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INTRODUCTTI ON

A function f analytic in the whole of the complex plane
€ is called an entire function. Liouville proved that a
bounded entire function must be a constant., Consequently

if M(r,f) = nl"!m‘( 1f(z)! then M(r,f)—>oas r->o.
zZl€r

To study the growth of entire functions we compare M{r,f)

with e"t where t >0,

An entire function f(z) is said to be a function of
finite order if there exists a onositive constant t such

that the inecuality

Mir,f) < ert
is valid for sufficiently large values of r.

The greatest lower bound of such numbers t is called
the order of f and is denoted by €(f) or simoly by § . It
can be easily be verified that

§(f) = lim sup tog log M(r,f)

r— log r

A function which is analytic in ¢ except possibly for
poles is called a meromorphic function. So obviously =svery
entire function is meromorphic function (as it does not have
any noles), In this dissertation we shall mostly be i-terested

with meromorphic functions. A fundamential role in the Nevan-



linna's theory of meromorphic functions is ptayed by the
thaorem known as "Poisson Jensen formula™, We shall briefly

develop this theory which we shall require in our dissertatiom.

Theorem 1.1 (Poisson Jensen)s If f(z) is meromorphic in

1zl &€ R (0¢R<cw) and a, (M =1,2,...,M) are the zeros and
by (V=1,2,eeey,N) are the poles of f(z) in 1z14«R and if

7z = rel® (0cer«R) and if f(z) £ 0, then

n
> 22_2

log 11(z2)1 = & § 1og 1f(Ref?)1 g
0 RZ -~ 2Rr cos(6-¢)+r2
M N ,
4 F tog 1 Blmmd s gy g Blmw) o
=1 RP-F,z = R=-b,, 2 |

The case when 7z=0 1is called Jensen's formula., .e

define
log+x = log x if xz1
= 0 if Ogxet
then since log x = log+x~log+i— for all x>0, it follows
that
27T . am i¢
= § tos 17RO 1g0 = g (09T if(Re P) 14
0 0
- L jrv!on+l?(ﬁei¢)ld¢.
= )
0
Let law | = u s M=T132,000,N

then
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M ,

£ doo 1 1= f 105 Ran(e)

m=1 3 o t

where n(t) is the number of zeros of f(z) in lz1£ %,

Integrating by parts,we get

¥ R
= jog K. § n(t) 4 (1.2)
M= T o

Ne denote the R.H.3. of (1.2) by N(R,0) and also by N(R,%).

M
!

V=1 ? 5 t

= N(R,f) = N(R,0 ) where n(t,m ) denotes

the number of poles of f(z) in Izl4&t.

Set
2w N .
m{,f) = Qﬁ j tog"ff(ae‘¢)|d¢
o

then (1.1) with 2=0 gives
log 1F(0) 1 = m(<,F) - m(3,1) + N(R,f) - N(R,L)
.F
or

m(R,f) + N(R,f) = m(R,1) + N(R,JF) + loglf(0)l. (1.3)

He set
m(R,f) + N(R,f) = T(3,f), and (1.3) becomes

T(R,f) = T(R,%> + loglf(0) 1. (e8]

The term T(R,f), is called the Nevanlinna characteristic

functicn, plays a cardinal role in the whole theory of



A

meromorphic functions.

The equation (1.4) is a particular case of a more general

theorem, known as Nevanlinnas first fundamental theorem.

Theorem 1,2 If a is any complex number then

T(r,;l ) = T(r,f) = loglf(0)=-al + € (a,r)
-2
where

| € (a,r)l & logTlal + log 2 .

The above theorem gives directly some of the e ementary

following properties of T(r,f)

(i) If k>0 1is a constant then
T(rykf) = T(r,f)+0(1)

(ii) T(r,fg) & T(r,f)+T(r,q)

(1ii) T(ryf+g) & T(r,f)+T(r,q)+0(1)

(fv)  T(r, 2050 1 £)40(1) where 1221 £ o.
cf+d cd

For an entire function fy, T(r,f) has many properties
similar to logM(r,f). For instance, like logw(r,f), T(r,f)
is an increasing function of r and a convax function of log 1.
Hence it is natural to define the order of a meromorphic
function f(z) by

$ = lim sup log T(r,f).
r->om fog r




For an entire function,it can be proved that

¢ - lim sup 198 logM(r, ) lim sup Lo9T(r,f)
r-» log r r-s 0 tog r

This follows from the fact that if f{(z) is analytic in

Izl £ R, then for Ogr¢R

R+
T(r,f)éio;+m(r,f)$§-§ T(R,f). (1.5>

For functicons of given order, a better measure of growth is
obtained by the term type of an entire {or meromorphic)
function.

If f(z) is an entire function of finite order §(>0)
then the type T of f is defined by

T = tim sup logM(r,f) . (1.6
r- o re

T i3 saic to be minimal type, maximal type or mesan type
according as v =0, T =m or 0T« o respectively.

For a meromorphic function of finite order (> 0) the
type & of f is defined by

& = lim supI_(..‘;Téf_)__ s (1.7)

r— @

Thus for entire func-ions type can be defined by (1.5) and

as well as by (1.7) and it follows on using (1.5) that

T

i1

® if and only if &

i
8

T 0 if and only if g =0

i



02T« w if and only if 0<KLE < ™.,

et us emphasize here that the third case does not imply

that T =6, see for instance [ 4 ,19].

The other important theorem of Nevanlinna theory viz.

-

the second fundamental theorem of Nevanlinna states:

Theorem{-3: Let f(z) be a nonconstant meromorphic function

in lzl¢r. Let aq,...,a where o> 2 be distinct finite

q’
complex numbers, §> O and suppose that la, -a, > § for

1€Mecv g q then

a
m(ryoo) + 5 m(rya, )s 2T(r,f) = Ny (r) + 8(r,f) (1.8)
P

where
Ny(r) is positive and is given by

Ny (r) = N(r,—) + 2N(r,f) - N(r,f*)

and ' q '
~ f f +_24
s(r,f) = m(r, = ) + m(r’Eﬂf-ag + q log
1
+log 2 + 100 ———emene
If*(0)1

with modifications if f(0)=0 or o or f'(0)=0.

The term s{r,f) in general plays an unimportant role,
Infact if f is of finite order then s(r,f)=0(TF,f)) as r— o .
And if f is of infinite order then s(r,f)=0(T(r,f)) as r-> o
except possibly for a set of r of finite lineal measure.

Adding N(r,f)—rqz N(r, !
e =2y

) on both the sides of (1.8)



and using the first fundamental theorem of Nevanlinna it is

easy to see that (1.8) yields

J=Np(r)+s(r,f)

a 1
-2)T < N
(g=2)T(r,f) & gi' (r, -

& . +s(r,f).
= ENry—— )
Thus we observs that in
T(r,f) = m{rya)+N(r,a)+0(1),

the term m(r,a) is small as compared to T(r,f) and consequently
N(r,a) comes near to T(r,f). This leads to defining the

deficiency relatdon for which we start with the foltowing,

Let n{t,a)=n(t,a,f) denote the number of roots of the
equation f(z)=a in Iz1¢ t, multiple roots being counted with
their multiplicity and let n(t,a) be the number of distinct
roots of f(z)=a in lzlgt.

We set

-
N(r,a) = N(r,a,f) = jN n(t,a)-n(o,r) dt + n(o,a)log r

o t
r —
N(rya) = Wirya,f) = § 20a)o000:a) g + F(0,a) tog r
0 t

As usual we set

N(y,0 ,f) = N(r,f),

1

T(r,o ,f)

1

T(r,f).
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Let
Jla) = J(a,f) =1 - lim sup Eﬁi&il
r—» 00 T(r,f)
?
‘g\—\}'
@(a) = @a,f) = 1 - lim sup ~17s2)

r=»0 T(r,f)

Ala) = Ala,f) =1 - lim inf N(r,a)
r-» o T(r,f)

S(a) = @a,f) = tim inf N(r,a)-N(r,a) .
r—=w T(r,f)

The qguantity g(a) is called tne deficiency of tne vaiue a

and @(a) is called the index of multiplicity. Clearly for

any a€®, the estended complex plane, 0« d(a) <« 1. Infact
more is true t Nevanlinna proved that if f(z) is a meromorphic
function then the set of values a for which @(a) » 0 is

countable and

(a) ela)( < (a) < 2.
E:‘{;é a) + a‘} ‘%_d@ <

The guantity d(a) is called the deficiency of tae vilue a.
Finally tne term s(r,f) will denote any quantity satisfying
s{(r,f) = of(T(r,f)) as r=>mothrough all values of r if f is

of finite order and as r.» 0 pos«ibly ocutside a set of finite
linear measure if f is of infinite order.

The study of exceptional values oplays a fundamental role in
tneory of mercorphic function. If for a meromorphic function

f, é(a,f);> G, then a is cailed an exceptional value in the

sense of HNevartinna (e.veN.). If n(r,a)=n(r,a,f)=0(1) where



n(r,a) denotes the number of zeros of f-a then a s
called exceptional value Picard (e.v.P.),

We denote

-+

lim sup log™ n(r,a)

r—» 00 log r

by 3,(a) and call it the exponent of convergence of the
a-points of f(z)., It is well kncwn that 3$,(a)g 3 . Also if
the order of f is not an integer then &, (a)=% . And in the
general case 3,(3):5 except possibly for one or two values
of a depencing c¢n whether - f ie entire or meromorpnic,

This exceptional value is called exceptional value in the
sanse of torel (e.v.B.). Further a {s. called e.v.E. if

lim inf _“ILLLiL”.7O where @(r) 1is any oositive non-
r+o n(r,a)#f(r)
o

decreasing function such that dz @ e There are
Pt <o

relations involving these exceptional values. For it is known

see [12] that for an entire function e.v.P. = e.v.B. > e.v.E.
= e.v.Ns For a meromorphic function e.v.P. = e.v.B. = e.v.N..,
However in this case e.v.B. = e.v.N, is not true. Infact
Valiron [14] has shown by an example that if < fs e.v.B.

for a meromorphic function then & may not be an e.v.N.,

Let f(z) be an entire function and P be a curve starting
from z=0 and proceeding towards infini<y. If f(z)3 a (3 finite)
as z-»> ® along p we say that a is an asymptotic value

for f(z), and Y is called an asymptotic path.



-10-

For an entire function every e,v.P. is an asymptotic
valueyjand every e.v.B. is also an asymptotic value i1 case
if the function is of finite order. Nevanlinna put tie auestion
whether every e.,v.N. is also an asymptotic value., This was
disproved by Arakelion, a Russian mathematician, who cons-
tructed an entire function of finite ordar having infinity
of e,v,N which obviously cannot all be asymatotic values
because by Ahlfor's theorem, an entire function can have at
most 28 asymptotic values where ¢ s the order of f,
See Arakelian,"Joklady AKademy Nayuk, U.3.S8.R.,1966",
3eMeShah in 1952 proved that if f(z) is an 2ntire function
of finite order 3 having a Aas e.v.E., then the number of
asymptotic values of f(z) s pracisely § and each asymptotic
value is asNevanlinna conjectured that if < is e,v.N, for
an entire function or maromorphic function then &« must be
an asympyotic valus, 3ut this was proved to be false in
1941 by Madame Laurent Schwartz. She constructed 2 meromor-
phic functicn f(z) for which 5\(0)1 §{loo)>» 0, and thus O and
o™ are e.v.N., but they were not asymptotic values, See [ 6 ].
For an antire function ofmfinite oredr it was proved to be
false by W.K.Hayman and for finite order it was provad to be
false by A.A.Goldberg, see [ 3 1. But witn some additional
hypothasis the conjecture of Nevanlinna is true, Edrei and
Fuchs have proved that if f(z) is an entire function of finite

-~

ordar and if ?ZJKai)=2, that is, the total deficiency is
i-
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attained, then each deficient value of f(z) is also an
asymptotic value, See [ 2 ].vLater on by replacing some other
smoother condition in place of §:J(ai)=2, Edrei and fuchs
proved that the restriction that f(z) must be of finite
ordar can be removad and each deficient value will be asymp-

totic value, 3ee A, Zdrei [1 .

Tha deficient valuascorresponding to zeros and nol2s
beiny counted only once have also been studied extensively.
Mevanlinna's theor=m on deficient values states that if f(z)
is meromorphic function then the set of values of a, for

which §(a)>0or @(a)> 0 is countable and T ®(a)g 2. This
a

clearly implies that Z $(a)g2. 1f £ 8(a)=2 then we gay
that the total deficiency is attained , S.K.Singh and H.S.
@opalkrishna [15] have shown by an example that a meromorphic

function may bz such that ¥ _§(a)=1 where as ¥ @ (a)=
ae %€

As mentioned earlier

§S(a,f) = 1= tim sup N(rya) |

r-» o T(r,f)

Conseauently one can speak of the term

N(r, =)
1 - tim sup lf'-a (1.9)
r-» © T(r,f")
which can be denoted by §(a,f'). Milloux [ 7 ] introduced the
concept of relative defects where he defined the term
N(r,_1 )
fl-a
1 - 1lim sup (1.10)

r-» 0 T(r,f)



and in contrast the usual defect given by (1.9) was called the
absolute defect. This definition was later extended by

Xiong-Qing Lai [15] where he defined the terms

N(r,_1__ )

(k) f(k)_o(
s (L ,f) = 1= 1im sup (1.11)
r r— TR )
and
N(r,_1_ )
(k) -
§( e(,f'(k)) = § (A ,f) =1 -~ tim sup rlk)=o o (1.12)
a ro o T(r,f(k) )

The suffixes "r" and "a" in the left hand side of (1.11)
and (1.12) are just to distinguish between the term "relative"
and "absofute", Xiong-Qing Lai found various relations involving

the relative defects and the usual or the atsolute defects,

Later A.P.Singh [11 ] defined the relative defects corres-
ponding to the distinct zeros and distinct poles of a meromor-

phic function., He introduced the term

N(t,— )
(k) f(k)-vl
e (€ ,Ff) =1 = 1im sup
r t>w T('t;f)
, (k) :
and found various bounds for @ (& ,f) in terms of the
r

usual defects and the relative defects., Also he studied the
behaviour of the relative defects when f satisfied certain

conditions with regards to the deficient values.
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The concept of relative defects was.further carried
over to two meromorphic functions in A,P.Singh's subsequent

paper [ 11]. For this we shall first need some notations.

Let f1(z), fg(z) be two non-constant meromorphiz functions
and let a be any complex number. Let'do(r,a) denote the
number of common roots in the disk lz1&£r of the two equations
f1(z):a ana fo(z):a, and let ﬁo(r,a) denote the number of
common roots in the disk lzlg r of the two equations fg(z):a
and f5(z)=a, where the multiplicity is disregarded (i.e. each

root being counted only once). 3et

F Aglt,a)-nylo,a) -
§ 27T 0 ' 4t + Ay(0,a) log r

o t

Ny ,2(rsa) = Wr,=—) + W(r,=—) - 2W_(r,a).

f1-a fo-a
— (k) ()
tet n_  (r,a), Ny (r,a) etc. denote the corresponding
quantities with respect to f1(k) and fp(k). Set

N»} ,g(r,a)

451 2(a) =1 - tim sup
! r @ T(Y‘,f1 )'!'T(r,f.g)

(k) _
) ((a) =1 = 1im sup Ny o0 T(r,2)

1.0 Fr->® T(r,fy )+T(r,‘f9)




J}’g(a) =1 - lim sup N ,2(rse) ,

F=> ® T(ry 1 )+T(r,fy)

®, (a), @o(k)(a) being similarly defined. A.P.Singh in
the above mentioned paper [11 ] has proved several relations
dealing with these relative defects. For instance he has shown
that if f,(z) and f,{z) are two meromorphic functions such
that N(r,%r)zs(r,ﬂ) and N(r,#L):s(r,fg) then for any a0,

! P

(k) (k)
® (a) + 2 O

- ) (a)¢5 - (@) o) + 20 (o)),

and for any finite non-zero distinct & and P

(k <)

) (k) (
®  (d)+ ® (p)g5-2(@®
1,2 0

1,2 ,

(k)
()+ @ (p)).

Qur second chapter deals with this concept of relative
defects where we have found several bounds for relative dafects
in terms of the Nevanlinna deficient values and bounds for
relative dzfects corresponding to two meromorphic functions
in terms of absolute defects corresponding to the two functions.
Thus, for instance, we have shown in Theorem 2.f that if f is
meromorphic and a and b are distinct finite compiex
numbers and further if bZ0 then for all positive integers k

(k)
@ (b,f)&2-(B(my )+ 4 (a,f ),

and in theorem 2.7 we show that if f is meromorphic function
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and a and Db(#0) are distinct finite complex numbars then
for every non-negative integer Kk,

(k) (k)
T LI O 3

As regards to the relative defects correspcnding to two mero-
morohic functions we have proved in Theorer 2.2 that {for

f and f meromorphic and a,b distinct finite non-zero
2

complex numbers

(k)

(k)
®1,2 (b) + 2@, (b)&8 - [01,2(oo)+$1,2(a)+2®0(03)

+2§,(a)]

for every positive integer k. And in Theorem 2,6 we have

shown

(k) (k)
8“2 (m)-%Ego (m.\EL- (5 q(w+2f(b)

+ &1’2(31) + 23\0(3)} .

Several other theorems of similar nature have been proved in
this chapter. In the proofs of these results a fundamental

role is played by a theorem of Milloux which we now state.

Theorem 1.4 (Milloux) Let p be a positive integer and

GARR. BALASAHEB KHARDEKAR LIBRARR
QRIVAJI UnIVERSITY. KOLHAPWER,
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(0)(2).

it

P
520 ay(z)f

and

T(r, ) & (p+1)T(r,f) + s{r,f).

The proof of this theorem can be found in [ 4 ,55].
Another important theorem which we shall need frequently

is 3

Thaorem 1.5 3 Let f and g be two meromorphic functions

with g(0)£0. Then

N(r’i) - N(rs"‘g"‘) = N(r,f)+N(r’L) - N(r9g) - N(r’l.)'
g f g f

For the proof of this theorem, one can refer [8 ,73].

A function L(r) is said to bz slewly increasiny function

if L{ct)mL(t) as t=>m® for avery fixed positive C. In chapter III

)

we have used the comparison function r3L(r) where g is the
- 1

. o~ 1 -
order of f to obtain bounds for n(r,-TrT—-) and N(r,—~—7—— ).
£ a k) _q

Thus for instance we have shown in Theorem 3,2 that if

N(r, “JTT )
lim sup r,f) = a and lim sup —f-3 (b#£0,a)
r—>m rPL(r) roo r3L(r)

then for every positive integer k and c#0,a,b,
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N(ry 1) Nr, 1)
(k) (k)
lim sup f -b + lim sup f l® % a=b .
ro @ r3L{r) r— @ r3Lér)

And in theorem 3.5 we have shown that if f 1{s an entire

function of order §¢ (0<$<m), with

N(r,1 )
. ] M f f
lim sup og (!", ) - and lim sup ————m :;3 y then
r-» o B r-» SL(r)

for any distinct aT,...,ap and for every positive integer k,

N(r, _1 )
0 ) —
Z  lim sup — ALY 2 0 -p
i=1 FLory h(§)
and F‘.(r’---———l-—-— )
p (k)
Z  lim sup f -ay > epl X))
= L) 7 h(3) F

where i
h($) =8 +(1+5)73 { ‘—*%ﬁf—’ .

Several other theorems of similar nature have been provad in
this chapter. In the proofs of these theorems we require the

following theorem, the proof of which can bs found in [ 5.

Theorem 1.6 {Lemna 5,51t If @(kt)es B(t) when t=> 0 for

any fixed positive k. Then for every positive §

t §
F-1, t
U fé( ) du N e
,S u u d\ Q(t)o



