Q
i
T
[ §gs)
=)
1tz
i
]
-

RaY ANALYSIS OF GRaVITATIQONAL FIELDS




CHAPTER_=_I

$¢1. INTRODUGTION |
~ For investigating radiation fields in empty space,

an incisive technigue has been inauglurated in 1962 by
Newman and Penrose. The technique 15 often referred as the
ray analysis of gravitational fields. At each point of thé
space time permeated by the gravitational field, four rays
are introduced. Two of them are real and two of them are
complex. The most distinguishing feature is that they oan
be chosen as mutually orthogonal,thus providing a basis

for the four dimensional complex vectcr sSpace,

THE COMPLEXITY OF BINSTEIN' S FIELD EQUATIONS FOR
GRAVITATION s

There are more than three score theories of

gravitation but the most successful theory of Gravitation
is the one proposed by Einstein in 1916, |

Einstein's field equations

, - - &G
"Ras =3 R3aw = -€z,g Tab (1,1)

are ten nonlinear simultaneous partial differential
eguations in the variables x{ ;% x? x%

Accordingly they provide a stumbling block for
analytic treatment of (1.1) for obtaining exasct solutions.
Besides this mathematical difficulty the following hurdles
in experimental validations and understanding exist s
1) the minuteness of the magnitude of physical quantities
amenable for experimental detection in the laboratory.

. 2) the invariance of field equations under arbitrary

continuous coordinate transformations.
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3) the nonintegrability of tensors over finite regions

of spacetime,

In Sec. 2 we briefly refer..:. to the several‘
formalism invougue among research workers in Relativity,
An exposition of the Newman Penpose formalism is given in
four sections. S8ec. 3 contains Algebraic relations,
Completeness relation, Special Ray Scalars, Differential
Relation, Transparency of Newman formalism, Five Weyl
Scalars, Ricci Scalars. The ray analysis of Einstein
field equations end Riccl Identities is deseribed in
Sec. 4. ( The appendin contains a comparision of the
formalism used in this dissertation with classical method)
Last section contains the enumeration of the eleven
Bianchi Identities in the NP formalism. This chapter does
not contain original results and it is primarily an
exposition of the mathematical preliminaries for the

dissertation.

2. EORMALISMS IN RELATIVITY ;i @

B SENRR
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To solve the Einstein's field equations of
Gravitation in the presence of matter or in the absence of
matter many‘formalisms have been developed. The most
prominent one acclaimed as "amazingly useful® (FLAHARTY

1964) formalism is the one proposed by Newman % Penrose
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(1962) . The discovery of the Kerr Newman black hole metric
is the proof of the efficiency of this ray formalism.
Newman Un_ti (1962) Ludwig (1980.a, b) Newman and Tod
(1980) have studied the asymptotic flatness of solutions
using this formalism.With the help of this formalism

Collinson and Morri~s(1972); Griffiths(1976 a, b) have
studied Newtrino radiation fields.

Other formalisms after (1962) are mentioned below -

AiThor of Tormaiisn | Yesr " Mature ot tetrams T Tt
TeTeTeTeTe e s T Te e e "o s T e e " .-.~.é.-‘5» Rl Ll Rl Tl Bl Rl
Synge 1972 One null and three space

. like vector fields
Gorooh, Held and | 1073 " Two nall ana two unit
Penrose spacelike vector fields
Hell 1977 Two null and two spacellike

vector fields
-o4o-«“--.-¢---.-o°.-o-.-----.-;-.f.—gé--.~.~;~.~.';-.-o~b
In 1980, two more formalisms havé beer introduced
(1) Pemrose Conformal formalism, (2) Edgar Rotational
Invariant Formalism.
NP ° formalism has the following advantages t-
a) It is sultable for computational work.
b) It is adaptable to other formalisms (Vide Se), -
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¢) It makes the Einstein's field equations -

transparent.

d) It thoroughly utilizes the Bianchi identities.

I

3. EXPOSITION s

'3 a) Algebraic Relation @

Newman and Penrose (1962) invented a set of

four raya _ '
Q ~a .G =12,3 4
____{( m m r) s} 1=1%,9, B 0‘2»

a a =a
where 1 , n are two real rays and m , m (an overhead

bar denotes complex conjugate ) are complex rays which

satisfy the following conditlons.

The Four Null Rays
Pla = Mg = ing= ™ Mg =0,

The Orthonormal Relations @
(o) L“*V\ = ~m“ M”‘ =\. )
Taws 7 out of the ten inner products of the four

o o it <

\(t23h)

rays, as many as eight vanishr . The appearance of
w3

zeros 1ls responsible for the computational advantage of
A

this formalism over the other.:

3.b) Completeness Relation ¢

The Spaéetime metric gives the relationship
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‘between this tetrad andﬁggometry of space-time;v%zv

3% = (aﬂb '&'ﬁqlb“mqmb“ﬁa"nb‘ (1‘.14)

following specifie 1dentification :
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¢) Special Ray Sealars 3

Newman and Penrose have atilisod the 12 Greek

symbols ‘(’[3)Y1€ s Ky A,y ), Qs ¢ T with the

: a-=b —q =k
+ (dagp W™= Mg MM )2

a_b —Q Wb
7 (laje N M —Mase ™ m},

a b Man®)
L . N — Mg.}p, M N
"i,( lajen S ’

b a b
L ( lqghﬁql — Mazl 4 )
g

a.b
(cqb‘ML/
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3 4 On the simplification of differential relations
in the ray formalism ¢

The fact that the covariant derivative of a ray (null
vector field) is expressible as an algebraic (linear) com-

bination of the basis rays, means that every differential
relation becomes an algebraic relation -
For example,

-\—vmﬁkk - ™, Mo~ Amo‘mh-\-n W\aﬂb
YAV Ny (<4 B Na™Mi 1 (<R Ng™
~(€+EIN M, (1.6)
implies that the differential equations .
. — | . (1.7
are equivalent to the seven algebraic relations
V=0, 6 A=0, M=0 TU=0,V+V=0,

" — (1.8)
x—yp:-.o €Y e =0, | |

3 ¢ Transition from rays to timelike vectors
and spacelike vectors

The accessibility of this ray formalism to non-
null vector filelds is easy, sinee any vector can be
expressed as the unigye linear combination of the basis

ray fields {( {% ruﬂ,n\ n? ). We write the unit time
like unit vector i as s

W= AG ram® AN L
together with- . ' .
Ul U, =\ : 7 (1410)
q. ———

implies by virtue of orthonormal relations (I3)

9 (AC=BB)Y = uty, =1 (1.11)

ces 7/~
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This &s ' only one condition on A, C, B, Therefore, there

exist infinitely many cholces for 4, C, B, The most
famous choice 1s

A=C :@‘s’t’l’ n=0, (1412)
Aceordingly, '

W= @y Can?)

-} — ; 1.
(o W= (27Y2 (M 2), for h=C=0, Bo) (113)
expresses the popular connection between timelike and

null vectorse.

The unit spacelike vector fleld gff can- be

expressed as
diner It = (a3 V1 (MY,
~1n q
ov Wz (Y (12,
-, = — (T.14)
o hq — -1 (2) /2 (,mé;\“mq> ,
with hihg = —|

3 £ The five ray eomponents of Weyl Tensor

>

Cgucd 1S the Weyl tensor which 1S the fres
gravitational part of the curvature tensor qug&-

Ranca = Canca ™5 (Bac Ria “daa Ruct3igRad

“gbé qu) - %‘ (_Sa,d 3b<' Jac Shd\) a

whare

— S
Rcu; = K G C is the Ricci tensory and

_ (QC\q — Q is the scalar curvature.

In general, Rab has ten independent components and
Rabed  hay  twenty independent components. Hence Chyid

eee 8/=
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has ten independent components, The five complex ray
components of (4,4 are always denoted by )'gl(q:thJ £
in this Newman-Penrose formallsm,

. L o < .
Wi Yo= ~Cawca L"lmbL m?

| At §€
w2z Y = - Capau UNTLM .16
T , —=a Y Sand - e
W3 Y = ~Caked M ”"’Lm
0 b S
e Yy mbnd
ws Y,= —Cawca M NN,

wa YT - Caltd

3 g The ray components of Ricel Tensor ¢

Ricel tensor ﬁa.b ¢an be expressed in ternms of

physical components or optical projections which are

e —L . 19mb
R 2 4’&1 = “.-.‘; Reow L'M
— , RS
Ry %, = % Rap™m

e - O v
R 4 4‘:2. - “fi; ?‘7\%“‘“" (1.17)

R Y 4)2,(. = 4 Raqu™M m

— V.
Q 0

g P21 = —L Rgpn'™M
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& 4. RAY VERSION OF EINSTEIN FIELD

EQUATION AND RICCI IDENTITIES (NP EQUATIONS) :

The Newman Penrose equations are obtained from

the Ricei identities. 4 /
ZQ’bC | Z C,\}Cb = Z qubﬁ, (1.18)

together with B Binstein's field equations.

4 a. Equations for the free gravitational field (Y%)

a1 Yo = Do -3 - (3c-T)- s«(w)mcr R +Z+38),
C2 ¥ = DB -§€ —« (X +rc,)1-x«(v»¢ﬂ) —B (- €)-

"C(ﬂ ,(3 (1.19)

Gs\f’sweﬂf Dok — k(/?»+2‘)+‘l(€+e)+o<<y~ﬂ)

+Y(E-T),

64 Wy =T -AN AMLA) - A=) T

—Y(T-TL-3<—F).

4 b, Bquations characterizing the matter field ( ?"’ab )

| M1 Pro SDE-TK —§ - 7 = § LE 4TV AR T HKEAXHET)

M2 Py =D -FE - <(S+E-26) B Frfe -H(E+OF

~

A KA LKY,

MS?‘},O‘*@A “EN R FM T 2qi (=)= A(E-RO)H

£ 1KY,
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x4 oz.“ﬁf"a"’*“" RA— T(‘L’-‘*er ~ o (¥-37 )+
KD,
s ‘pn.‘-"-é“f*éﬁdit Yo+ Y-V (T-<-B) +
TR (y-v-a)-2x,
6 For = 8V —AH - AR —M(¥+Y) -V (T-T-308)+
T 4w,

(1.20)

4 c. Equations for the coupling of matter and

free gravitation ( St'q‘a and Yaq )

Me 1 Y2 T2A =DM- U -Ju- o nn-u&((-@)f
+TU(L-RY Y KW,
TP, =DT-ak—§ (T ) - (THTO ~
—Te-T) 4 K (Y13Y),
Vo A= DY-AE - ( Ty T~ A{THTD)-
] Y (€ XE) tErY) - TR+ RY,
‘1\}‘6_3_“%’3-\—431\ = DY - AT =ALTHT) =M T +TOT
| tu (€ +23¢) —T{(Y-D),
3P0 = T g8 4R (A e BB
| TTE-T) 4 K (H-00),
met A= A g X + M- oD + << + -
| ~2<p-v(5- <)y e (u-A),
7 Vo t, = Tu-sr -~ ~TY+TL(M-T) F

A M (x4B) 2 (K=38)
I&'rs ‘r TLN = 5T -pe ~RA —a N +1<[3 =T} +
4 K (VyY IR

&

lE

&

&
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wh = 2 o , =3 )
Y an°
a = _ =—Q 'b
- 2 =m o
3x2 ) 3 2>

4 d. The Commlitative Relations ¢

The explicit equations obtained by applying the
conmmutators of successive intrinsie derivatives (on any
scalar ¢ ) can be g1ver as

R 1 (AD-DAYP = L{7+9)D + (E+E)a ~(T+1s —

~(T+®)§19,
crg (3D-DB)S =[(I+R-T)ID t KA — (Tre-e)3-
~81d. (1,ézh
CR 3 (68 -28)p = -5 D A (T-X-BIA -
| +as]le |
R4 (88-58)¢ = [(T-0D +(§-9)8 +&-Bl-
- (x-p)Ysle¢

If in these - equations, we substitute )L for the

arbitrary function 4:‘ and use

D= 20 = A= @, px=a
we get
T (DAl = FEER 4 (T Imt (Fro)s
—(e+EYn ]
I Lom® §79 = [(R-2-p) (8 +(?+6—6W“+¢““ (1.25)
-Kkn?],

1z (30— amA) = 504 (M-Y 7)Y 330 +(ex Al
v LR-3 ] = L3 o (B m o (K- )0
+(3-Tin" 1,

ooo. 12/"'
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Theat eguokiems, wWith Baeiy complex Conjugakes ot veferved
o the Smekric equakions' amd Comghitule e fivst st ok Fhe
Spin Cbe@’;izn&, &ig;i\a}rmx (Nowmon amd Tocl)\gu)

§5. RAY FORMALISM FOR THE INTERACTION OF THE FREE

GRAVITATIONAL FIELD WITH BOURCES :

F.rom the four energy balance equations.
Tdb,b =0 " (L.24)
% ~
we cannot get the idea of the interaction of the free
gravitational field characterized by Cqbu with the sourees,
We use twenty four Bianchi identities to get thet

information.

Interaction Equations (Bianchi identities) :

The enuneration (STEWART 1984) follows the

computer generated version developed in Cambridge University, |

BT 1 DY~ $¥ TP t3% = (M- 4<% +2(25+6), -

B~ (T - 25 =28~ 2 (R4 E)9 ~ 2oy +
+2.K (P‘\ T-\:{ ¢OL«

\

BI 2 A, = 3% + D&y~ 8¢ = (4Y-#)T —2 (TP
BN A P v 2 (T-p) Dy tZ Py

+(z§-’§‘2—6‘“2€\)¢53_ *2‘&_"‘@;1} \ i
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BI 3 DY=5% t8P)n 8¢, T 2DA =~AY,s +
4+ 2 (T==<1¥ + 38, -2WK¥, +(z‘(~r2.?~ﬁ) 60
- 2,(9(-\- f) CPO‘ *‘"Q.Z L;"Q + 2.2 4)!\ Y & ¢‘O’L.,
1 4 AYi- 8% O+ Ty ~15A = 9% 4o -

(@< + :(:“zz’g) (}502. T2T4, 28 ¢,

BLS D¥a—%'%, -Ddy +8¢, —235A=- 22 Y, +
BTy + 2 (K- €) Yy — K'Yy T2 M P =2 E, T

TZPp AT -2<) 60 ~ 2(R- ¢, vK by,

BI 6 AV, —8Ya+Dhy, ~5¢, + 26N =20y, —

LAY +2(A-TI Yy + Yy -2 M -5 gt

+2m 4 + 2 (A7) d,, + (T-26-28)¢,,
12 2

m‘g\h‘ - T 4 Adyo— SFp = —32¥, F2(x+Hth+
FR-AENY, A2 VG, 2Ry — (Y -LT A )
—2(T-=) ¢, ¥ & 421,
BI 8 OYy - 3Y4 —£4,, +T 2 = 3V - 20rn2m+
Gp =TV, —29 ¢, — D P +2Ab2 F2IrRYT
Y (T ~2p -2=) $52., '

avs ]«f”/-
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BL. 9 D<#>“—~&¢,G +od — 8, +IDA =
(274 2¥ - M-, + (T-2x-T) ¢, +
FM-2<-27) 90+ 2(RYQN By, + F b ™
F e, K ¢, —%dy, ]

BLODP =8¢, + & ¢ ~28¢,, t38A =

(2Y - M - 2.2 q’oi + 3 ‘foo - ¢l0 +2'(TT-Z‘,) ‘#ﬂ-}.

(M4 2p -2~T) gy + (28%5€ = 2€)¢)p +
("Pz,*’/sq’z_z ,

311D, 8% YA —8%, +3an = vd,+
;Cf’m - 2 M 'H‘z) C}Ju - 4301_, '";}: 452_6 -+

+t (2T ~T 4 B ¢+ (2B~ T42T) ¢,y F
+(<~‘s7§~‘2é—z€)4‘;ﬂ_,

1
¥ s » ¢ e & @

«f 4 /S"‘."
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APPENDIX

B e I

. THE NP METHOD COMPARED WITH THE CLASSICAL METHOR ¢

Campbell and Wain Wright (1977) find that NP
method saves 60% of the computer time needed by the

classical method in evaluating tensor quantities.

The relative simplicity of the NP method can be
given as |
1) Classical method has 10 components of metric tensor
while NP method has 6 independent components of the tetrad
(16 éomponents can be reduced using 10 orthonormal
conditions). A
2) Classical method gives 40 christoffel symbols while NP
method gives 12 complex spin coefficients.
3) Classical method has 20 components of curvature tensor
while NP method has 12 tetrad components of the various
curvature tensors (5 components of Weyl tensor, 6 compo-
nents of Ricecl tensor, lcmomponent of Rieci scalar).
4) Classical method gives 24 differential Bianchi
identities while NP method gives 11 complex Bianchi
identities.

ees 16/=-



