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CHAPTER-II

INTRODUCTION 3

Here we are interested to study the practical applica-
tion of the boundary layer theory which are non-linear
parabolic differential equations. These equations are very
difficult and lengthy to be solved. Therefore, it becomes
essential to device approximate methods which may be'much
quicker to apply, although less accurate but may yield

acceptable results,

J.L. Bansal [12] studied the asymptotic suction
temperature profiles in a laminar boundary layer over a
porous flat plate. In this note it has been shown that in
the case of laminar boundary layer.over a porous flat plate,
In this-note it has been shown that in the case of laminar
boundary layer over a flat plate with homogensous suction as
we have the ‘'asymptotic suction veLocity profiles' for various
values of the Prandtl number (Pr). The recovery factor (Tr) in
such a case is found to be independent of Pr and has a constant

value 1.

Holt, M. and Modarress, D. [13] studied the ‘Application
of the method of integral relations to laminar boundary layers
in three-dimensions'. It has been traditional along fluiad
dynamicists to employ some numerical means (such as the finite

difference techniques) to solve two dimensional nonlinear



compressible boundary layer equations. But as an alternative
to this numerical procedure, the boundary layer equations have
been more successfully solved in an integral form for example,
with the classical Ka'rman-Pohlhausen momentum integral method.
The main principle of the method of integral equation is based
on the idea of representing the streamwise velocity gradient
(normal to the wall) as a simple algebraic function of the
streamwise velocity itself. These authors extended the method
of integral relations to the problem of three-dimensional
compressible boundary layer flows with and without separation,
By reducing the equations of motion to a quasi-incompressible
form they solved the resulting hyperbolic partial differential
equations,

B.P.Acharya & S.Pandhy [6] studied the free convective
viscous flow past hot verticgl porous plate with periodic
temperature. In this problem he obtained an analysis of a free
convective flow of viscous liquid past a hot vertical porous
wail was presented under the assumption that the suction
velocity is constant and normal to the wall, and the wall
temperature is spanwise consinusoidal approximate solution of
equétion of motion and energy equation have been obtained by
the method.of regular perturbation.

Krishna Lal [7] investigated "free convection laminar
boundary layer in the unsteady flow". In this paper he was

studied the effect of unsteady flow in the magnitude of surface
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temperature on the free convective laminar velocity and thermal
boundary layer on a flat plate was studied. In section one,

the general equation of motion-and the temperature distribution
are given. In section two, the solution are obtained when the
fluctuations in the velocity components and temperature distri-

bution are in the form
(w, v, G) = ( v,, V, Gg) + E (u;, V;, G) X exp (wt)

and lastly solution is given when the fluctuations is an

exponentially decreasing function of time,

R. Sharma [8] explained a two parameter method for
calculating the two dimensional boundary layer with suction
or injection. Detailed calculation of the boundary layer
parameters made by this method indicates that the error are

within 5% of the exact value,

.M.G.Palekar and D.P.Sharma [9] studied "approximate
solution of boundary layer equation with suction blowing
according to him the problem under consideration is that of
the boundary layer flow along a flat plate with suction or

blowing.

G.N.Sharma and D.P.Singh [10] investigated "The effect
of viscosity temperature law in unsteady boundary layer on a
flat plate®. They studied the effect of viscosity temperature

law, when the wall is in arbitrary motion with steady stream
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velocity. Prandtl number being unity.

D. Surma Devi and G. Nath [19] investigated ‘similarity
solution of the unsteady boundary layer equation for a moving
wall', In this problem we obtained the similarity solution
of the unsteady laminar for two dimensional incompressible
and of axisymmetric boundary layer equation for the case of
surface which moves with the velocity which varies inversely
as a linear function of time, The governing equation has been

solved numericglly.

R.P.Agrawal [11] studied ‘Non-linear two point boundary
value problem'’. In this problem he obtained existance and
uniqueness of the solution of third order non-linear differen.
tial equation with boundary conditions prescribed at two points.
R. sharma (8] obtained the exact solution of the incompressible
laminar boundary layer equations with zero pressure gradient
and variable suction. In this paper a numerical solution of
the boundary layer equations with zero pressure gradient and

with the general distribution of sunction is obtained.

It is Aiscovered by Holstein and Bohlen [1] that the
momentum integral equation may be solved easily if §,, instead
of 6, is regarded as the unknown function. In order to avoid
the numerical integration of the differential equation we turn
about a simple method suggested by Waltz and Thwaites [3] .
Seeing the nature of the curve L(} ) plotted against )\ , which
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is almost a straight line, it was suggested by wWalz that the

function L { 2 ) can be approximated by

LX) =aa«b) .

The solution of the equations for velocity field are
obtained. The solution of the equation for the temperature
field, which was obtained by E. Pohlhausen [2] . The solution
of the thermal boundary layer equation

) o d e 3. 1 3 e

Vr - - - + vz - s apen = - - - - ( - -
or D2 Pr r 3dr . 2r
was obtained by Yih [5] . The solution of the integral equations
was obtained by Squire [4 ] . The recovery factor obtained by
Pohlhausen was computed by E. Eckert and R.M.Drakes [14] for

a largé range of Prandtl numbers namely Pr = 0.4 or Pr = 1000.



1. Approximate solution of Pohlhausen's problem of free
convection on a heated vertical plate 3 ‘

Notations
a = K/ecp s thermal Aiffusivity,

K Coefficient of thermal conductivity,

cp 3 Specific heat at constant pressure,

B Cp
Pr : Prandtl number = we--a ,
K
oT
Nu(x) = - w=-== 3 Nusselt Number
Tw - To

S : Kinematic viscosity
n o= v/ _
u and v - velocity components in x and y directions.

Uy = £free-stream velocity in x-direction

X, ¥ ¢ Co-ordinates along and nommal to the wall respectively.

@ B acmenm= |, dimensionless temperature
Tw - Tbo

S5 displacement thickness

ul(x) t+ Any arbitrary function

Cy, Cyt Any two constants

g(Ty, - Tep )
Gr = ——-;3-2-—;.?;—— . 83. GraSShOf.s Nmber
e o]



The equations governing the motion of the fluid in the

neighbourhood of heated vertical plate are given by

ou d v
——— P ——m——— % cew (1)
? x d v
) u d u 2%
U weame + V =omw = -b ----'2' + gx e coe (2)
d x 0y ay
J e J @ 3%
U wowe + v [ = a ——---5 s e (3)
J x 3y J Y
T -« T T, =T
where 6 8 aewewen- and a = -!---.93
‘ T, - To T

with the boundary conditions

y=0, us=0Q, v=0, =]
eos (4)

N St S

y=6,u=0, =90

Integrating equations (2) and (3) with respect to y between

the limits y = 0 to y = § we get from equation (2)

2
8 ou ) ou 8§ Jdu )
S ue-e ay+ J veo—-ay= ) ----3 4y + g« { eay
0 Jdx 0 9y ° 9vY 0
see (5)
) Ju y=§ - 6 ov
Consider { V=== dy= vu | =« ( u, --- dy
0 dy y=0 0 Y
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' § av
= v.u - v.u - ( u, —-
y=5 y=0 o oY
8 g u 6§ o u
[V e=e= dy=+ (U —-e- dy by (1)
0 D 4 0 g x

Consider the first part of R.H.S. of equation (5)

2
§ Qd'u d u
0 9y dy YO
du J u
= - ( :-; )Y"'o + Q (-a-“; )Y"5
u
y=0

Then equation (5) will take the following form

o u ) o u

)
u ay + U woee @y = = ) ( =mm-)
0[ o0 X J' J x Jy YO
4a ) u
ioeo - o , uz dY - - o ( "a"- ) O
dax 0 a Yy - y=
From equation (3) we have
8 ) 3 e 5 92
Weeee dy+ [Ve-e- dy=a g -=--3 dy
0 Jd x 0 OJY J Y
& e y=3$§ L3 v
Consider [ v 9.2 dy = ve | - J o 97
0 d Yy=0 ) Jy

XX (6)



8 oV
= v @ - Vo - § @ e--= ay
Y=5 y=0 0 JY
u
= 4+ fe -c?-—- ay by (1)
0 o X
and 2
2°® o @ Yy=39§
& ) ecoceea dy = Q@ =emew
6 o9 ¥ Jy u=o0
J e o @
- 8 wwmn “ B eoamme
J Yy y=b oY y=0
9o ©
R

Then equation (7) will take the following form

8 ® 8 u -
f u i-)f dy + Je _OL__ dy = -a ( -q--- ) =0
0 0 x a x Jy ¥
4 [ J e
i,ee = [ (U@ ) dy= « @ ( =wue) eees (8)
ax 0 0y Y=0

Solving the above integral equations by taking the following
polynomials in n = y/§ for the distributions of u and @,
satisfying the respective boundary conditions

us=yon (1-mt

eee (9)
and o= (1- M4

where ul(x) is an arbitrary function has the dimension of

velocity to be determined,
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a ' 1l ul .
(0.6669) ——n (ui §) = —- gub - 3 -—- eee (10)
ax 5 3
and equation (8) will reduce to
a 4a
(1.0131) —=- (W;5) = - eee (1)
dx 8

Let us try to find the solutions of the above equations in

the forms of

Ty = x" and

n

6§ = C, x ees (12)

Then from equation (12), equations (10) and (11) will take the

form
2 2mn-1
(2m + ) (0.6669) cl C2 x
C
5 CZ
mn-l da
(mtn) (1.0131) C,Cy X D=l = o x ees (14)
C
2

must be identically satisfied.

This gives
2m+ n-l=snsmensm+ne-l1ls=o.n
m=1/2 and n = 1/4

Then we have

1 1
-3 % 3
cl = (1.0261) ) (Pr + 4.3886) ( ===)

eee (15)
2
7 N
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1 1 1
- - g a -3
C, = (2.2651) Pr 2 (Pr + 4.3886)% ( 73 )

From equations (12) and (15), we have

6 =1/2
- = (2,261) Pr /

ga _
(pr + 4.38886)2% ( 5 y=1/4 , -1/4
X

5 - -
- = (2,261) Pr /2 (Pr + 4.3886)1/4 (Gr) /4
x

where
g (Tw - Too) gax

Gr = G e S e - L I

2
V¢ Too b
The temperature gradient at the wall is given by

o ©
( —mme )

gn =0 -2

The local Nusselt number for the heat transfer in the present

case is given by

07T
- ( .5-;- )Y'O « X
Nu(x) * ;coccecccae- -
(Ty = Too)
0 @ x
Nu(x) = o ( ee—e- )ﬂ=0 ® o~
on 8

= 2.0000 X 0.4415 X (0.733)Y2 (0.6647)

Nu(x) = (0.502) (vf:‘»z')l"’4

» Pr=o0.733.
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2, Aggroiimate solution of Karman's Pohlhausen's Method :

Karman's Momentum Integral Eguation

The boundary conditions for a steady two dimensional

compressible flow are

o u o u av 32 u

Uommen + Vomee ® U moe 4 ) cc—es ees (1)
J x d Y ax J v
..d....:.x + .(2.-‘: = 0 eee (2)
Jd x gy

The boundary conditions are

y=0su=v=0;:y=§ (x) : u=U (x)
where §(x) is the boundary layer thickness.

The modification of boundary condition in (3) from the usual
condition y = co: u = U(x) should be noted. In fact there is

no edge to the boundary layer and

ou Qg
U =ee U and eee- , ====3 etc, tends to zero asymptotically.
Y dY

However the integral methods, it is often assumed that the
boundary layer has a finite thickness and the outer boundary

conditions are modified so that some point

y= §(x) s u=U(x) and
g u azu

- —— ) hadadonde d0d etC. are zerO-

Jy J v?



Integrating the momentum equation (1) with respect to y

between y = 0 to y = §(x) we get

8 8 § auv’ .
_{ u -d-—--‘-l dY + ! v -é--? dy = U e dy +
0 g X 0 Y 4 x
2
§ 0" u
( —m-ms ) &y
)05 3753
[\ du o v
= U =ee dy - ) ( ———m—- ) ese (4)
6( 4 x ' JY y=0

Integrating by parts the second integral in the L.H.S. of

equation (4) we find

8 u =5 8 C’ v
f v dy= wvu | - f u<e-s @y
0 oY y=0 0 oY
(v) v fuldl s (s)
= v - L 3 N wme- Y see
y=5 8 g =

where the boundary condition (3) and the equation of continuity
has been used. It may be noted that at the outer edge of the
boundary layer the velocity component v is not equal to zero
and in order to substitute its value in terms of u, we

integrate the equation of continuity also with respect to y
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between vy = 0 and v = §(x) which gives

16 " (6)
( ) = - - - dY ee e
¥ y=s 0 9 x

From equations (5) and (6)

fGV---‘:dy = - U ? -‘2--:1 dy + {6 u -d--‘:dy... (7)
) oY 0 g x 0 d x

putting (7) in (4), we obtain

6 du
[6 -?.- (uday) - U Is -d__f dy = [ U cee- dy -
0 g X 0 g x 0 ax

Y9ty e

gy YO
But a 5 a
8 : 3
-a.- (uz)dy = - omam ! uz dY - Uz - es e (9)
90 X ax o 4 x
and 3 a 8 as
. u
U J - - dy = U - - j u dy - 02 - - ese (10)
0 ad x adax O ax
Hence equation (8) reduces to
a ) a ) au Ju
-—— [uzdy-U--- fudyc f Ueecdy - (===

0
ax 0 ax 0 6 ax oy ¥

L N ] (11)
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d § au & g u
iee === f u(U-udy+ -- f(U-u) dy= J (-—==)__4
ax © ax o oy ¥

e e (12)

Introducing the follewing quantities,

[}
(1) 6 = f (1 - g Ydy (displacement thickness)

0
8
or 051 = f (U - u)dY eece (13)
0 .
6 o u
(11) &, = S s (1 =« ~ )&y (momentum thickness)
0 u
9 [
or U5, = f @ (U - v)ay - eoe (14)
0

(iii) and f[; =y ( ..(.)-.-B

S yv)7=° (shearing stress on

the wall ) soe (15)

Equaticn (12) can be written as

a au T
e (%) + U8y
ax dax jo
: 2 482 au ’TB
or U™ eem 4 (26, + 6)) U - = oo cee (16)
ax ax f’

which is known as the Ka'rma’'ns momentum integral equation

for the two-dimensional steady incompressible boundary

layers.

- 827
A
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It may be noted that the Ka'rm'an momentum integral
equation (16) is an ordinary differential equation for the
boundary layer thickness §(x), provided a suitable form of
the velocity profile is assumed, K. Pohlhausen, on the
suggestion of Ka'rm'an assumed a polynomial of fourth

degree for the velocity profile and worked out the solution.

In this problem we studied a polynomial of sixth

degree for the velocity profile and worked out the solution.

Karm'an-Pohlhausen Method :

The "similar solutions"™ of the boundary layer thicke
ness, reveal that the‘velocity distribution in the boundary
layer is some function of the radio y/§ which we approximated

by a polynomial of sixth degree velocity profile in y/§ as

follows @
u 6 i
- = f(n) = Zaifl s 0<n1 <1
U i=0
u
- =1 forn > 1 , ees (1)
U

In order to determine the coefficients ag, 21, 23, 33, a4,
a5, g the following boundary and compatibility conditions

are used,



azu au a3u
y=0: u= Q; 3(-6--;5) "-U-d-;'(-c;;s)y.‘o‘o..
500(3)
u u u
y-G:u‘*U;(?---) -‘3---> <-Q---)=o.
gy o TR T

The first condition at y = 0 is the usual no slip boundary
condition whereas the second, known as the compatibility
coﬁdition, at the surface, follows from the boundary layer
equation, It may be pointed out that compatibility condition

is always satisfied by all exact solutions.

The conditions at y = § follows from the consideration
that the outer edge of the boundary layer the velocity u in
the boundary layer passes smoothly to the potential velocity
U, The coefficients a,, a,, az.Aa3, ag. ag, ag are obtained

by the above conditions (3), They are given by

ao = 0‘ al - - e -~ - rl az - - e sv e (4)
10 2
3IA - 20
a = 0' a L A - 5' a = - - -~
3 4 6 . 10
82 au
where A = e - (Sshape factor) eee (5)
N ax

Hence the sixth degree velocity profile which satisfies
the boundary condition (3) are
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u

- = £(n) = F(n) + A G(n) ces (6)
where
F() = 2n - sn* + en® - m® vee (7)
G(n)slq-ﬁf+n4-ﬁf+3- 115
5 2 5 10

The velocity profile (6) is a one parameter family of curves
with parameter A , known as the shape factor because the
shape of velocity profile, plotted against N depend on the

value of 7

Range of A

The range of A for which the above distribution is used,

will be determined by the following comsicderation.
"The value of A = 0 i.e. when -gg = 0 corresponds to the

profile in the boundary layer on a flat plate. The profile

at separation point with ( -3-3 )0- 0, with al = O occurs at
b4

N = - 12, It will be seen later that the profile at the
stagnafion point corresponds to A = 11,76. The value of

" greater than 12 must be excluded, since for such value of u.
would exceed U within the boundary layer, which is physically
unreasonable. For values of /\ less than =12, which
corresponds to the conditions behind the point of separation,

the calculations based, as it is on the boundary layer
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concept loses significance. Therefore the shape factor 7 is
limitted to the range

We are now, in a position to calculate the value of §(x)
from the Ka'rm'an momentum integral equation with the sixth

degree velocity profile.

For this we calculate §,, §, and ?’o

[
(1) 51" J (1-‘.)61’

61 = 6 C( % ) - ( - - )A) L ) (9)
. -
u u
an s= f FA-g) &

1
=5 [ 2@a-2) a
0 U

U
L10 468 24336 <
8328 (( =) = (=ocom JA = ( meceemm ) A 2)
v 49 29820 18147600 ‘
[N N ] (10)
and
o u
(11) T = p ( =mem- ) W ot

gy Yo " ¢ 37y =0

T = BU ( 22220 ee. (11)
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It was discovered by Holstein and Bohlen that the momentum
integral equation may be solved easily if 84 instead of 6y

is regarded as the unknown function.

Por this we wrote the equation. as

2
Us, 43 61 6 au To 6
5 ax P )7 ax p U

Equation (12) may be simplified as, if we introduce the

following parameters

2 2 2
) E - wngn o w—e = - L wme o -
ax

- 10 468 24336 o 2
QR P pcp PP P T
. 49 29820 18147600 ¥
e (13)
H (>\) - 51/ 52
ol 2 156 -
= ((2) - (- )
.7 4260 K
T 468 24336 5!
. 49 29820 18147600 :
5
and I (D) = -.TE-E
pU
2A 420 , 10 468 24336 A
= (mmmemem ) ((mm ) = (ommom YA = ( commmee yAD)...(15)

10 . 49 29820 18147600
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Thus equation (12) reduces to

2 2
4 s L( ) 5, U
- ( ""3 ) = "-.a- ’ A = ""2-- es e (16)
ax 9 v S
where
L(D) =2 {I- 2@H+2) .o A7)

is a Universal function.

Equation (16) is ordinary nonlinear differential equation

of first order and may be integrated numerically.

2
a )
Since e=a (r--E ) can not be infinite at x = 0, L( 7 )
ax

must be equal to zero at the stagnation point,
This gives
I - )(H + 2) - 0 o e e (18)

Subsgtituting the values of 5 , H and I from (13), (14) and
(15) respectively in equation (18) and on simplification we
find

Zo.ooooom A4 + 0.000039 A3 - 0.0004 /\2 -

0.062A) +0.0417 (0.0011 A% - 2.1837A

+ 11.918 ) = o. e (19)

gives the roots as
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= 343,72, 288,51, 42.44, 11.76, two roots are imaginary.

But due to limitations on the range of A , i.e., =12 ¢
only. One root 11.76 is permissible. The initial value of
A 1is '

A = 11,7600 ses (20)

Therefore the corresponding initial equation (10) values of
from equation (13) is given by

A= 0.,1026 eee (21)
Hence 2
62 0.1026 (22)
( - ) B eweoaccmsms ‘ es e
x=0 au o .
(em==)
ax

and a simple process by taking limit

a &g oyl
-8; --S- )x=0 8~o.$6§i§ )0 . LX) ‘23)

where the prime denotes the differentiation with respect
to x.

Application of Ka'rm'an Pohlhausen Method

(a) Boundary laver over a flat plate :

au
In this case U(x) = constant therefore =~ = 0

ax
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Hence, A = 0, and D\ = 0 and the equation (16) will take
the following form

a s% L{0) 0.8082

e (( wwm ) B e B e

ees (24)
dx ~ U 4]

The solution of equation (24) with the initial value §, = 0

at x = 0 gives the momentum thickness

\ ,; X
62 = 009035 - - see (25)
U

and therefore by using equation (14) and equation (25), the
displacement thickness §; is given by

X
8, = 1.3308 \/-—--—- ees (26)

U

and the shearing stress j?o . by using equation (15) and

equation (25) is calculated as

? U
‘ o = p 3.-- (0.562) R (27)
X

(1) Two-dimensional stagnation point flow 3

In the case of two-dimensional stagnation point flow
the potential flow velocity is given by

U (x) = a.x

therefore, U'(x) = a and U* (X) = 0
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Hence, from the equation (16) and equation (22) we have

2
6,  0.1026

3 a

It may be noted that it is not only true at x = 0 but is
true for all values of x, since the equation (22) gives a
- zero increment in its initial value. Also the value of

remains the same as 11,76,

Thus the momentum thickness 62 is obtained as

and the displacement thickness 61 is obtained as from

equations (28) and (14)

6y = 0.411 Jo/) .o (29)

and the shearing stress 7 on the wall from equations (15)

o
and (28) is obtained as

?o = 1.3089 pU \J&/ ) .ee (30)
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3. Suction velocity at the point of separation for a

boundary laver flow over a flat porous plate

In the general case of arbitary body and the arbitrary law
of suction we shall give the approximate methods for the

momentum integral equation. The displacement thickness,

oo 1
§* = f == (U -nu) ay
0 U

The momentum thickness,

Q0 u

o= ({ -Gz (U - udy

and the shearing stress,

T, au
22 . 4 (U2 9 ) + 6* U —=
e ax ax

Then the equation of normal component of velocity at a

distance y = h is giéen by

.? ou
7, = v - - - ds e (1)
b ° 0 ) x

°

The momentum integral equation is given by

2909 au To
—-——- t (29 + 8% ) U = - vo Us - eve (2)
ax ax ©

where the addition term (- v,U) denotes the change in

SAHES RHZHEEKAR LIBRAKY
“ﬁv&ﬁ‘xj\uuwsasm KOLHAPUE.
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a
D

momentum with the suction at the wall. This equation was
used by L. Prandtl, for the simple estimate of suction
velocity which makes sufficiently to prevent separation. It
was assumed that A = -~ 12 by L. Pohlhausen.
Now

u v

- =F(M) + A G(M)

U

where F(n) = 2n - 514 + 61]5 - 21|5

2 5
n 1 3
M) = =M= 41 o e 4o n®
5 2 5 10
with A = « 12
then
.
- = F(Q) + AGH)
U
42 a
= (- Sn-170t s o0 n °)
5
42 Y s
* u=Uy G(--—)( ) = a7 (I s (=20 =)+
. » 5 6 5 6
8 Y g
+ (=) (=)%)
3 5 -
Now we take from previous problem,
&% 2 156 |
e ®( = e A )
6 7 4260
and
° 10 468 24336 2
e ® (= - —m——— A e mmmeeeea A D)



Now for A = - 12
6* = §(0.7249)
and @ = § (0.2281)
§* + 20 = (0.7249)8 + 2(0.2281)‘6
= § (0.7249 + 0.4562)

6* + 20 = (1.1801) §

‘ ao
substituting this value in equation (2) and taking - = 0,

ax
because of the assumption of constant boundary layer thickness.

ae au T

dax ax e
To

and - = constant

On simplification it gives,

au
v, = (1.1801) & --- eee (3)
ax

Now we shall try to calculate the value of §, the momentum
equation is necessary to satisfy the equation of motion at
the wall is required by E. Pohlhausen

o u au dzu
Vo (-C;--; )Y"O-_'U;;; + -; ( -d--;i- )Y'O

under the consideration



2
o u u 120
gy oY 6

Then above equation Eake the following form

12 3

6 L2 W B e - e LN (4)

Substituting equation (4) in equation (3) we obtain

. 12 ) au
Vo " ( 1.1801) ( —emmmm—eee ), =
au dx
(= =)

dx

dU .
. vo z o 3,71 J"’ Q ( - ) s (5)
L . 4 dx

which is the required suction velocity.
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4, Approximate solution of Pohlhausen's problem of forced

convection on a heated vertical plate,

Notations :

k
as= — : thermal diffusivity
«Cp

K 1 Coefficient of thermal conductivity
cp ¢ Specific heat at constant pressure
a, ; coefficient of n! in velocity profile

Cy s Coefficient of ﬂi in velocity profile

Ta - ThD
u® /26
©® p

WS

Pr '® aae , Prandtl Number
K

Ugg X

3

T ¢ Temperature

T_ 3 a dlabatic wall temperdture

a
oT
- (d""; )Y-o e X
Nu(x) = O - = gy G A e ’ Nusselt Nun‘ber
( TW - m)

U, v 31 velocity components in x and y directions

Uy, : Free stream velocity in x direction.
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X, ¥y s co-ordinates along and normal fo the wall

Greek Symbols 3

5 3 velocity boundary layer thickness

6t s thermal boundary layer thickness

)
A= -E- . ratio of the thickness of the temperature and

N
velocity boundary layer.

61 : displacement thickness

62 1+ momentum thickness

Jd u
o = )1( .d--;r )Y’O'

shearing stress at the wall
p 3 dynamic viscosity of the fluid

ok

lfg 3§ density of the fluid

B
,9 = we o, kinematic viscosity of the fluid

b4
ﬂ'g. T!t' §°
t
T - Teo ,
01 B emccce——— . dimensionless temperature in the case
T =T
o of cooling problem
T -Ty,
92 B eceeca-e . dimensionless temperature in the case of

adiabatic wall,



o'/

W 3 conditions at the wall

o : conditions at the outer edge of the boundary layer,

Thermal Energy Integral Equation :

The method of obtaining the thermal energy integral equation
from the thermal boundary layer equation is similar to the

momentum integral equation from the velocity boundary layer
equation.

In the present case

0T g T PR B ou 2
Uoommm # Voomme ® @ ey 4 cmem (ame ) eee (1)
d x qv J Y PpC  OY

with boundary conditions

oT
Y'atc bndadndend .0

9 Y ces (2)
Y"O. T'Tm

Integrating equation (1) with respect to y between the limits
at y= 0 to y = 5§, we get

¢ T 3 T 5 2y w6 u
o Jdx 0 dy o 9y €, 0 gy

seo (3)

Consider
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§¢ 0°T 3T Y5

§f L ay = a2
0 oy? 0y y=0

oT | 9T

oy Y=8¢ dy y=0

arT

'-ﬂ(-d--;)yao

and consider

8¢ OT 8y OT S¢ OV
f Ve dy=v | == dy - g'r---dy
0 oY ] oY ay
Yy=0¢ ) v
= vr | - j‘t T -Q- ay
y=0 o oY
¢ agu
= = YT + ( T -—= dy by equation of
y=0 0 ox continuity
6¢ Qg vu
= - Vo + T —me= dy
® g o %X
S¢ o u 8t Qg u
= - T, g —eee dy +T [ - &y
o X 0 0 x
& oT 8 u
(R dy-('r-'roo)[t-g--- ay
0 ay 0 g x

Combining all the results in equation (3) we obtain



) T 5¢ u T
ffa fn ay+ ((T -1y 9y =-acdl, i
) o x 0 ox oy ¥
8 u
LI R A N
PC 0 Jy¥
i.e.
a § _ JT B 6, Qu
- T (P-Tg)ay = —a( —omm) g+ —om- (5= ) 2ay
ax 0 day Y7 pcy, oy

L (4)

This is the required thermal energy integral equation takingl
frictional heat in to account. It is also known as heat flux
equation. An approximate solution of the thermal boundary
layer based on thermal energy integral equation, has been
studied by a number of authors including Krojuline [}5]
Dinemann [16] Bansal [17] . From among the numerous proce-
dures which are available for the solution of thermal energy

integral equation.

We propose to study in detail a method based on tenth
degree velocity profile because it is an extension of
Pohlhausen's method and gives result more near to known exact
solutioﬁ. Taking Pohlhausen's tenth degree velocity profile,

for boundary layer flow over a flat plate,

u 10 i ‘
e =f(N) = 3 a, n o<n s1 eee (1)
Upo 1=0

u'UOO' n>1l

where 1N = 1/6
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with the following boundary and compatibility conditions.

dzu dBu d‘u dsu
y - 0. u= O, hadedad = "-"5 = O = -“-“‘z = """"‘g LN (3)
oy oy g Y oY
agu dzu a3u a gsu
y= §, u= Um' e B amen B aomme B wowe B ameee B )

oY d¥: 9y oY! 9 ¢

Then using these boundary and compatibility conditions we

obtain eleven constants as,

a; = 0, a; = 1.0412, a; =0
33 = O, 34 = (, as = 0 se e (3)
a

6™ - 1,2624 a, = -1,2290 ag = 1.8146
39 = 1,0376 alo = - 0,002

Now we calculate F(n) by using above constants

u
——— = F(N) = ao + al‘q + 321]2 + a37|3 + 641]4 + asﬂs + 36116 +
Yo

+ a71|7 + ae'ns + ag‘qg + alofllo

F(M) = 0+ (1.0412)7 + 0O+ 0 + 0 + 0 - (1.2624)n° -
- (1.2290)n7 + (1.8146)7% + (1.0376)%° - (0.002)010.

Now we determine the displacement thickness, momentum

thickness and shearing stress at the wall.
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Now we determine the displacement thickness, momentum

thickness and shearing stress at the wall

(1) Displacement thickness (§;) 1

1l u
8 =8 f (1= =e) am
0 Uoo
1 6 9
=8 J (1~ (lL.0412)n - (1.2624)n - (1.2290)n' +

0
+ (1.8146)0° + (1.0376)n° - (0.002)n1% ) xdm
=5 (1 - 0.5206 + 0.1803 + 0.1536 = 0.2016 -
- 0.1037 + 0.0001)
61 = 5 <°.3278) oo e (4)

(11). Momentum thickness (55) 3

u 1 u an
o O )

1
6, = &
2 of
1 6 .
6, = & J ( (1.0812)n - (1,2624)n° = (1.2290)n" +
0

1l

(1- (l.0412)n - (1.2624)0% - (1.2290)n7 +

+ (1.8146)118 + (1.0376)119 - (0.002)1110)
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1 6
5, =8 § ((1.0812)n - (1.2624)n° - (1.2290)n7 +
0
+ (1.8146)78 + (1.0376)1° - (0.002)710 ) x
(0.3278) dn

62 = 1.505

(i11) Shearing stress at the wall ( ?o ) s

v o f
¢ " bo (2. ) n=0
) oM

U
- I ( 9. ((1.0412)n - (1.2624)n6 - (1.2200)n7 +

° s on
+ (1.8146)7° + (1.0376)7° - (0.002)n10 ))
Heo 5 6
= w-oo  ((1.0812) - 6(1.2624)0° - 7(1.2290)° +
5
+ 8(1.8146)n" + 9(1.0376)7° - 10(0.002)n° ) o
U
e = E"ED. (100412) see (6)
"ot

(a) Solution of the cooling problem 3

Introducing the dimensionless temperature 6, as

T-T
61 = --—-——?;- LN (7)
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the heat flux equation in the present case is given by

a ‘ 6t u -8 d 8]
-—— (91, ——— )Y B wee ( wene= )Y"O eee (8)

For the temperature distribution we consider the following

polynomial in M ( = /8 )

10
€, = L(N,) =1 = S ayn 0<n, <1 eees (9)
1 t i=o 1% = 1t & |

91‘9: 'tt)l

Satisfying the following boundary and compatibility conditions

2 g 3¢ 491
My =0, 8 =1, ( a -a-----l- ) = ( a -é-—-i ) = (a -d----- ) =
d M¢? aNe3 ONgt
50,
b ( a "d"'-" ) = 0 see (10)
aNS
Ne. =1, 6, =0 d 91 = d291 = a—igl = 4461 -
€ ! Mg 9 Mg2  OM3  gNgs
a° e .o
oNgS

The compatibility conditions are obtained from the thermal
boundary layer equation after neglecting the term due to
dissipation. On a similar manner the boundary and compatibility
conditions of previous results from the velocity boundary

layer equation. Moreover in the form of temperature distribu-

tion is so selected as to ensure identical velocity and
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temperature distribution in the case of Pr = 1 (Prandtl

number) for the existance of Crocco's first integral.

a 2a
We have - ( atl'l (A) ) B ewese—- eve (11)
ax Uooét
where
6t (X)
A ® ecccee-
§ (x)

1
H(a) = {) £(m) L (ny) ang

It may be noted that

Y ¢
n = x = -—a g e = nt. A
) 8¢ 6

Performing the indicated integration we get

1
A <1 : H(s) = o £, a) L(ny) an,
L1 s H) jl ( 21‘_0 M) a o Ly &
8413 H(a) = a, (M,a) - a,n
G 4op & 2 fep L't t

= A 0.5206 - 0.3613 + 0.1643 + 0.1421 - ©.1889 =

- 0.0984 -~ 0,00017

+ a% - 0.1803 + 0.1643 = 0.1225 - 0.1108 + 0.1527 +

+ A7 - 0.1537 + 0.1421 + 0.1108 -~ 0.1006 + 00,1393 +



o
<A

+ A 0.2016 - 0.1889 + 0.1527 + 0.1393 = 0.1936 =

- 0.1046 + 0.00019

+ A9 0.1037 - 0.0982 + 0.0818 + 0.0750 - 0.1046 -

10

- 0.00013 + 0000010 - 0000019
H(a) = (0.5563) a - (0.0149) a® + (0.2129) a7 - (0.1829)48 +

+ (0.0012) &2 - (0.0007) al0 ceo (12)

1l
a 213 H(a) = - £(M. L (W/a) &

A
1 2 1 4
= = ( £(M). L(n/a) @ + = [ L(N/a) &
a 0 a 1
a > 13
H (a) = 0.5081
1
+ = (- 1.0000 + 0.4959)
A

1
22

1
+ === ( =0.1803 + 0.1664)
A7

1
+ -5 (0.1536 - 0.1449 )
A



1
+ == (- 0.2016 + 0.0904)
a9
1
)
1
+ === ( - 0.0010 + 0.0007)
a1l
1
H(a) = (0.5081) ~ (0.5041) - + (0.1967) --5
A
1 1
- (0.0138) == + (0.0087) == =~ (0.1712)
a7 a8
( - ( -
+ 000012) a4 - 000003) m——— .
L10 Al

1

b
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1l
- +
29

ees (13)

Now Ka'rmm'ans momentum integral equation for reduced form is

a 83 L ()

- on ( - B eecocs

ax 0 Voo

LEX) =2 (I(X) = 2(@2+H(X)))

2
5 au 8
« 22 o-0 , H(a) = 22
»y & 82
Ts 6
b Yoo

cee (14)

In the case of the boundary layer over a flat plate,

we have

- 4au
U( x) = constant or == =0
ax



and hence ) =0

Then the reduced form of Ka‘rm'ans momentum integral

equation take form

a ag) 21(x) 2T 6,

- ( - = - - B aeomamme=

ax N Voo Uy B

2(1.0142) (1.505)

On integrating with respect to x we get

2

§, 2 (1.0142) (1.505 )
- U — e X
~ Uy

62 2(1.0142) ) x

1.505 U

Now from equation (1)@ 2

1.0142
== (8 H(a)) = cmceem -3
oot
6y (x?
A B ammoromaren
6 (x)
2 2(1.0412 ) X
atz H (A) B @ wem- -~ - - - g H(A) dax
Voo
1 x
a2 H2(s) = 1.505 & _.
X Pr 0

a2 H(a) = 1.505 i-

Pr

{ H(a) ax

67

es e (15)

L]

L

(16)

(17)
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(1) For very sma;l Prandtl number (i.e. for very large

value of a)

H(a) = 0.312 (approximately)

-1/2

a = 1,7903 Pr ~as Pr --3 0 eee (18)

(ii) For very large Prandtl number (i.e. for very small

value of a)
H(a) = 0.161 &

-1/3
A = ]1,6823 Pr / as Pr ---) [ o] see (19)

(iii) PFor moderate values of Prandtl number

s = pr-l/3 eee (20)

Constitute a good approximation.

(iv) The temperature gradient at the wall

( =222 n = o = -1.0142
3 ne Nt
Therefore the local Nusselt Number
oT
( 3 v=0 ° x
Nu(x) =  comcmmmcccccaeaa
(Tw - Tm )
( o & x
9, 0 5t
= 1.0142 % - )/ —-

2.0284 J



0.873
a

Then results (i), (ii), (iii) take the following forms,

Nu(x) = 0.873 pr'/3 Ry V2 as cee (22)
moderate values of Prandtl number eee (23)
Nu(x) = 0.487 pr¥/? R, 12 asPr --- © oo (24)

Nu(x) = 0.518 Pr1/3 Rex 1/2 as Pr —-- (e'e)

Now it can be easily checked that a = 1, Pr = 1 is a solution
of the above equation. Therefore if Pr = 1, 6, = 6 and
Mg =N then we have
10
°l= 1l - Z 31"118 1-f(ﬂ)- Pr =1 ees (25)
i=0

which is known as Crocco's [18] first integral.

(b) Adiabatic wall :

Intromc’-ng' 92 = "’""‘"i"“"""‘ oo e (26)
UGD /2 Cp
T
and keeping in view that for the adiabatic wall ( ---) =0
oy YO

the thermal energy integral equation takesthe form

a 5t u 2.)

]
e A T P o ¢

Uoo Voo

d u
e (=) )%
ot Uy

'R X (27)

(3 !
Let 89y =Y =~ c; 1 )
2 =0 it

2 ves (28)
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where the coefficients Co to C10 are to be obtained by usirmg

the following boundary and compatibility conditions.

o 02 02 ey 2 02 e, 0o,
nt 2" () ecam- 2 ), cccoma= B w 8 Pr A€, ecece- B cm—a- =
Q My 9 M2 ong3 O N4
5
Lp)
= -d———-- = eeoe (29)
O M5
0 @2 0% e a3 ez
nt = 1’ 92 = 0, ----- B acccee T eacocces =
o M, o M2 N3
5
_ 9% e, 2~ €2 o
Qo N.4 0 M5
Ty - T
and r = ---;----93 (recovery factor)
Vo /2 Cp

The compatibility conditions are obtained from the thermal
boundary layer equation for the adiabatic wall, in the usual

manner.

The form of 87 is so selected as to ensure the Crocco's
second integral when Pr = 1,

we find

C; =2 V Pr a Cg =182 V' r - 557 ¢ , «o. (30)
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Ce = =390 VI + 2010C; C, = 365Vr - 2590 C;
Cg = - 175Vr + 1280 ¢ Cg = 5Vr -145¢c;
clo = 13yvr - 98 Cl

Putting equations (1) and (28) in (27) we obtain

s | 2 ) A
- — - (6t G) = A - - - - J eec e (31)
dx Ugo B¢
u
Where G = f ( 62 - - ) dqt ev s (32)
d Uoo
A ] u
and J= f ( === (- )2 ) & ees (33)
0 0N Vg

Performing the indicated integration in above equations we

find .
10 10 10 i r cj Cx
6= ¥ T = agal (eem o Al )

i=] j=1 k=1 i+l i+j+k+l

= (1.0412) & 62.5057 £ + 0.0814/r C; - 0.8971 C

- (1.2624) o  20.5152 r - 347.9584/r C; - 0.008 C,2

- (1.2290)a7 11.7550r + 0.07600/rC; - 0.0012 C3
+ (1.8146) a8 8.7584r - 12.8454/r C; + 10.4933 G2

+ (1.0376) 4% 7.5547 r + 0.038/rC, + 0.3442 C3



72

- (0.002)a'®  7.4044r - 9.5444/rc; + 8.5070 c2 ... (34)

1
and
10 10 10 i3
J= 3 >~ = ———————— - Ai*j-l 2434
4] 4=l k=1 4+ § -1
= 5.7544 A - 26.15 2% + 34.5075 A7 - 9.7455 A8 -
- 0.3853 29 + 87.5544 210 . 315.5179 A1l 4
+ 330.5053 al2 - 187.5543 al3 + 155.446 214 -
- 95.9490 a2 + 25.4757 a}6 - 0.9096 217 +
+ 0.0097 al8. ee. (35)
and
544
J = eem eee (36)
317

Integrating equation (31) and taking the value of § from

equation ( 1€ ) we have
Ga = 4.20357 eee (37)

Now, it can be easily checked that when Pr =1 and a = 1 then
r =1 is a solution of the above equation. Therefore, in such

a case Cy = ay and N, = . Thus from (28) we hawe

10 1.2
=0

8, =1 - 5% (n)
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which is the Crocco's second integral. Equation (37) indicates
that r is a function of A and Pr. But as we know from equation
(17), a is a function of Pr. Therefore, the recovery factor r
will be a function of Pr only. Hence, equation (37) which is
algebraic equation, can be solved in r for a given value of
the Prandtl number Pr, taking the corresponding value of a.

From (17) it is found that

(1) for moderate values of the Prandtl number the

expression

-1/2
r =Pr 4

Constitute a good approximation to the solution of

equation ( 37 ).

(i1) for very large Prandtl number (i.e. for very small

value of a).

2

Ga = a (1.0412) 62.5057 r + 0.0814/rC; - 0.8971 C;

and J = 4.0250 o (approximately)

Putting these values of G and J in equation (37) and
using the relation (19) we f£ind

r = 0.0831 prl/3 for Pr «~-= o0

which is about 4 9% higher than the value obtained in Exact So\uH
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