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C H APT E R - II

INTRODUCTION s

Here we are interested to study the practical applica
tion of the boundary layer theory which are non-linear 
parabolic differential equations. These equations are very 
difficult and lengthy to be solved. Therefore, it becomes 
essential to device approximate methods which may be much 
quicker to apply, although less accurate but may yield 
acceptable results.

J.L. Bansal [l2j studied the asymptotic suction 
temperature profiles in a laminar boundary layer over a 
porous flat plate. In this note it has been shown that in 
the case of laminar boundary layer.over a porous flat plate.
In this note it has been shown that in the case of laminar 
boundary layer over a flat plate with homogeneous suction as 
we have the 'asymptotic suction velocity profiles' for various 
values of the Prandtl number (Pr). The recovery factor (Tr) in 
such a case is found to be independent of Pr and has a constant 
value 1.

Holt, M. and Modarress, D. [l3j| studied the 'Application 
of the method of integral relations to laminar boundary layers 
in three-dimensions'. It has been traditional along fluid 
dynamicists to employ some numerical means (such as the finite 
difference techniques) to solve two dimensional nonlinear
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compressible boundary layer equations. But as an alternative 
to this numerical procedure, the boundary layer equations have 
been more successfully solved in an integral form for example, 
with the classical Ka’rman-Pohlhausen momentum integral method. 
The main principle of the method of integral equation is based 
on the idea of representing the streamwise velocity gradient 
(normal to the wall) as a simple algebraic function of the 
streamwise velocity itself. These authors extended the method 
of integral relations to the problem of three-dimensional 
compressible boundary layer flows with and without separation. 
By reducing the equations of motion to a quasi-incompressible 
form they solved the resulting hyperbolic partial differential 
equations.

B.P.Acharya & S.Pandhy [6j studied the free convective
viscous flow past hot vertical porous plate with periodic

• •

temperature. In this problem he obtained an analysis of a free 
convective flow of viscous liquid past a hot vertical porous 
wall was presented under the assumption that the suction 
velocity is constant and normal to the wall# and the wall 
temperature is spanwise consinusoidal approximate solution of 
equation of motion and energy equation have been obtained by 
the method of regular perturbation.

Krishna Lai [7jl investigated “free convection laminar 
boundary layer in the unsteady flow“. In this paper he was 
studied the effect of unsteady flow in the magnitude of surface
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temperature on the free convective laminar velocity and thermal 

boundary layer on a flat plate was studied. In section one# 

the general equation of motion-and the temperature distribution 

are given. In section two# the solution are obtained when the 

fluctuations in the velocity components and temperature distri

bution are in the form

(u, v# G) ■ ( v0, V# Gq) ♦ S (u1# V1# G) X exp (wt)

and lastly solution is given when the fluctuations is an 

exponentially decreasing function of time.

R. Sharma L&3 explained a two parameter method for 

calculating the two dimensional boundary layer with suction 

or injection. Detailed calculation of the boundary layer 

parameters made by this method indicates that the error are 

within 5% of the exact value.

M.G.PaleXar and D.P.Sharma [93 studied "Approximate 

solution of boundary layer equation with suction blowing 

according to him the problem under consideration is that of 

the boundary layer flow along a flat plate with suction or 

blowing.

G.N.Sharma and D.P.Singh jlOj investigated "The effect 

of viscosity temperature law in unsteady boundary layer on a 

flat plate". They studied the effect of viscosity temperature 

law# when the wall is in arbitrary motion with steady stream



30
velocity. Prandtl number being unity.

D. Surma Devi and G. Nath Q.9] investigated 'similarity 
solution of the unsteady boundary layer equation for a moving 
wall*. In this problem we obtained the similarity solution 
of the unsteady laminar for two dimensional incompressible 
and of axisymmetric boundary layer equation for the case of 
surface which moves with the velocity which varies inversely 
as a linear function of time. The governing equation has been 
solved numerically.

R.P.Agrawal [ll] studied 'Non-linear two point boundary 
value problem*. In this problem he obtained existance and 
uniqueness of the solution of third order non-linear differen
tial equation with boundary conditions prescribed at two points. 
R. Sharma [#} obtained the exact solution of the incompressible 
laminar boundary layer equations with zero pressure gradient 
and variable suction. In this paper a numerical solution of 
the boundary layer equations with zero pressure gradient and 
with the general distribution of sunction is obtained.

It is discovered by Holstein and Bohlen [lj that the 
momentum integral equation may be solved easily if 62» instead 
of 6. is regarded as the unknown function. In order to avoid 
the numerical integration of the differential equation we turn 
about a simple method suggested by waltz and Thwaites [3j . 
Seeing the nature of the curve L(>) plotted against % , which
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is almost a straight line, it was suggested by Walz that the 

function L ( >) can be approximated by

L( >.)-•• bpL •

The solution of the equations for velocity field are 

obtained. The solution of the equation for the temperature 

field, which was obtained by B. Pohlhausen [2j . The solution 

of the thermal boundary layer equation

a « ^ « -5^1 ^
r d r Z z Pr r^r ^r

was obtained by Yih [5j . The solution of the integral equations 

was obtained by Squire [4J3 • The recovery factor obtained by 

Pohlhausen was computed by E. Eckert and R.M.Drakes (jL4j for 

a large range of Prandtl numbers namely Pr » 0.4 or Pr » 1000.
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1. Approximate solution of Pohlhausen*s problem of free
convection on a heated vertical plate s

Notations

a » K/eCp * thermal diffusivity,

K t Coefficient of thermal conductivity.
cp ■
Pr :

Nu(x)

Specific heat at constant pressure,
H Cp

9 
K

Prandtl number * 
d T
ay ^(---X

; Nusselt NumberTw - Too

: Kinematic viscosity 

- y/6
u and v - velocity components in x and y directions.

uoo - free-stream velocity in x-direction
x, y t Co-ordinates along and normal to the wall respectively.

e dimensionless temperature

6 : displacement thickness
u-^(x) t Any arbitrary function

cl- °2> A”y *» constants 
9 (Ty “ Tqo ) 3Gr * ——-— ----- x , Grasshof's Number-)2 *00
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The equations governing the motion of the fluid in the 
neighborhood of heated vertical plate are given by 

d u ^ v
+ ---— * 0 ... (1)

"bx d y

d u d u
Q + V «•«“ m <V

d x d y
d «

XX ^ y
c) X

a e
d y

where 6 ■ and a »

u

d y'
+ ga €

d r

with the boundary conditions

(2)

(3)

y ■ 0, u * 0, v • 0, 

y*6,u«0, «»o
)
)

• • • (4)

Integrating equations (2) and (3) with respect to y between 
the limits y*0toy*6we get from equation (2)

6 t)u P d u 6i u--- dy + S ▼ — dy -
0 6x o dy 0 d y

6dy + g« J 0dy 
0

... (5)
6 d« y»5 6 d v

Consider \ v — dy * vu 1 -
y»0

( u.--- dy
0 dy o <dy
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6 av
* v.u - v.u mm ... dy

y»6 y-0 0 ay

d « 6 d «
dy - + / u —— dy by (1)77 0 d x

6

Consider the first part of R.H.S. of equation (5)

i s 
0

- ^

- 4

a2u
------* dy « a (
a y2

a
a

-- )**6 
y y»o

a u
( Tj ’y® ♦

a u
J (------ )

J y **8

a «
( — ) 

ay y*°

(5) will take the following form

6

J '
i.e.

Prom equation (3) we have

a « 6 a u ( ^ Udy + f u dy - - aa x d 7 X 77
d 6 2 a «
dx

j u dy » -
0

■J ( 77 ^ y-0

y*0

. (6)

6 <* e & a 0 6 j2*
{ u dy + j' v — dy * a [ ——_ dy ... C7)

o a x 0 a y 6 a y

6 a « y - 6 6 a v
Consider i v------ dy - v 0 I - J e ---- dy

o ay y-0 0 ay
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and

&
■ v © - v« 3 ▼

t

y»6 y»0 0 3 7

/ e
0

3 u
3 x

dy by

j y2 - dy * a
3 «
Ty

y * 6
1
u * 0

* a
3 •

mm
3 «a ——

3 7 y*6 6 7 7m0

a e
a (--- 5 „

d 7 y*°

Then equation (7) will take the following form

d
a * n

3---- dy + /. dy * -a (
i..!

3 x

6

0 3 x

d e

7”y y=0

. (8)

Solving the ahove integral equations by taking the following 
polynomials in T| » y/6 for the distributions of u and ©, 
satisfying the respective boundary conditions

u * u^xJn (1 - T])4
. ... (9)and © * (1- t|)4

where (x) is an arbitrary function has the dimension of 
velocity to be determined.
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<5 o 1 \ U1(0.6669)----- (u 6) * — gcc6 - ^ —
dx x 5 6

and equation (8) will reduce to

d 4a
(1.0131) ----- (u.6) * —

dx 1 6

... (10)

... (11)

Let us try to find the solutions of the above equations in 

the forms of

mu^ * x and

5 - C2 x* ... (12)

Then from equation (12), equations (10) and (11) will take the 

form

2m+n-l
(2m + h) (0.6669) C C x

1 4
1 n ^1 \ i
- ga c, x - — -0 x
5 C2 

4a

m-n

(m+n) (1.0131) C^c2 * ---- x**n

... (13)

... (14)

must be identically satisfied.

This gives

2m+n-l**n*m-n: m+n-l*-n 

m « 1/2 and n * 1/4

Then we have

C1 * (1.0261) ) (Pr + 4.3886)
1
2

1

9« %
< ~5 >» (15)
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1 » g aC, - (2.2651) Pr~ 3 (Pr + 4.3886)4 ( --- )
2 ^2

1
4

Prom equations (12) and (15), we have

6
x

6
x

-1/2 1/4 9 « -1/4 -1/4(2.261) Pr ' (Pr + 4.38886)A/* (---) X x
•>)

(2 .261) Pr"1^2 (Pr + 4.3886)ly^4 (Gr)”1^4

where
Gr

q (Tw - ,roo) 
tv OO

g a x“ -----

The temperature gradient at the wall is given by

d e< — ■ - *

The local Nusselt number for the heat transfer in the present 
case is given by

Nu(x)

d *
( }y-o * x d y
"’"(t^-’too)

Nu(x) ■ - ( jl---) Q *
ii w 6

■ 2.0000 X 0.4415 X (0.733) (0.6647)

Nu(x) * (0.502) (Gr) 1/4
7 Pr * 0.733
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2. Approximate solution of Karman's Pohlhausen1s Method i

Karman * s Momentum Integral Equation s

The boundary conditions for a steady two dimensional 

conpressible flow are

d * d u
u —— + v -—-

d * d y

d U u
u — + -) -—i.

ax j y2

d u $ v

() * d y

... (1)

(2)

The boundary conditions are 

y«0*u*v»0iy«6(x) : u ■ U (x)
%

where 6(x) is the boundary layer thickness.

The modification of boundary condition in (3) from the usual 

condition y * cos u « 0(x) should be noted. In fact there is 

no edge to the boundary layer and

d u d2yx
u — U and —— # ------- etc. tends to zero asymptotically.

d y d y2
However the integral methods, it is often assumed that the 

boundary layer has a finite thickness and the outer boundary 

conditions are modified so that some point

y * 6(x) t u * U(x) and

d » d2yx
—•— * ----- etc. are
d y d y2

zero.
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Integrating the momentum equation (1) with respect to y 

between y ■ 0 to y ■ S(x) we get

d u * d uJ u —— dy + ( v---  dy
0 d x o s y

6 dO
C U-- dy +
0 d x

d2 ®
--- - ) dy
d

6 d u= / U dy -
0 d x

.<L?,d y **
(4)

Integrating by parts the second integral in the L.H.S. of 

equation (4) we find

6 A u y*6 6 A v
/ v --- dy « vu | - J u ---- dy
0 ^ y y»0 0 ^ y

6 A u
■ (v) . . U + f u---  dy ... (5)

0 ^ x

where the boundary condition (3) and the equation of continuity 
has been used. It may be noted that at the outer edge of the 
boundary layer the velocity component v is not equal to zero 
and in order to substitute its value in terms of u, we 
integrate the equation of continuity also with respect to y
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between y ■ 0 and y * 6 (x) which gives

(v) y*6 - s d u 
d x

dy ... (6)

From equations (5) and (6)

r6 d uJ V--- dy
o d y

■ - u 6
i0

Ll
d x

dy + f
u

u dy ... (7)

putting (7) in (4), we obtain

6 A , 6 $ u 6du| ---  (uTdy) - U |---  dy » / U---
0 ^ x 0 ^ x Odx

dy -

x <3 u(---)
a y y*°

.(8)

But

and
i
6 <3 2(u2) dy

d x
d
d x 0

f 2 2( u^ dy - Uz d 6 
d x

6 d uu j ---  dyo <3 x
d & 0 d 6U -- J u dy - IT--
d x 0 d x

... (9)

... (10)

Hence equation (8) reduces to

d 6 2 d-- f u dy - U-- J udy
d x 0 d x 0/ 6 d U

/ U-- dy
O d x

v du } (-- )
dy y»0

... (11)
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i.e
d

dx
6 au 6 ^ uj u(U - u)dy + - f (U-u) dy « -) (--- > Q0 dx 0 J Y ^

... (12)
Introducing the following quantities#

, 6 u(1) 6-. > f (l--)dy (displacement thickness)
0 «

or U6i * / (U - u)dy
0

... (13)

(11) 60* / ■» (1 - - )dy (momentum thickness)
0

u
2 ^ U ©

2 ®or 0 6, * / u (U - u)dy
£ 0 ... (14)

^ u(ill) and L0 « y ( -—- )_ (shearing stress on
d y y*0 the wall ) ... (15)

Equation (12) can be written as

a 0 dU—- ( IT6,) + U — 6,
dx dx

TLo

2 Toor U ---+ (260 + 6i) U — * ——ax 2 ax f>
... (16)

which is known as the Ka’rma'ns momentum integral equation 
for the two-dimensional steady incompressible boundary 
layers.

8271
ft.
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It may be noted that the Ka*rm'an momentum integral 
equation (16) is an ordinary differential equation for the 
boundary layer thickness 6(x), provided a suitable form of 
the velocity profile is assumed, K. Pohlhausen, on the 
suggestion of Ka'rm’an assumed a polynomial of fourth 
degree for the velocity profile and worked out the solution.

In this problem we studied a polynomial of sixth 
degree for the velocity profile and worked out the solution.

Karm’an-Pohlhausen Method :

The “similar solutions" of the boundary layer thick
ness, reveal that the velocity distribution in the boundary 
layer is some function of the radio y/6 which we approximated 
by a polynomial of sixth degree velocity profile in y/& as 
follows t

u 6— » f(ti) - n ajTi1 t o <• 1\ < 1
U i»0
u
— “1 for i) > 1 ... (1)
U

where ■ y/6 ... (2)

In order to determine the coefficients aQ, a^, a2, a3, a4, 
a5, ag the following boundary and compatibility conditions
are used.
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y * 0 : u
^ 2u dU ^ 3u

Of (___) » - u — ( -—- )
d y2 *"° <*, ay3 *"°

o .

... (3)

y ■ 6 * u
d u

U, (---- )
d y *"°

a2* a*n ( iL ) - ( Z~ )ay2 y*° ar

The first condition at y ■ 0 is the usual no slip boundary 

condition whereas the second, known as the compatibility
scondition, at the surface, follows from the boundary layer 

equation. It may be pointed out that compatibility condition 
is always satisfied by all exact solutions.

The conditions at y * 6 follows from the consideration 
that tiie outer edge of the boundary layer the velocity u in 
the boundary layer passes smoothly to the potential velocity 
U. The coefficients aQ, a1# a2* 33, 34, a5, a6 are obtained 
by the above conditions (3), They are given by

a0 " 0# al

a3 * 0, a4

where A

2 A + 20 *
--------  , a, * -10 4 2

3/\ - 20
10

A - 5, a.

62 au

dx
(Shape factor)

(4)

(5)

Hence the sixth degree velocity profile which satisfies 
the boundary condition (3) are
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The velocity profile <6) is a one parameter family of curves 

with parameter A # known as the shape factor because the 

shape of velocity profile, plotted against 1} depend on the 

value of 7 •

Range of A »

The range of A for which the above distribution is used, 

will be determined by the following consideration.
Art

The value of A * 0 i.e. when * 0 corresponds to the

profile in the boundary layer on a flat plate. The profile 

at separation point with ( ) * 0, with a. * o occurs at
dy 0 1

A * - 12. It will be seen later that the profile at the 

stagnation point corresponds to A * 11.76. The value of 

greater than 12 must be excluded, since for such value of u 

would exceed U within the boundary layer, which is physically 

unreasonable. For values of A less than -12, which 

corresponds to the conditions behind the point of separation, 

the calculations based, as it is on the boundary layer

<*

V
Ofr| Ul 

O
 I

C
 I c R M

l 3 U hf
l

,«
* 3 + > Q 3

3 U
l

I $ 0V

uy 3 *

*4
 

•—
> 

-3 n 3

in*=•
in3 •f

r.

tO
 I 3

 
I to•H

i in 
flO

& a »
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concept loses significance. Therefore the shape factor ? is 

limitted to the range

- 12 <: A < 12 ... (8)

we are now# in a position to calculate the value of 6(x) 

from the Ka'rm'an momentum integral equation with the sixth 

degree velocity profile.

For this we calculate 6^# 62 an<3 ^ 0

6 u
(i) 6i - J U - - ) dy 

1 0 If

1
■ 6 S U - S ) dy 

0 u

61* 6 (j( ■ ) — ( — ) a) ... (9)
». 7 4260

<U> S2 “ / 1 {1 - S > dy

= 6 J - (1 - - ) dy
0 U U

L 10 468
62 - 6 ((-->-(--------) A

>49 29820

and

T -*o
d u

(iii) n < "J“y“ * y-o 1

T - gL ( 2 A + 20
0

6 10

24336 9w(-----------------) A 2)
18147600 '... (10)

d *
Tn >"-0

• * # (IX)
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It was discovered by Holstein and Bohlen that the momentum 

integral equation nay be solved easily if 62 instead of 6^ 

is regarded as the unknown fmiction.

For this we wrote the equation, as

U«2 <**2 Si $2 60 T0 S2
-- — + ( 2 + — ) ----- * ---------- ... (12)
-) dx 62 ) ? dx y, U

Equation (12) may be simplified as, if we introduce the 

following parameters

X *

H ( > )

10 mo
C ( — ) “ ( ——“ ) A 
1 49 29820

468

29820

24336
. (----------------) A

18147600 D ■
... (13)

61/ 6‘

y 2 156
((-)-(------- ) A)

' 7 4260 -

;■ 10 468
('( — ) - (-------- ) A

: 49 29820

24336 5 *
(-------------) A )

18147600
... (14)

and I ( 'X ) 

2 A +20

JTo&2
y. U

(
10

J 10 468
) Q ( — ) - (-------- ) A

. 49 29820

24336 A
(-------------)A )•••( 15)

18147600
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Thus equation (12) reduces to

# (16)
dx UU

where

L( >) - 2 £l - >(H + 2)J (17)

is a Universal function.

Equation (16) is ordinary nonlinear differential equation 

of first order and may be integrated numerically, 

d b\
Since --- ( ) can not be infinite at x * 0# L( 7 )

dx ^

must be equal to zero at the stagnation point.

This gives

I - >(H + 2) * 0 (18)

Substituting the values of ^ , H and I from (13), (14) and 

(15) respectively in equation (18) and on simplification we 

find

fO.0000016 A4 + 0.000039 A3 - 0.0004 A2 -

0.062 A J + 0.0417 £0.0011 A2 - 2.1837 A

+ 11.918 ) « 0. ... (• • • (19)

gives the roots as
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■ 343*72/ 288*51f 42.44/ 11.76/ two roots are Imaginary*

But due to limitations on the range of /\ / i.e. -12 ? 12

only. One root 11.76 is permissible. The initial value of 

A is

A 11.7600 .. (20)

Therefore the corresponding initial equation (10) values of 

from equation (13) is given by

0.1026 ... (21)

Hence
62

< >*-0
0.1026

dU
(--------)°

dx

... (22)

and a simple process by taking limit

dx

V11

^ >x-o >o ... (23)

where the prime denotes the differentiation with respect 

to x.

Application of Ka*rm>an Pohlhausen Method s

(a) Boundary layer over a flat plate s

dU
In this case U(x) * constant therefore — * 0

dx



Hence# A * 0# and > » 0 and the equation (16) will take 
the following form

d 6? L(0) 0.8082---( —£ ) *-----  « ------ ... (24)
dx ^ U U

The solution of equation (24) with the initial value S2 * 0 
at x * 0 gives the momentum thickness

6y - 0.9035 V---- ... (25)2 v U

and therefore by using equation (14) and equation (25)# the 
displacement thickness Si is given by

S 1 1.3308 ... (26)

and the shearing stress ? , by using equation (15) and

equation (25) is calculated as

?
o (0.562) ... (27)

(1) Two-dimensional stagnation point flow t

In the case of two-dimensional stagnation point flow 
the potential flow velocity is given by

U (x) ■ a.x

therefore# U*(x) * a and U* (x) * 0
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Hence, from the equation (16) and equation (22) we have 

26~ 0,1026

It may be noted that it is not only true at x * 0 but is 
true for all values of x, since the equation (22) gives a 
zero increment in its initial value. Also the value of 
remains the same as 11,76,

Thus the momentum thickness 62 Is obtained as

6< 0.320 ... (28)

and the displacement thickness 6^ is obtained as from 
equations (28) and (14)

61 0.471 v|vT ... (29)

and the shearing stress ? on the wall from equations (15) 
and (28) is obtained as

? 1.3089 jilJ nJ«/T ... (30)



51

3. Suction velocity at the point of separation for a

boundary layer flow over a flat porous plate s

In the general case of arbitary body and the arbitrary law 

of suction we shall give the approximate methods for the 

momentum integral equation. The displacement thickness.

oo 1
6* . J ~ (U - u) dy

0 U

The momentum thickness.

oo u

* ‘ i (U - u) dy

and the shearing stress.

L0 M ,
... * (u2 e ) + 6* u —

f* dx dx

Then the equation of normal component of velocity at a 

distance y * h is given by

h o u
Th ■ v0 - -1 ;*■ as "• (1)

0 ) x
?

The momentum integral equation is given by

2 d 0 dU TL
U ----- + (20 + 5* ) U — - v„ U - ----- ... (2)

d x dx ° P

where the addition term (- vQU) denotes the change in

UM. BALASAHEBKHftUl&KARUWy
^SivAJI UW1VEBSITY. HOLUAWKfc



momentum with the suction at the wall. This equation was 
used by L. Prandtl, for the simple estimate of suction 
velocity which makes sufficiently to prevent separation. It
was assumed that /\ *
Now u - F(H ) + A <3(^1)

12 by L. Pohlhausen.

u
0

where F(t]) ■ 2t) - Stj4 + 6T)5 - 2r\6 

G(t|) .
1 ^2 4 n5 3 6i tj--- + n4----- + — n6
5 2 5 10

with A ■ - 12
then
u
0 FOD + A GOl)

r 2 a 42 8 ^- r\ - 17 T}4 + — t|5 + - n6) 
5 5 3

* -2 v y 4 42 y 5u • 0 (i(-- )■<*)- (17) ( - )4 + ( - ' ' ' -
- 5 6 6

8 y+ ( - ) ( - r)
3 6

Now we take from previous problem.

and

6*
6

e
5

2( -
7

10 
( — 
49

156.... A )4260

24336 2----  A )468
29820 18147600

i in
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Now for /\ * - 12

6* ■ 6(0.7249)

and 9*6 (0.2281)

6* + 2 9 - (0.7249)6 + 2(0.2281) 6

* 6 (0.7249 + 0.4562)

6* + 28 * (1.1801) 6

<39
substituting this value in equation (2) and taking — ■ 0*

dx
because of the assumption of constant boundary layer thickness.

2 <39 <30
0 + (29 + 6*) 0 — - vc U

dx dx„ T°and — « constante
On simplification it gives#

e

vo (1.1801) 6
<30

dx
(3)

Now we shall try to calculate the value of 6# the momentum 

equation is necessary to satisfy the equation of motion at 

the wall is required by E. Pohlhausen

d u

Ty )y*°
<30

o — +
dx

» 2d u

7?' '*>

under the consideration
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( 1 u 
d y 0/ and

12U
6^

Then above equation take the following form

6
12 }
<3U(----- )
dx

Substituting equation (4) in equation (3) we obtain

vQ - ( 1.1801)
dQ
dx

« •
vo

dU
— ) 
dx

. (4)

. (5)

which is the required suction velocity



55

4. Approximate solution of Pohlhausen *s problem of forced

convection on a heated vertical plate.

Notations t 

k
a * ----- : thermal diffusivity

K t Coefficient of thermal conductivity

Cp 1 Speci£lc h*at at conatant pressu”

I Coefficient of tj1 in velocity profile

i
C^ * Coefficient of in velocity profile

? -

Pr '

Re «

T. . Ta___*oo

H^p
K

, recovery factor

Prandtl Number

Reynold Number

T s Temperature 

T i a diabatic wall temperature 

d T
- < --- )^o • *

a y
Nu(x) * f Nusselt Number

( T - T__ oo *

u, v j velocity components in x and y directions 

Uqq i Free stream velocity in x direction.
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x, y i co-ordinates along and normal to the wall

Greek Symbols *

5 i velocity boundary layer thickness

5t , thermal boundary layer thickness 
^tA » ... , ratio of the thickness of the temperature and a velocity boundary layer.

62 s displacement thickness

62 t momentum thickness

6 uQ ■ i*(--- shearing stress at the wall

H s dynamic viscosity of the fluid

t density of the fluid 

— , kinematic viscosity of the fluid

y.
St

©1 dimensionless temperature in the case 
of cooling problem

T - Too
®2 * —--- - # dimensionless temperature in the case of

w °° adiabatic wall.



W i conditions at the wall

od : conditions at the outer edge of the boundary layer.

Thermal Energy Integral Equation s

The method of obtaining the thermal energy Integral equation 

from the thermal boundary layer equation is similar to the 

momentum integral equation from the velocity boundary layer 

equation.

In the present case

d T d T 32T y cJu 2
----------  + v------  ■ a------ * + —— (---- ) ... (1)

d x cJy a y c$y

with boundary conditions

d T
y * 6t, ------ * 0

* y ... (2)

y * 0 , T • t^

Integrating equation (1) with respect to y between the limits 

at y * 0 to y * 6t we get

■ *t <»* «t a* ^

f u---- dy + j v------ dy
0 dx o dy

}t c?2t
f a------

0 dy2
dy + — 

eC.
5t du «>
r
o ay

... (3)
Consider
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ft
J a • 0

d2*
—5 <*y *ay2

d Ta ~—
d y

y»6t
iy**0

dT
A ___ mm

. il
dy y*&t dy y - 0

, d *- a ( -—-
d y

^y*0ss

and consider

ft d*; v ---
o Sy

dy * v ft d* „f -- dy -
o dy

6,t dv
J' dy

m vT y-6t
y»0

5t
- / »

0
dj_
dy

dy

■ - VT +
y-0

61 ^ du f T ...
o dx

dy by equation of 
continuity

* t d u ^* - vTqq + f T--- dy
0 d x

--- dy + T
6 x

_ dT 6t (j U? V---  dy * (T - Tqq ) / --- dy
0 fiy o x

Combining all the results in equation (3) we obtain

r
0

6 n A
---  dy
d x
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d T 6tdy + / <T - T > ---dy » - a ( —
6 * 0 dy

----  i ( — ) ayp Cp o d y
i *6« a 6t bT h &*. du «-- f u (T-Too)ay - -a(--- )„„ +--- r<-- ) ayax o

bT
dy s"° yo cp i dy

... (4)

This is the required thermal energy integral equation taking 

frictional heat in to account. It is also known as heat flux 

equation. An approximate solution of the thermal boundary 

layer based on thermal energy integral equation, has been 
studied by a number of authors including Krojuline jjL5j| 

Dinemann [16] Bansal [_17j] . From among the numerous proce

dures which are available for the solution of thermal energy 

integral equation.

We propose to study in detail a method based on tenth 

degree velocity profile because it is an extension of 

Pohlhausen’s method and gives result more near to known exact 

solution. Taking Pohlhausen's tenth degree velocity profile, 

for boundary layer flow over a flat plate,

u 10 *-- - f(n) « 11 ai ^l1 o < t) 51 ... (1)
uoo i-0 *

u" uoo ' T| > 1
where T] ■ y/&
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with the following boundary and compatibility conditions.

y * 0, u 0# ----------5dr
a3u
7y5 "<r?

.5
u

... (2)

y * 6, u u1 #QO
du <?2" a3*

»____ sat
4

d u a5u
* A

77 7? dY3 77 ’ ---- -- * o
d y5

Then using these boundary and compatibility conditions we 

obtain eleven constants as,

aQ » 0, al " 1*0412, a2 * 0

a3 « o, a4 * 0, a5 * 0 ... (3)

a6 * - 1.2624 a? * -1.2290 aQ * 1.8146

ag ■ 1.0376 a10 * - 0.002

Now we calculate F(i)) by using above constants

—- * FCn) * a0 + a^ + a2^2 + a3T,S + a4t'4 + *51)5 + a6i)6 + 

uao

+ a7r,7 + a8ti8 + agi)9 + a1Qi)10

F(l)) ■ 0 + (1.0412)1) + 0 + 0 + 0 + 0- (1.2624)t|6 -

- (1.2290)1)7 + (1.8146)1)8 + (1.0376)i)9 - (0.002)T|10.

Now we determine the displacement thickness, momentum 

thickness and shearing stress at the wall .
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Now we determine the displacement thickness* momentum 
thickness and shearing stress at the wall

(i) Displacement thickness (Sj.) i
u

6X - 5 J (1-------- ) dn
u.OO

1 6 7
6 S (1 - (1.0412)1) - (1.2624)1) - (1.2290)i)7 +

0
+ (1.8146)1)® + (1.0376)i)9 - (0.002)i)10 ) x

* 6 (l - 0.5206 + 0.1803 + 0.1536 - 0.2016 - 

- 0.1037 + O.OOOl )

- 6 (0.3278) ... (4)

(ii) Momentum thickness (62) *

6-
1
f

u u
--- (1 * ) *>
u.00 UOO

6 J ( (1*0412)1) - (1.2624)1)6 
0

+ (1.8146)1)8 + (1.0376)1)9 -

(l - (1.0412)1) - (1.2624)1)6

+ (1.8146)1)® + (1.0376)i)9 -

- (1. 2290)1)7 + 

(0.002)l)10 ) X

- (1.2290)H7 +
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5, . 8 f ((1.0412)*| - (1.2624)*!6 - (1.2290)*|7 + 
Z 0

+ (1.8146)*}® + (1.0376)*|9 - (0.002)*}10 ) X 

(0.3278) <&!

6 2 * 1 • 50 5

(ill) Shearing stress at the wall ( ?Q ) t

? HU°° ( iLf )
6 d ^ *1-0

( iL ((1.0412)*! - (1.2624)*}6 - (1.2290)T}7 +

6 d *1
+ (1.8146)*}® + (1.0376)*!9 - (0.002)T}10 ))

~ ( (1.0412) - 6(1.2624)1)5 - 7(1.2290)T}6 +

+ 8(1.8146)T}7 + 9(1.0376)*!® - 10(0.002)*!9 )
*1-0

oo (1.0412) .. (6)

(a) Solution of the cooling problem t

Introducing the dimensionless temperature 8^ as 

T - T,
«1 -

koo

*w - Too
.. (7)
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the heat flux equation in the present case is given by

d

dx

6t
S
0

(©i
u

-----)dy
u,_oo U.

“.(i-* >

oo d y y*o ... (8)

For the temperature distribution we consider the following 

polynomial in Ht( * y/6t )

10 iex - L(T|t) - i - XT nz o < nt <i ... (9)
1*0 r - -

«i - o» nt > i

Satisfying the following boundary and compatibility conditions

* 0, * 1, (
d2 «i . .

6 V

d3«i .
a-------- )

dV

, d4«i , 
dV

* ( a
d5«i

-------- ) - 0
dV

... (10)

^t * 1# ©i * 0.
d ei

d1t d 1t2

d3«!

d’lt3

d4«i
m m

dV

m
d5 «1 

d*lt5

The compatibility conditions are obtained from the thermal 

boundary layer equation after neglecting the term due to 

dissipation, on a similar manner the boundary and compatibility 

conditions of previous results from the velocity boundary 

layer equation. Moreover in the form of temperature distribu

tion is so selected as to ensure identical velocity and
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temperature distribution in the case of Pr ■ 1 (Prandtl 
number) for the existance of Czocco's first integral, 

d 2aWe have -- ( (a) ) * -—— ... (11)dx * U006t
where

6t (x)
A « -----—

6 (x)
1

H(a) * $ f(T|) L (T|t) d»Ko * t

It may be noted that
Y 6t““ . 4>. A6 6t 6

Performing the indicated integration we get
1

A 4 1 s H(a) « f a) L(t|t) dnt

1 10 , 10 A 1 i H(a) - / ( H a. (tJ^A)X ) (1 - H a.TL
o i-o 1 ^ i»0 x

l) an,

* A 0.5206 - 0.3613 + 0.1643 + 0.1421 - 0.1889 -

- 0.0984 - 0.00017

+ A6 - 0.1803 + 0.1643 - 0.1225 - 0.1108 + 0.1527 +

+ 0.018 - 0.00013

+ A7 - 0.1537 + 0.1421 + 0.1108 - 0.1006 + 0.1393 +

+ 0.0750 - 0.00014



0.2016 - 0.1889 + 0.1527 + 0.1393 - 0.1936+ A
8

- 0.1046 + 0.00019

+ a 0.1037 - 0.0982 + 0.0818 + 0.0750 - 0.1046

- 0.0566 + 0.00010

+ A 10 - 0.00018 - 0.00017 - 0.00014 + 0.00019 -

- 0.00013 + 0.00010 - 0.00019

H(a) * (0.5563) a - (0.0149) A6 + (0.2129) e? - (0 

+ (0.0012) a9 - (0.0007) A10

a 1 : H(a) « - f(T|>. L (T|/A) dtn

1 1 1 A
/ f(to . l(ti/a) dn + - / l(Va) an

A o A 1

a i *

H (a) * 0.5081

+ - (- 1.0000 + 0.4959)
A

1
+ Co.5206 - 0.3279 )

+ --- C -0.1803 + 0.1664) 
A 7

+ 5

.1829)

( 0.1536 - 0.1449 )



+ — £- O.2016 + 0.0904)

+ --- ("O.1037 - 0.1025 )

^ ~*mwm

*U
C - 0.0010 + 0.0007 )

H(a) - (0.5081) - (0.5041) - + (0.1967) ~
A AZ

- (0.0138) -- + (0.0087) -- - (0.1712) -s +A7 A8 £k

+ (0.0012) --- - (0.0003) --- .
Ai0 A11

(13)

Now Ka'rra'ans momentum integral equation for reduced form is

d 6| L (>)
--- ( -1- ) - ------
dx d Uqo

L( A) * 2 (l( A > *\ (2 + H ( X )))

K A )

dU &1-- , H( A ) * —.
dx $2

T0S2
» UQO

(14)

In the case of the boundary layer over a flat plate, 
we have

dU
U( x) * constant or — *

dx
0
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and hence ^ *0

Then the reduced form of Ka'rm'ans momentum integral 
equation take form

d 6? 2 K*) 2 T 62
— ( --- ) - ------ - ---
<3x ^ uoo uco *

2(1.0142) (1.505)

Uoo

On integrating with respect to x we get
2

&2 2 (1.0142) (1.505 )

uoo

2(1.0142)

1.505 U.CD

Now from equation (1)()

-- (8tH(i))
dx

6t (x)
a ■ ------i

6(x)

1.0142vT .a

6t2 H2 U) 2(1.0412 )
u.oo

X
^ h(a) dx

*> o ■« 1 xa2 h2(a) * 1.505 ± — / h(a) dx
x Pr 0

A2 H(a) * 1.505 i-
Pr

. (15)

. (16)

. (17)
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(i) For very small Prandtl number (i.e. for very large 

value of a)

H(a) * 0.312 (approximately)
-1/2A * 1.7903 Pr ■■ as Pr —^ 0 ... (18)

(ii) For very large Prandtl number (i.e. for very small 
value of a)

H(a) - 0.161 a
-1/3A ■ 1.6823 Pr as Pr-- ■> oo ... (19)

(ill) For moderate values of Prandtl number
_ -1/3 a ■ Pr

Constitute a good approximation.

(iv) The temperature gradient at the wall

( -—-l ) - -1.0142
d ,t \ * 0

Therefore the local Nusselt Number
/ JLI ) x

d y y"°
Nu(x) « ---------------

<Tw * Too )

- - ( iL!i ) . l
d ’It 1,1-0 6t

- 1.0142 i ( )1/2 \TSA 2.0284 1

(20)

2.0284



Nu(x) 1/2

6f)

0.873
Rex (21)

Then results (i), (ii), (ill) take the following forms,

Nu(x) » 0.873 Pr1^3 Rex as ... (22)

moderate values of Prandtl number ... (23)

Nu(x) « 0.487 Pr1/2 R0X X/2 as Pr--- 0 ... (24)

Nu(x) » 0.518 Pr1/3 Rex 1/2 as Pr --- oo

Now it can be easily checked that a 3 1, Pr * 1 is a solution 

of the above equation. Therefore if Pr ■ 1, * 6 and

* f), then we have

10 4
©1=1- T ©i*!1 « 1 - f(n). Pr - 1 ... (25)

i-0 1

which is known as Crocco's JjL8~) first integral.

(b) Adiabatic Wall s

T - T,
Introducing, ©2

oo
UQD V2 cp ... (26)

d T
and keeping in view that for the adiabatic wall ( -— )

d Y
the thermal energy integral equation takes the form

y*0

dx

d 6t u
£ ( «2---)dy

U.

2-i 5t, ^ u n o
f ( -- ( -- ) ) 2 ay

OO uoo 0 ' d t UOO

Let ©2 “ r
10
z
i*0

i s2Ci ^ >

... (27) 

... (28)



where the coefficients Cq to C1Q are to be obtained by using 
the following boundary and compatibility conditions.

d «2 d2 e2 , d3 «2 d*«2
T|t » 0 : -----» 0/ ------- ■ - 8 Pr A , ----- ■ —---

iMt d 1t2 ait3 c*1t4

d5 ®2
m ...... = 0a it5
d «2 d2 e2 a3 e2

T)t » 1; e2 “ 0, --------  * ---------- = ----------
d *it d nt2

d4 «2 dS «2
= ________ s ______- a 0

6 nt* d ^t5

(29)

and r *
Tr - ^

oo /2 Cr
(recovery factor)

The compatibility conditions are obtained from the thermal 
boundary layer equation for the adiabatic wall, in the usual 
manner.

The form of 92 is so selected as to ensure the Crocco's 
second integral when Pr * 1,
We find

c0 * 0 8 C2 * C3 * C4 " 0

Cx » 2 a C5 » 182 V'T - 557 Cx ... (30)
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C6 - - 390 x/r + 2010 Cx C? * 365 \/F - 2590 Cx

C8 « - 175 \/F + 1280 Cx C9 « 5^r - 45

Cio * 13 \/r~ - 98

Putting equations (1) and (28) in (27) we obtain 

d 2 } a
-- (6t G) - ------ J ... (31)
dx

fu
( $2 — ) cBlt • ••

0 uoo
A 3 U ,

and J * r ( ---(--- ) \ an ... (33)
o d ^ Uoo '

Performing the indicated integration in above equations we 
find .

10 10 10 i r . )G - Z H H a j a ( —
i«l k*l i+1 i+j+k+1

- (1.0412) a 62.5057 r + 0.0814/r - 0.8971 C*

- (1.2624) a 20.5152 r - 347.9584/r Cx - 0.008 Cj2

- (1.2290)a7 11.7550r + 0.07600/rC! - 0.0012 c\

+ (1.8146) a8 8.7584r - 12.8454/r Cx + 10.4933 G2 

+ (1.0376) a9 7.5547 r + 0.038/rCj + 0.3442 cf



7 2

- (0.002)a10 7.4044r - 9.5444/rCj + 8.5070 C2 ... (34)

and
10
T

10
X

ij i+j—1
4.

i-i
4-

J-l k*l i + j Zi i j

7544 a - 26. 15 A6 + 34.5075 a7 - 9.7455 a8

0.3453 a9 + 87.5544 10a • 315.5179 a11 +

+ 330.5053 a12 - 187.5543 A13 + 155.446 A14 - 

- 95.9490 A15 + 25.4757 a16 - 0.9096 a17 +

+ 0.0097 a18- ... (35)

and
544

J -   ... (36)
317

Integrating equation (31) and taking the value of 6 from 

equation ( 16 ) we have

Ga * 4.2035J ... (37)

Now# it can be easily checked that when Pr = 1 and a * 1 then 

r * 1 is a solution of the above equation. Therefore, in such 

a case * a^ and * t). Thus from (28) we haipe

©2 * 1 - ( £ a± n1 )2 ... (38)
1 i=0

©2 » 1 ** F2 (TO



which is the Crocco's second integral. Equation (37) indicates 
that r is a function of a and Pr. But as we know from equation 
(17), a is a function of Pr. Therefore, the recovery factor r 
will be a function of Pr only. Hence, equation (37) which is 
algebraic equation, can be solved in r for a given value of 
the Prandtl number Pr, taking the corresponding value of a. 
Prom (17) it is found that

(i) for moderate values of the Prandtl number the 
expression

-1/2 r » Pr

Constitute a good approximation to the solution of 
equation ( 37 ).

(ii) for very large Prandtl number (i.e. for very small 
value of a).

Ga * a (1.0412) 62.5057 r + 0.0814/rC! - 0.8971 C\
and J * 4.0250 a (approximately)

Putting these values of G and J in equation (37) and 
using the relation (19) we find

r * 0.0831 Pr1^3 for Pr —^ oo

which is about 4- % higher than the value obtained in So'M-Hi
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