (19278)

and studied by Ray and ﬁanarji (1390), the constraint on
constant magnetic permeability is relaxed and it is allowed
to vgry. Thus this new scheme composed of infinitely
conducting charged fluid with variable magnetic permeability.
This type of fluid is designated as ferrofluid and “escribed

by the stress-energy tensor.
T,y = ( + P + 4H?) uuy, - (P + i qu) -
ab e a% > 9ab

hd n ]’!aHb Y L (3.2)

(1 is a variable magnetic permeability).
The terms involved in (3.2) have the meanings

i) ¥ is variable magnetic permeability,
ii) ? is the matter energy density,
iii) ; is the isotropic pressure,
iv) the time-like vector u and space-like vector H

are such that

uaua = l' HaHa = e Hz‘ uaHa = Oo * e (3.3)
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éL\Eiqen values of Tgq

Wwe have from (3.2) and (3.3)

1 ...2
T, uuP = o+ &nn? (3.5)
ab ? > Py s s e .
a 1 2
1l
Tap H® = (P - = pa? ) K2, cee (3.7)

It follows from these relations that u is time-like eigen

vector of T, with time-like eigen value given by

el = 9 + % u!“‘ F) L (3.8)

and H 1is the space-like eigen vector of Ty, with space-

like eigen value given by

e, = (P - % wi?) u2, ee. (3.9)
So also the trace of the (3.2) is given by
T = Tab gab = ? - 32). e (3010)

Energy~Conditions :

The well-known Energy-conditions Hawking and Ellis

(1968) stre=s—-enerqgy tensor corresnonding to ferrofluina
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are given by 1) the weak energy condition is—stated threugh-

b
T®® uu, 2> o,

1 2
mm=D + =

i1) the strong energy condition is given by the inecuality-

===> o+ 3P + w? > o.



