
CHAPTER - I

FUNDAMENTAL NOTIONS (GEOMETRICAL AND 
JYmMICAL)

1. Historical Contemplation,

2. Space-time Congruences and Corresponding 
Parameters,

3. The Stress-Energy Tensor for Ferrofluid and 
Energy Conditions.



1. Historical Contemplation

According to a general article on physics of ferro- 
fluid by Mehta (1989), ferrofluid is defined as the magne
tically soft fluid. He has presented a systematic study 
of the properties of ferrofluid as a function of field 
and a physical variable like temperature. A classical 
theory of ferrofluid with its applications in physically 
interesting magnetic materials is examined by Neuringer 
and Rosenweig (1964). In 1978 Cissoko has investigated 
the general relativistic equations characterizing the 
ferrofluid. Following the magnetohydrodynamical system 
as formulated by Lichnerowlcz (1967), Yodzis (1971) and 
Mason (1976) have discussed the rate of orowth of magnetic 
energy density during the gravitational collapse. This 
work has prompted Ray and Banfcrji (1980) for investicrating 
such a growth rate in ferrofluid. Accordingly a result 
like variation of the magnetic permeability accelerates 
the growth of magnetic energy density is established. Here 
ferrofluid means an infinitely conducting relativistic 
charged fluid with t^e variable magnetic permeability.
Thus Lichnerowic21s formalism deals with the constant 
magnetic permeability whereas the ferrofluid deals with 
variable magnetic permeability.



2

The purpose of this dissertation is to investigate 

the geometrical and dynamical properties of the space-time 

associated with ferrofluid. This target is accomplished 

under the plausible geometrical restrictions like notions 

and collineations and dynamical restrictions like filling 

and harmonic physical vector fields. The corresponding 

results are presented in Chapter II and Chapter III.

Section 2 includes the preliminary ideas regarding 

space-time congruences and corresponding parameters. The 

formulation of stress-energy tensor characterizing ferro

fluid is presented in Section 3. The energy conditions 

regarding Tab of ferrofluid are stated.

Precursory Notions :

we mainly deal with four-dimensional space-time 

manifold V4 with thejfLorenfczian metric of signature 

( -. -. + ) . The various symbols used are as follows :

: Covariant derivative, 

s Partial derivative.

: Covariant derivative of X with respect to 

time-like vector,

: Symmetrization bracket.

: Anti symmetrization bracket.

: Lie derivative along the vector X .

X

( ) 
r i

£.
X
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2. Space-Time Congruences And Corresponding 

Parameters

A congruence of fetfe curves is uncountable family 

of non-intersecting space-filling curves, one through each 

point of space or a given manifold. The first comprehensive 

treatment of Congruences in Riemannian geometry is due to 

Eisenhart (1926)>>. These congruences can be separated in 

to three categories as (a) Time-like congruence, (b) Space

like congruence and (c) Mull-bike congruence, according 

to the nature of the tangent vector fields at every point 

of the curve of these congruences. Thus a congruence of 

space-time curves is called as time-like, space-like and 

null i-i-ke if tangents drawn at every point of these curves 

are time-like, space-tike and null-bike respectively. The 

space-time geometry can well be described with the help of 

these congruences and their associated sealars.

fta-yoMT'-eta-S
The various types of scalars corresoonding to different 

tvpes of congruences that are available in the literature 

may be stimmarised as follows :

A) Time-Like Congruence ; (Greenberg, 1970 a)

The time-like congruence is characterised by its 

tangent vector u, here taken as the unit flow vector. The

scalar associated with this time-like flow vector u are
fcifiATfi eiz'^
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defined and discussed by Greenberg (1970a). According to 

him the expansion scalar ©, the acceleration vector u_# theaSceiXans ,shear tensor 6ab an-5 the rotation tensor wab are defined 

through the following expressions :

Expansion : % * u°b , ... (2.1)

Acceleration s ua * ua;b u # ... (2.2)

- • 1Shear tensor : 6ab = U(a.b) - %%) “ 3 6 hab* ...(2.3)

Rotation tensor ; wQb ** u[a.b] “ ^[aub] • • •• (2.4)

Here the 3-projection operator hgb is defined as

bab “ 9ab ~ uaub » ...(2.5)

This immediately gives the properties

habub • 0, h® * 3 and h^h^ * ha . ... (2.6)

It follows from the equation (2.2)

uaua * 0, . . u®ufl * 1. ... (2.7)

This implies that the acceleration vector is normal to the 

time-like flow vector and hence it is space-like. Also 

from the eouations (2.3) and (2.4) we have

s ..b_____ ..bo:ab u * 0 * wabu * (u “orthogonality) ... (2.8)

a 0 » w! # (trace-free) * © • (2.9)
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Rotation tensor ^ (^,a - .
... (2.14)

Here the 2-space projection operator Pab is define^ as

pab * %b " uaub + mamb . ••• <2.15)

So also the time li!<e flow vector TS, the space-like vector

£ab 6ah - 2 6"2 , wab wab * 2w2 (defined ...(2.10)
quantities) .

Thus by utilising the expressions (2.1) to (2.4) the 
gradient of the flow vector u can be written in the form

- . 1uajb * ^ab + wab + uaub + j ® hab • ... (2.11)

These parameters defined above will describe the behaviour 
of time-like congruence in the space-time.

3) Space-Like Congruence : (Greenberg, 1970 b) .
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rn satisfy the conditions

g
uau ■ 1, mama ** -1# m u_ * 0,S a a .. (2.16)

Also from (2.15) we get

pab Pba' pabu a pab *b> p?pb
b * ...(2.17)

Further the space-tike congruence £ m3 has to satisfy 

natural transport laws in the form

u , m a?b ma,bu • ualinb;c
.c„b c„buu~ 4 nan^.c m u

(2.18)

C) Null-Like Congruence ; (Pirani, 1964)

The optical scalars associated with the null-like 

congruence are given by Pirani (1964) . Their defining

expressions are listed below :

* 1Expansion scalar : € = - na ,
2 ?e

... (2.19)

Shear scalar : j 6 j “ [ ~ ^(a?b) ^a?b “ ©*2 J •
... (2.20)

Twist Scalar : w * ( - "Hr 7la?° ) 1/2

.. (2.21)

where the null vector T|a satisfies the nulity condition

n n„ » 0. a
.ni fUMHtfT*’’ '
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The new space operator defined here is given by

^•ab = gab

+ ^“b^a + f2 uaub >•

with A * uc c .

It follows from the equations (2.23) to (2.25)

a,b " xab + Yab " | 3 hab + “b "V ua,e "

... (2.26)

uau ~^c?b • ... (2.27)

Observations :

a) If we take f^ * + 1, then (2.22) implies that ~ztja 

as time-like unit vector. Hence in this case parameters 

given by (2.23) to (2.25) coincide with the parameters (2.1). 

(2.3) and (2.4).

b) If we take ■ -1 then (2.2^) directs that"^a is 

snare-like unit vector then the parameters given by (2.23) 

to (2.25) will match with parameters (2.12) to (2.14) of 
the space-like congruence *[ m J .

c) The projection operator (2.26) becomes -fr-space-oper-*tor- 
wbaft «t l and~J?-space operator when f^ * - 1.
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E) Special Type Of Congruence Due To Stachel (1980):

His process of defining new types of parameters 
includes the following aspects. Let va be an arbitrary 

contravariant and va be the vector parallel to covariant 
components va. His choice gives

Vava =1, va » ^ ua, Va 

^ is Gmsteyrf.

with uautt = I,

... (2.28)
He further defines the terms

Cb “ ' Bb * 6b “ Cb ' <2.29)

BSb - ES Bb • ••• (2-3")

Accordingly he has introduced new types of parameters with 
respect to V as follows :

Shear (Including expansion): H ^ 1 di Bab <vc,d - VW-

Rotation SL ab 1 »cd2 “ab (Vc,*a - Vj ) d?c'

(2.31)

(2.32)

Remark s For ^ = 1 these parameters coincide with the 
parameters for time-like unit congruence.

3. Stress-Energy Tensor For Ferrofluid

In 1967, Lichnerowicz has formulated a Relativistic 
magnetohydrodynamical Scheme consisting of a space-time 
filled with infinitely conducting charged fluid havinn
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infinite electrical conductivity and constant magnetic
•Jrpermeability (V ). It is characterised by the Stress- 

energy tensor

Tab * ( ? + p + ''*HJ>“aub - (P + ^ '1*H3)<Jab -

- It* HaHb . ... (3.1)

According to the new Scheme introduced by Cissoko (1978) 

and studied bv Ray and Banarji (19 9o), the constraint on 

constant magnetic permeability is relaxed and it is allowed 

to vgry. Thus this new scheme composed of infinitely 

conducting charged fluid with variable magnetic permeability. 

This type of fluid is designated as ferrofluid and described 

by the stress-energy tensor.

Tab - < ^ + P +MH2) uaub - (P + | m2) gQb -

- V HaHb . ... (3.2)

(V is a variable magnetic permeability).

The terms involved in (3.2) have the meanings

V is variable magnetic permeability,

o is the matter energy density,
/*
P is the isotropic pressure, 

the time-like vector u and space-like vector H 

are such that

u% • x' naHa ■ ” n2' uaHa * 0. ... (3.3)

i)

ii)

iii)

iv)
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Energy-Conditions :

The well-known Energy-conditions Hawking and Ellis 

(1968) stress-energy tensor corresoonding to ferrofluid
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are given by i) the weak energy condition [is stated through-

Tab uaub * °*

1 2**■> ^ v H * o.

ii) the strong energy condition.'is given by-the inequality 

Tab uaub - | T O,

==*> ^ ^ 3P + UH2 £ 0.


