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A function f analytic in the whole of the complex plane

Z is called an entire function. Liouville proved that a

bounded entire function must be a constant. Consequently

If M(r,f) = max I f (2 ) 1 then M( r, f) ~» do as r-> oa .
12 I 4 r

To study the growth of entire functions we compare ivKr,f) 

with er^ where t>0.

An entire function f(z) is said to be a function of 

finite order if there exists a positive constant t such 

that the inecuaIity

M(r,f) < ept

is valid for sufficiently large values of r.

The greatest lower bound of such numbers t is called 

the order of f and is denoted by ?(f) or simply by f . It 

can be easily be verified that

5(f) = Mm Sup |Q9 '°g M(r,f) 
r-+ 00 I og r

A function which is analytic in £ except possibly for 

poles is called a meromorphic function. So obviously every 

entire function is meromorphic function (as it does not have 

any poles). In this dissertation we shall mostly be interested 

with meromorphic functions. A fundamental role in the Nevan-
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linna's theory of meromorphic functions is played by the 

theorem known as ’’Poisson Jensen formula”. We shall briefly 

develop this theory which we shall require in our dissertation.

Theorem 1.1 (Poisson Jensen): If f(z) is meromorphic in

Izl4 R (O^-R-cao) and (a =1 ,2,... ,M) are the zeros and 

b*) ( -j> =1 ,2 ,..., N) are the poles of f(z) in I z I * R and if 

z = re1"® (OcrcR) and if f(z) / 0, then

log log I f (Re1*^) I

R2 - 2Rr cos(©-0)+r2
d$

0

The case when z^O is called Jensen's formula. .'ie

define

log+x = log x if x>1

0 if 0 4 x < 1

then since log x = loa+x-log+— for all x;>0, it follows
x

that

0 0

0

Let la^ I - 1,2 i • • • i M

then
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Z log I —I = J log ~dn(t)
M—1 q ^

where n(t) is the number of zeros of f(z) in lzl£ t. 

Integrating by parts, we get

l , R2- log — =
>.=1

r n(t)
J t 
o

dt

We denote the R.H.3. of (1.2) by i\l(R,0) and also by N(R,i).

3 i m i I a r I y
N
z

T> =1

lonlgl
R
r n(t,oo )
^ t 
o

dt

= N(R,f) - N(R,oo ) where n(t,oo) denotes 

the number of poles of f(z) in Izl^t.

Set

m(R,f) “ j Iog'If(Re’0)Id0
o

than (1.1) with z~0 gives

I on If(0)1 - m(R,f) - m(R , -) + N(R,f) - M(R,i)
f f

or
m(R, f) + N(R,f) - m(R,l) + i\l(R,^) + loglf(0)i.

W e set
m(R,f) + N(R,f) - T(R,f), and (1.3) becomes 

T(R,f) - T(R,i) + loglf(O)I.

Th» term T(R,f), is called the Nevanlinna characteristic 

function, plays a cardinal role in the whole theory of

(1 .2)

(1 .3)

(1.4)



-4-

mpromorphic functions.

The equation (1.4) Is a particular case of a more general 

theorem, known as Ne va n I i nna's f i r st fundamental theorem.

Theorem 1.2 : If a is any complex number then

-j
T(r>— g) - T(r,f) - log I f (0) -a I + €(a,r)

where
I 6 (a,r) I i Iog+1 a I + log 2 .

The above theorem gives directly some of the e.ementary 

following properties of T(r,f)

(i) IT k>0 is a constant then

T(r,kf) = T(r,f)+0(i)

(ii) T(r,fg)6 T(r,f)+T(r,g)

(iii) T(r,f+g)£ T(r,f)+T(r,g)+0(I)

Uv) T(r,ifl^) = T(r,f)+0(l) where \*bA ^ 0. 
cf+d cd

For an entire function f, T(r,f) has many properties 

similar to logM(r,f). For instance, like logIvi(r,f), T(r,f) 

is an increasing function of r and a convex function of log r. 

Hence it is natural to define the order of a meromorphic 

function f(z) by

$ - I ini sup l°g T( r,f) ^
r co I og r
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For an entire function,it can be proved that

$ rr lim sup log IogM(r,f) = Mm sup \ogT(r,f) #

r-> od I og r r~» oo log r

This follows from the fact that if f(z) is analytic in 

Izl ^ R, then for 0^r<R

T(r,f) 4 Ioq+M(r,f)4 T (R, f). (1 .-)
R-r

For functions of given order, a better measure of growth is 

obtained by the term type of an entire (or meromorphic) 

func tion.

If f(z) is an entire function of finite order $ (>o ) 

then the type T of f is defined by

r = i.-T, SUp . d.6)
r-» oo r*

'T* is said to be minimal type, maximal type or mean type 

according as t-0, T-oo or 0 < T <. oo respectively.

For a meromorphic function of finite order ?( * 0) the 

type 5- of f is defined by

<T Mm sup
r-* 00

T(r.f) (1 .7)

Thus for entire functions type can be defined by (1.6) and 

as well as by (1.7) and it follows on using (1.5) that

T = od if and only if 6“ = 00 

X = 0 if and only if <5- = 0
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0 T < oo if and only if oo.

Let us emphasize here that the third case does not imply 

that T = see for instance [4 ,19].

The other important theorem of Nevanlinna theory viz. 

the second fundamental theorem of Nevanlinna states:

TheoreBl*3t Let f(z) be a nonconstant meromorphic function 

in Izl^r. Let a-|,...,aq, where q>2 be distinct finite 

c ompI ex numbers, 0 and suppose that la^ -a^ I £ for

1 4 J* < i> q then

q
m(r,oo) + jr m( r 2T(r,f) - N-j (r) + 3(r,f) (1.3)

Dr-1

w here
N-] (r) is positive and is given by

N1 (r) - N(r,-ljr) + 2N(r,f) - N(r,f»)

s(r,f) = m( r+ m(r,£-—) + q log+—

1
+log 2 + log ----------------

If•(0)I

with modifications if f(0)=O or oo or f’(0)=0.

The term s(r,f) in general plays an unimportant role. 

Infact if f is of finite order then s(r,f )=0(T^-,f)) as r-> oo . 

And if f is of infinite order then s(r,f)=0(T(r,f)) as r-*oo 

except possibly for a set of r of finite I inear measure.

Adding N(r,f) + i- N(r,—-—) on both the sides of (1.8)
f **3j>
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and using the first fundamental theorem of Nevanlinna it is 

easy to see that (1.8) yields

~ EN(r,J-----)+s ( r, f)
f-a,,

Thus we observe that in

T(r,f) = m(r,a)+N(r,a)+0(1),

the term m(r,a) is small as compared to T(r,f) and consequently 

N(r,a) comes near to T(r,f). This leads to defining the 

deficiency relation for which we start with the following.

Let n(t,a)=n(t,a,f) denote the number of roots of the 

equation f(z)-a in IzI^t, multiple roots being counted with 

their multiplicity and let r»(t,a) be the number of distinct 

roots of f(z)=a in Izl^t.

W e set

r

0

n(t,a )-n(o,a) 

t
dt + n(o,a) log r

r

0 t

As usua1 we set

N(r,oo ,f) = N(r,f), 

T( r, co , f) - T(r,f).
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Let

J(a) = J(a,f) = 1 - 1im sup N ( r, a )

r-> oo T(r,f)

<8>U) = (SX a, f) = 1 - 1im sup
N ( r, a)

r-^oo T ( r , f)

A(a) = Ma,f) = 1 - 1im inf N ( r , a )

r-> oo T(r,f)

©(a) = ©(a,f) = fim inf N j r >a ) ~N ( r»a ) .

r-^oo T(r,f)

The quantity <£(a) is called toe deficiency of tne value a 

and (0)( a) is called t he ' i ndex of multiplicity. Clearly for 

any a £ (C , the extended complex plane, 0 ^ (f(a)^.1. Infact

more is trueit Nevanlinna proved that if f(z) is a maromorphic 

function then the set of values a for which (g)(a) > 0 is 

countable and

a) + 6(a)/
a

The quantity ^(a) is called the deficiency of tne value a. 

Finally tne term s(r,f) will denote any quantity satisfying 

s(r,f) = o(T(r,f)) as r-^ oo through all values of r if f is 

of finite order and as r^oo pos-ibly outside a set of finite 

linear measure if f is of infinite order.

The study of exceptional values plays a fundamental role in 

theory of mercnorphic function. If for a meromorphic function 

f, <$(a,f)> 0, then a is called an exceptional value in the

sense of Nevariinna (e.v.N.). If n(r,a)=n(r,a,f)=G( 1 ) where
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n(r,a ) denotes the number of zeros of f-a then a is

called exceptional value Picard (e.v.P.).

vVe denote
lim sup i-2lt 
r->oo log r

by 3j(a) and call it the exponent of convergence of the

a-points of f(z). It is well kncwn that 3,(a)<: 3 • Also if

the order of f is not an integer then (a)-j . And in the

general case S((a) = J except possibly for one or t'-'o values

of a depencing cn whether - f is entire or meromorpnic.

This exceptional value is called exceptional value in the

sense of Borel (e.v.B.). further a tsi called e.v.E. if

lim inf —H-Li-fJ—^0 where 0(r) is any oositive non- 
r->ao n(r,a )0(r)

Oo
decreasing function such that J ... < oo . There are

A x0(x)

relations involving these exc°ptionai values. For it is known 

see (_12j that for an entire function e.v.P. => e.v.B. e.v.E. 

=} e.v.N. For a meromorphic function e.v.P. e.v.B. -> e.v.N. 

However in this case e.v.B. =» e.v .N. is not true. Infact 

Valiron [14] has shown by an example that if «< is e.v.B. 

for a meromorphic function then may not be an e.v.N..

Let f(z) be an entire function and f* be a curve starting 

from z=0 and proceeding towards infinity. If f(z)->a (a finite) 

as z-*> CD along )* we say that a is an asymptotic value 

for f(z), and P is called an asymptotic path.
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For an entire function every e.v.P. is an asymptotic 

value^and every e.v.B. is also an asymptotic value in case 

if the function is of finite order. Nevanlinna put tne question 

whether every e.v.N. is also an asymptotic value. This was 

disproved by Arakelion, a Russian mathematician, who cons

true ted an entire function of finite order having infinity 

of e.v.N which obviously cannot all be asymototic values 

because by Ahlfor’s theorem, an entire function can have at 

most 23 asymptotic values where 5 is the order of f.

See Arake I ian,"Ooklady AK&demy Nayuk, U.3.S.R.,1966".

3.M.Shah in 1 952 proved that if f(z) is an entire function 

of finite order 3 having a as e.v.E. then the number of 

asymptotic values of f(z) is precisely J and each asymptotic 

value is a* Nevanlinna conjectured that if is e.v.N. for 

an entire function or meromorphic function then o< must be 

an asymptotic value. But this was proved to be false in 

19^-1 by Madame Laurent Schwartz. She constructed a meromor

phic function f(z) for which <T (0)- £~(oo)>0, and thus 0 3nd 

00 are e.v.N., but they were not asymptotic values_, See [6 1. 

For an entire function offhfinite oredr it was proved to be 

fal’se by w .K.Hayman and for finite order it was proved to be 

false by A.A.Go Idberg, see [3 1. But witn some additional 

hypothesis the conjecture of Nevanlinna is true. Edrei and 

Fuchs have proved that if f(z) is an entire function of finite 

order and if ^^(aj )=2, that is, the total deficiency is
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attained, then each deficient value of f (z ) is also an 

asymptotic value, See [2]. Later on by replacing some other 

smoother condition in place of J <f( aj)=2, Edrei and Fuchs 

proved that the restriction that f(z) must be of finite 

order can be removed and each deficient value will be asymp

totic value, See A. Edrei [1

The deficient va I us5corresponding to zeros and poles

being counted only once have also been studied extensively.

Mevan I inna's theorem on deficient values states that if f(z)

is meromorphic function then the set of values of a, for

which $~( a )>0 or a)> 0 is countable and 2. ® ( a2. This
a

clearly implies that Z<P(a)42. If Z<f(a)-2 then we aay
a

that the total deficiency is attained , S.K.Singh and H.S. 

Gopalkrishna [13] have shown by an example that a meromorphic

function may be such that Z. <f(a)=1 where as 21 ®(a)-2.
aec ae c

As mentioned earlier

<f (a,f) =- 1- I im sup Mil*.5-1 .
r-» 00 T( r , f)

Consequently one can speak of the term

N(r,r,—)
1 - urn sup -------- £' =.3—

r-* 00 T( r, f' )

which can be denoted by £(a,f')* Mflloux j introduced the 

concept of relative defects where he defined the term

(1 .9)

- Iim s up
r~* co

N(r. 1 )
f‘-a

1 T(r,f) (1 .10)
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and in contrast the usual defect given by (1.9) was called the 

absolute defect. This definition was later extended by

Xiong-Qing Lai [l 5 ] where he defined the terms

N(r,__ 1__ )
(k) f(k)_ <

<f (* ,f> - 1- I i m sup ------------------------- (1 .11 )
r r-» oo -f(r, f,)

and
N(r,J_ )

*(<.f(k,> - jlk> <« ,f) = 1 - Mm sup (i.ip)

a r-»co T(r,f<k> )

The suffixes "r" and "a” in the left hand side of (1.11) 

and (1.12) are just to distinguish between the term "relative" 

and "absolute". Xiong-Qing Lai found various relations involving 

the relative defects and the usual or the absolute defects.

Later A.P.Singh jj 1 ] defined the relative defects corres

ponding to the distinct zeros and distinct poles of a meromor- 

phic function. He introduced the term

N(t, 1

Jk)© {^ ,f) = 1 - lim sup
r t oo T (t/f)

and found various bounds for
.(k)

( •( ,f) in terms of the
r

usual defects and the relative defects. Also he studied the 

behaviour of the relative defects whan f satisfied certain 

conditions with regards to the deficient values.
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The concept of relative defects was -further carried 

over to two merornorphic functions in A.P.Singh's subsequent 

paper [11]. For this we shall first need some notations.

Let fi (z ), fg(z) *3S *w0 non_cons1:-ari'*: merornorphic functions 

and let a be any complex number. Let ri (r,a) denote the 

number of common roots in the disk I z I r of the two equations 

f.|(z)=a ana fp(z)=a, and let n0(r,a) denote the number of 

common roots in the disk Izl^r of the two equations f-t(z)=a 

and fp(z)=a, where the multiplicity is disregarded (i.e. each 

root being counted only once). Set

Nn(r.a) Sr n0(t,a)-n0(ofa)
dt + nn(0,a) loc

N1 ,2 ^ r»a ^ = 

_ (k)
Let n (r,a ), 

quantities with

N(r,J—) + N(r,

Va
N1^k^(r»a) 9tc«

respect to f^K ^

——) - 2 N ( r, a ). 
f2-a

denote the corresponding

and fn^). Set

®1 j2(a) - 1 I im sup 
r-> oo

N1 ,2(r»a )

T(r,fi)+T(r,f2)

e (k) (a)
N 2(k)(r,?.)

1 .2

I im sup
r-» oo T( rjf'i ) + T( r, f p )
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= 1 - I im sup _r,*a ^_______

’ r-*°° T(r,f., )+T(r,f2)

*0 (a), (k)
(a) being similarly defined. A.P.Singh in

the above mentioned paper [i 1 j has proved several relations 

dealing with these relative defects. For instance he has shown 

that if f-|(z) and f (z) are two meromorphic functions such 

that N( r, —■ ) = s (r, fj) and N( r,4r )^s (r,f0 ) then for any a^O,oo

(k) (k)
(a) + 2 ® (a)45 - (©-> 5(00) + 2© (oo))/

1 ,2 .......... “ o 1 ,

and for any finite non-zero distinct and ^

^(k) (k) (k) (k)
® , (<*)+© <p)< 5-2(0 («<)+® (Is)).

1,2 1,2 o o r

Our second chapter deals with this concept of relative 

defects where we have found several bounds for relative defects 

in terms of the Nevanlinna deficient values and bounds for 

relative defects corresponding to ttao meromorphic functions 

in terms of absolute defects corresponding to the two functions. 

Thus, for instance, we have shown in Theorem 2.1 that if f is 

meromorphic and a and b are distinct finite complex 

numbers and further if b/O then for all positive integers k

©
(k)

r
(b,f) 42-( &(oo, f)+ cT(a f )),

and in theorem 2.7 we show that if f is meromorphic function
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and a and b(/0) are distinct finite complex numbers then 

for every non-negative integer k,

(k) ^ 00 , ,®r (a , f) + <B>r (b,f K 4- {2 ©(00 ,f)+£ (0,f)} .

As regards to the relative defects corpespcnding to two mero-

morohic functions we have proved in Theorem 2.2 that ffor

f and f meromorphic and a.b distinct finite non-zero 
1 2

complex numbers

(k) ^ (k)
® >2 (b) + 2 ®Q (b)4 8 - >2(oo )+£ 1 >2(a)+2®o(oo )

+ 2 f0(a)]

for every positive integer k. And in Theorem 2.6 we have 

s h ow n

r (k ) ( k )
<5-1,2 (ao ) + 2 f Q (00)^ \ £ (f1 ^2(b)+2 <fo(b)

+ ^1 ,2 ^ 3 ^ + “ ^o ^ a ^ *

Several other theorems of similar nature have been proved in 

this chapter. _In the proofs of these results a fundamental 

role is played by a theorem of Milloux which we now state.

Theorem 1.4 (ivlilloux) : Let p be a positive integer and

§m BALASAHEB KHARDEKAR LIBRABI
MliVAJI U5itV£8SITY. KOLUAPMSi
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^(z) - J a0(z)f^(z). 

v=o v

Then

m (r, -3£-£-z- ^) = s (r, f)
f t z )

and

T(r,^ ) 4 (p+1 )T(rff) + s {r, f).

The proof of this theorem can be found in [_ 4 ,55"]. 

Another important theorem which we shall need frequently

i s :

Theorem 1.5 : Let f and g be two meromorpnic functions

with g(0)^0. Then

N(r, —) - N(r,i-} = N(r,f)+N(r,-L) - N(r,g) - N(r.i-). 
g f g f

For the proof of this theorem, one can refer [8 ,75].

A function L(r) is said to be slowly increasing function

if L(ct)*«L(t) as t-»GD for every fixed positive C. In chapter III

we have used the comparison function r*L(r) where $ is the

order of f to obtain bounds for n ( r,  t r ^—) and N ( r, \— ).
fv -a fu'-a

Thus for instance we have shown in Theorem 3.2 that if
T(r f) '^r’ qrbr '

lim sup —-5—*—- = a and lim sup----------------
r-*GO r*L(r) r-r 00 rsL( r)

(k7“

(b^O,a)

then for every positive integer k and c^O,a,b,
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N(r,

I im sup ___r-> oo

_1_____  )
f<k fb

rsL(r)
+

N(r, _J___ )
-(k)

lim sup - ■ T ~c y, a-b . 
r-p oo r55 L;Cr)

And in theorem 3*6 we have shown that if f is an entire 

function of order % (O^J4oo), with

,. log M(r,f)Mm sup —  1—:—_
roo r$L(r)

N(r,i )
, . f

and Mm sup --------------
r-» oo r^ L (r)

js , then

for any distinct a15...,a and for every positive integer k,
1 P

N(r, __1_ )

21 lim sup —i 
/=<

f-k,-aJ. X p( *

h(J)
- P )

and n(r. 1 )
P

r=i
im sup

f(k>-a

JL(r)
1 >A J P C

h(i )
-A >

whe re
+d+f )U ( 1+LUJL.)2

Several other theorems of similar nature have been proved in 

this chapter. In the proofs of these theorems we require the 

following theorem, the proof of which can be found in [5].

Theorem 1 .6 [_Lemna 5»5]i If 0(kt)f'-' 0 (t) when t-> 00 for 

any fixed positive k. Then for every positive

I

f f 1 +"3 u4 n0(u) du rJ 0(t).
0


