EIXRA POLIMT THRORFES TN HORMED ARD BAMACB SDACRA

Introduction :

This chapter consists two sections. Section-I deals with the study of some fixed point theorems in normed spaces, and section-II consists the study of some fixed point theorems in Banach spaces.

Many authors have defined contractive type mappings on a complete metric spaces, which are generalizations of the well-known Banach's contraction principle; and which have the property that each such mapping has a unique fixed point. The fixed point can always be obtained by using Picard iteration scheme, beginning with some initial choice of $x_{0} \in X$.

Rhoades [13] has shown that, if a mapping T satisfying certain contraction conditions and a sequence of Mann iterates converges, then it converges to a fixed point of T. He also compared various definations of contractive mappings studied by different authors (Rhoades [14]).

SECTION - I

In this section we have made a generalization of Banach contraction principle and used technique of Youel A.K., Sharma P.L. [15] to prove two fixed point theorems in normed spaces. Theorem first is associated. with Mann iteration Scheme and theorem second is exfensich
of a pair of mappings in normed spaces.

Rhoades in 1974 has proved some fixed point theorems, for a mapping satisfying certain contractive condition associated with Mann iteration process. H.K. Pathak [11] in 1988 used this technique and he has proved some fixed point theorems. Following the same procedure for our contraction mapping, we prove two theorems.

Theorem (3.1) :

Let X be a closed, convex subset of a normed space N and T be a continuous mapping on X into itself such that,
$\|T x-T y\| \leq q \max \quad\left\{\|x-y\|, \frac{\|y-T y\|[1-\|x-T x\|]}{1+\|x-y\|}\right.$

$$
\begin{equation*}
\left.\frac{1}{2} \frac{\|x-T y\|[1-\|x-T x\|-\mid y-T x \|]}{1+\|x-y\|}\right\} \tag{3.1.1}
\end{equation*}
$$

for all $x, y \in X, x \neq y, \quad 0<q<1$,
and let for any $x_{0} \in X_{\text {, }}$ sequence $\left\{x_{n}\right\}$ be defined as follows.

$$
\begin{equation*}
x_{n+1}=\left(1-c_{n}\right) x_{n}+C_{n} T x_{n}, \quad(n \geq 0) \tag{3.1.2}
\end{equation*}
$$

where C_{n} satisfyies the conditions,

$$
\left.\begin{array}{ll}
\text { (i) } & c_{0}=1 \\
\text { (ii) } & 0<C_{n}<1, \quad n>0 \tag{}\\
\text { (iii) } & \lim _{n \rightarrow \infty} C_{n}=h>0 \quad \text { and } n<1
\end{array}\right]
$$

If $\left\{x_{n}\right\}$ converges in X, then it converges to a fixed point of T.

Proof :

$$
\text { Let } z \in X \text { such that } \lim _{n \rightarrow \infty^{n}}=z
$$

Now we shall show that z is the fixed point of T. consider,

$$
\begin{aligned}
& \|z-T z\| \leq\left\|z-x_{n+1}\right\|+\left\|x_{n+1}-T z\right\| \\
& \text { using (3.1.2) on r.h.s. we get } \\
& \|z-T z\| \leq\left\|z-x_{n+1}\right\|+\left\|\left(1-C_{n}\right) x_{n}+C_{n} T x_{n}-T z\right\| \\
& \text { i.e. } \quad\|z-T z\| \leq\left\|z-x_{n+1}\right\|+\left\|\left(1-C_{n}\right) x_{n}-\left(1-C_{n}\right) T z+C_{n} T x_{n}-C_{n} T z\right\| \\
& \leq\left\|z-x_{n+1}\right\|+\left(1-C_{n}\right)\left\|x_{n}-T z\right\|+C_{n}\left\|T x_{n}-T z\right\| \\
& \text { using (3.1.1) on r.h.s. we get, } \\
& \|z-T z\| \leq\left\|z-x_{n+1}\right\|+\left(1-C_{n}\right)\left\|x_{n}-T z\right\|+C_{n} q \max \left\{\left\|x_{n}-z\right\|,\right. \\
& \left.\frac{\|z-T z\|\left[1-\left\|x_{n}-T x_{n}\right\|\right]}{1+\left\|x_{n}-z\right\|}, \frac{\left\|x_{n}-T z\right\|\left[1-\left\|x_{n}-T x_{n}\right\|-\left\|z-T x_{n}\right\|\right]}{1+\left\|x_{n}-z\right\|}\right\} \\
& \text { Since, from (3.1.2), }\left\|x_{n}-T x_{n}\right\|=\left\|x_{n}-x_{n+1}\right\| l / C_{n} \\
& \text { Thus the above inequality becomes as, } \\
& \|z-T z\| \leq\left\|z-x_{n+1}\right\|+\left(1-C_{n}\right)\left\|x_{n}-T z\right\|+C_{n} q \max \left\{\left\|x_{n}-z\right\|,\right. \\
& \frac{\|z-T z\|\left[1-\left\|x_{n}-x_{n+1}\right\| 1 / C_{n}\right]}{1+\left\|x_{n}-z\right\|},
\end{aligned}
$$

$$
\left.\frac{\left\|x_{n}-T z\right\|\left[1-\left\|x_{n}-x_{n+1}\right\| 1 / c_{n}-\left\|z-T x_{n}\right\|\right]}{1+\left\|x_{n}-z\right\|}\right\}
$$

Now taking the limit as $n \rightarrow \infty$ and using (3.1.3) and continuity of T, we have
$\|z-T z \mid \leq(1-h)\| z-T z+\|+h q \max \left\{0,\|z-T z\|, \frac{1}{2}\|z-T z\|[1-\|z-T z\|]\right\}$
$\max \left\{0,\|z-T z\|, \frac{1}{2}\|z-T z\|[1-\|z-T z\|]\right\}=\|z-T z\|$
then

$$
\begin{aligned}
\|z-T z\| & \leq(1-h)\|z-T z\|+h q\|z-T z\| \\
& \leq(1-h+h q)\|z-T z\| \\
& \leq[1-h(1-q)]\|z-T z\|
\end{aligned} \quad\left\{\begin{array}{l}
9
\end{array}\right.
$$

Clearly it is contradiction when $z \neq T z$
hence $T z=z$
i.e. z is fixed point of T.

Hence the proof.

Now we extend theorem (3.1) for pair of mappings.

Theorem (3.2) :
Let X be closed, convex subset of a normed space N and let T_{1}, T_{2} be contractive pair of mappings of X, T_{1} and T_{2} are continuous on X such that,
$\left\|T_{1} x-T_{2} Y\right\| \leq q \max \left\{\|x-y\|, \frac{\left\|y-T_{2} y\right\|\left[1-\left\|x-T_{1} x\right\|\right.}{1+\|x-y\|}\right.$,

$$
\begin{equation*}
\left.\frac{\left\|x-T_{2} y\right\|\left[1-\left\|x-T_{1} x\right\|-\left\|y-T_{1} x\right\|\right]}{1+\|x-y\|}\right\} \tag{3.2.1}
\end{equation*}
$$

for all $x, y \in X, \quad x \neq y, \quad 0<q<1$,
and the sequence $\left\{x_{n}\right\}$ of Mann iterates associated with T_{1} and T_{2} as given below,

For $x_{0} \in X$, Set $x_{2 n+1}=\left(1-C_{n}\right) x_{2 n}+C_{n} T_{1} x_{2 n}$
and $x_{2 n+2}=\left(1-C_{n}\right) x_{2 n+1}+C_{n} T_{2} x_{2 n+1}$, for $n=0,1,2$..... (3.2.2)
Where $\left\{C_{n}\right\}$ satisfy (i), (ii), (iii) of (3.1.3).
If x_{n} converges to z in X and is a fixed point of either T_{1} or T_{2} then z is the common fixed point of T_{1} and T_{2} 。

Proof :
Let $z \in X$ such that ${ }^{\lim ^{\rightarrow \infty}} x_{n}=z$, let $T_{1} z=z$.
Now we shall show that z is common fixed point of T_{1} and T_{2}.

Now we have

$$
\begin{aligned}
\left\|z-T_{2} z\right\| & \leq\left\|z-x_{2 n+1}\right\|+\left\|\left(1-C_{n}\right) x_{2 n}+C_{n} T_{1} x_{2 n}-T_{2} z\right\| \\
& \leq\left\|z-x_{2 n+1}\right\|+\left\|\left(1-C_{n}\right) x_{2 n}-\left(1-C_{n}\right) T_{2} z+C_{n} T_{1} x_{2 n}-C_{n} T_{2} z\right\| \\
& \leq\left\|z-x_{2 n+1}\right\|+\left(1-C_{n}\right)\left\|x_{2 n}-T_{1} z\right\|+C_{n} q \max \left\{\| x_{2 n}-z \mid\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\frac{\left\|z-T_{2} z\right\|\left[1-\left\|x_{2 n}-T_{1} x_{2 n}\right\|\right]}{1+\left\|x_{2 n}-z\right\|}, \frac{\left\|x_{2 n}-T_{2} z\right\|\left[1-\left\|x_{2 n}-T_{1} x_{2 n}\right\|=\left\|z-T_{1} x_{2 n}\right\|\right]}{1+\left\|x_{2 n}-z\right\|}\right\} \tag{3.2.1}
\end{equation*}
$$

Since from (3.2.2), $\left\|x_{2 n}-T_{1} x_{2 n}\right\|=\left\|x_{2 n}-x_{2 n+1}\right\| 1 / C_{n}$.
Thus the above inequality reduces to
$\left\|z-T_{2} z\right\| \leq\left\|z-x_{2 n+1}\right\|+\left(1-C_{n}\right)\left\|x_{2 n}-T_{2} z\right\|+C_{n} q \max \left\{\left\|x_{2 n}-z\right\|\right.$,

$$
\begin{aligned}
& \frac{\left\|z-T_{2} z\right\|\left[1-\left\|x_{2 n}-x_{2 n+1}\right\| 1 / C_{n}\right]}{1+\| x_{2 n}^{-z \|}} \\
& \left.\frac{\left\|x_{2 n}-T_{2} z\right\|\left[1-\left\|x_{2 n}-x_{2 n+1}\right\| 1 / C_{n}-\left\|z-T_{1} x_{2 n}\right\|\right.}{1+\left\|x_{2 n}-z\right\|}\right\}
\end{aligned}
$$

Now taking the limit as $n \rightarrow \infty$ and using (iii) of (3.1.3) and continuity of T_{2} we obtain for $T_{1} z=z$.

$$
\left\|z-T_{2} z\right\| \leq(1-h)\left\|z-T_{2} z\right\|
$$

$+h q \max \left\{0,\left\|z-T_{2} z\right\|, \frac{3}{2}\left\|z-T_{2} z\right\|\{1-\|z-z\| \lambda\}\right.$

$$
\leq(1-h)\left\|z-T_{2} z\right\|+h q \max \left\{0, \left\lvert\, z-T_{2} z\left\|, \frac{1}{2}\right\| z-T_{2} z\right. \|\right\}
$$

if $\max \left\{0, \left\lvert\, z-T_{2} z\left\|, \frac{1}{2}\right\| z-T_{2} z\right. \|\right\}=\left\|z-T_{2} z\right\|$
then $\left.q \max \left\{0,\left\|z-T_{2} z\right\|, \frac{1}{2}\left\|z-T_{2} z\right\|\right\}=q \right\rvert\, z-T_{2} z \|$

Thus the above inequality becomes,

$$
\begin{aligned}
\left\|z-T_{2} z\right\| & \leq(1-h)\left\|z-T_{2} z\right\|+h q\left\{\left\|z-T_{2} z\right\|\right\} \\
& \leq(1-h+h q)\left\|z-T_{2} z\right\| \\
& \leq[1-h(1-q)]\left\|z-T_{2} z\right\|
\end{aligned}
$$

if suppose $z \neq T_{2} z$ then it is contradiction.
Thus it follows $T_{2} z=z$.
i.e. z is the fixed point of T_{2}.

Similarly we can prove that if $T_{2} z=z$, there $T_{1} z=z$. i.e. z is the common fixed point of T_{1} and T_{2}. This completes the proof.

Queries :

1. If T satisfies contractive condition (3.1.1) and the continuity of T is removed, does T have a fixed point?
2. Does the same conclusion hold if thee Mann iteration procedure is replaced by that of Ishikawa iteration procedure?

SECTION - II

Fixed point theorem in Banach spaces :

The Banach contraaction principle has been generalized in different directions. Many authors have been given some variants, such as Chétterjea [1], Edelstein [4], Hardy and Rogers [5], Kannan [9], Reich [12] etc. In 1980 D.S. Jaggi and Bal Kishan Dass [8] have generalized this principle through rational expression to prove the following theorem.

Theorem A :

Let f be a self map defined on a metric space
(X,d) satisfying the following -
(i) for some $\alpha, \beta \in[0,1)$ with $(\alpha+\beta)<1$,
$d(f x, f y) \leq \frac{\alpha d(x, f x) d(y, f y)}{d(x, f y)+d(y, f x)-d(x, y)}+\beta d(x, y)$,
$x, y \in X, \quad x \neq y$,
(ii) there exists $x_{0} \in x:\left\{f^{n} x_{0}\right\} \supset\left\{f^{n} k_{x_{0}}\right\}$ with $\lim _{k} f_{\infty}^{f^{n}}{ }^{k} x_{0} \in X$,

Then f has a unique fixed point $u=\underset{k}{\lim _{\rightarrow}} f^{f^{n}} \mathbf{x}_{0}$

Now we state and prove our main theorems on fixed points of self-mappings of a Banach space.

Theorem (3.3):

Let T be a self map of a Banach space X with norm |.\| satisfying the condition,

$$
\begin{aligned}
& \|T x-T y\| \leq q \max \left\{\|x-y\|, \frac{\|y-T y\|[1+\|x-T x\|]}{1+\|x-y\|},\right. \\
& \\
& \left.\frac{1}{2} \frac{\|x-T y\|[1 \rightarrow\|x-T x\|+\|y-T x\|]}{1+\|x-Y\|}\right\} \ldots(3.3 .1)
\end{aligned}
$$

for all $x, y \in X, \quad x \neq y$ and $0<q<1$.
Then T has unique fixed point in X.

Proof :

For some arbitrary $x_{0} \in X$, we define the
sequence $\left\{x_{n}\right\}$ as,

$$
x_{1}=T x_{0}, x_{n+1}=T x_{n}, \quad n=1,2, \ldots
$$

Then by (3.3.1) we have,

$$
\begin{aligned}
& \left\|x_{n}-x_{n+1}\right\|=\left\|T x_{n-1}-T x_{n}\right\| \\
& \leq q \max \left\{\left\|x_{n-1}-x_{n}\right\|, \frac{\left\|x_{n}-T x_{n}\right\|\left[1+\left\|x_{n-1}-T x_{n-1}\right\|\right]}{1+\left\|x_{n-1}-x_{n}\right\|},\right. \\
& \left.\frac{1 / 2}{2} \frac{\left\|x_{n-1}-T x_{n}\right\|\left[1+\left\|x_{n-1}-T x_{n-1}\right\|+\left\|x_{n}-T x_{n-1}\right\|\right]}{1+\left\|x_{n-1}-x_{n}\right\|}\right\} \\
& \leq \quad q \max \left\{\left\|x_{n-1}-x_{n}\right\|, \frac{\left\|x_{n}^{-x_{n+1}}\right\|\left[1+\mid x_{n-1}-x_{n} \|\right]}{\left[1+\left\|x_{n-1}-x_{n}\right\|\right]},\right. \\
& \left.\frac{\left\|x_{n-1}-x_{n+1}\right\|\left[1+\left\|x_{n-1}-x_{n}\right\|+\mid x_{n}-x_{n} \|\right]}{\left[1+\left\|x_{n-1}-x_{n}\right\|\right]}\right] \\
& \leq q \max \left\{\left\|x_{n-1}-x_{n}\right\|, \quad\left\|x_{n}^{-x_{n+1}}\right\|, \frac{1}{2}\left\|x_{n-1}{ }^{-x_{n+1}}\right\|\right\} \\
& \text { since } \quad\left\|x_{n}-x_{n+1}\right\| \leq q\left\|x_{n}-x_{n+1}\right\| \quad \text { is impossible }(\text { as } q<1) \text {, }
\end{aligned}
$$

Now one has

$$
\left\|x_{n}-x_{n+1}\right\| \leq q \max \left\{\left\|x_{n-1}-x_{n}\right\|, \frac{1}{2}\left\|x_{n-1}-x_{n+1}\right\|\right\}
$$

If $\max \quad\left\{\left\|x_{n-1}-x_{n}\right\|, \frac{1}{2}\left\|x_{n-1}-x_{n+1}\right\|\right\}=\left\|x_{n-1}-x_{n}\right\| \ldots$ (3.3.2)
Then $\quad\left\|x_{n}-x_{n+1}\right\| \leq q\left\|x_{n-1}-x_{n}\right\|$
If maximum of two memebrs in (3.3.2) is

$$
\frac{1}{2}\left\|x_{n-1}^{-x_{n+1}}\right\| \quad \text { then }
$$

$$
\left\|x_{n}-x_{n+1}\right\| \leq \frac{1}{2} q\left\|x_{n-1}-x_{n+1}\right\| \leq \frac{3}{2} q\left\{\left\|x_{n}-x_{n}\right\|+\left\|x_{n}-x_{n+1}\right\|\right\}
$$

Thus

$$
\left.\left\|x_{n}-x_{n+1}\right\| \leq \frac{q}{2-q} \right\rvert\, x_{n-1}-x_{n}\|\leq q \quad\| x_{n-1}-x_{n} \| \ldots(3.3 .4)
$$

from (3.3.3) and (3.3.4) we have

$$
\left\|x_{n}-x_{n+1}\right\| \leq q\left\|x_{n+1}-x_{n}\right\|
$$

proceeding in this manner we obtain.

$$
\begin{aligned}
\left\|x_{n}-x_{n+1}\right\| & \leq q\left\|x_{n-1}-x_{n}\right\| \\
\leq & q^{2}\left\|x_{n-2}-x_{n-1}\right\| \\
& \cdot \cdot \cdot \cdot \cdot \cdot \\
& \cdot q^{n}\left\|x_{0}-x_{1}\right\|
\end{aligned}
$$

and hence for $m>n$

$$
\begin{aligned}
& \left\|x_{n}-x_{m}\right\| \leq q^{n}\left[1+q+q^{2}+\ldots \ldots-q^{m-n+1}\right]\left\|x_{0}-x_{1}\right\| \\
& \qquad \leq \frac{q^{n}}{1-q}\left\|x_{0}-x_{1}\right\| \\
& \text { Since } q<1, q^{n} \rightarrow 0 \text { as } n \rightarrow \infty \text {, so from }(3.3 .5) \text { it follows } \\
& \text { that the sequence }\left\{x_{n}\right\} \text { is Cauchy sequence. } \\
& \text { Since } x \text { is complete then there exists a some point } u \in x \\
& \text { such that }
\end{aligned}
$$

$$
u=\lim _{n \rightarrow \infty} x n
$$

Now we shall prove that u is a fixed point of T. By (3.3.1) and triangle inequality, we have,

$$
\begin{aligned}
&\|u-T u\| \leq\left\|u-T x_{n}\right\|+\left\|T x_{n}-T u\right\| \\
& \leq\left\|u-T x_{n}\right\|+q \max \left\{\left\|x_{n}-u\right\|, \frac{\|u-T u\|\left[1+\left\|x_{n}-T x_{n}\right\|\right]}{1+\left\|x_{n}-u\right\|},\right. \\
&\left.\frac{1}{2} \frac{\left\|x_{n}-T u\right\|\left[1+\left\|x_{n}-T x_{n}\right\|+\left\|u-T x_{n}\right\|\right]}{1+\left\|x_{n}-u\right\|}\right\} \\
&\|u-T u\| \leq\left\|u-T x_{n}\right\|+q \max \left\{\left\|x_{n}-u\right\|, \frac{\|u-T u\|\left[1+\left\|x_{n}-x_{n+1}\right\|\right]}{1+\left\|x_{n}-u\right\|},\right. \\
& \frac{\frac{1}{2}}{\left\|x_{n}-T u\right\|\left[1+\left\|x_{n}-x_{n+1}\right\|+\mid u-T x_{n} \|\right]} \\
& 1-\left\|x_{n}-u\right\|
\end{aligned},
$$

Since $x_{n} \rightarrow u, x_{n+1} \rightarrow u$, then above inequality holds that $\|u-T u\| \leq\|u-u\|+q \max \left\{\|u-u\|, \frac{\|u-T u\|[1+\|u-u\|]}{1+\|u-u\|}\right.$,

$$
\left.\frac{\|u-T u\|[1+\|u-u\|+\|u-T u\|]}{1+\|u-u\|}\right\}
$$

$$
\leq q \max \{\mid u-T u\|,\| u-T u \|\}
$$

$$
\text { i.e. } \quad\|u-T u\| \leq q\|u-T u\|
$$

$$
\text { i.e. } \quad\|u-T u\|<\|u-T u\| \quad(\text { as } \quad q<1)
$$

Which is contradition

Thus it implies that

$$
\|u-T u\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

i.e
$\mathrm{u}=\mathrm{Tu}$
i.e.
u is fixed point T.

For uniqueness, let $v \neq u$ be another fixed point of T,

Consider, $\quad\|u-v|=| T u-T v\|$

$\left.\frac{1}{2} \frac{\|u-T v\|[1 \nmid u-T u\|+\| v-T u \|]}{1+\|u-v\|}\right\}$
ie.

$$
\|u-v\| \leq q \max \left\{\|u-v\|, \frac{1}{2}\|u-v\|\right\}
$$

Clearly

$$
\|u-v\|<q\|u-v\|
$$

Which is impossible (as $q<1$)

Thus $u=v$
i.e. u is a unique common fixed point of T.

This completes the proof.

Now we extend this theorem (3.3) for a pair of mappings in Banach space.

Theorem (3.4) :
Let T_{1} and T_{2} be two continuous self mappings of a Banach space X such that,

$$
\begin{aligned}
\left\|T_{1} x-T_{2} y\right\| \leq & q \max \left\{\| x-y \left\lvert\,, \frac{\| y-T_{2} y \mid\left[1+\left\|x+T_{1} x\right\|\right]}{1+\|x-y\|}\right.\right. \\
& \left.\frac{1}{2} \frac{\left\|x-T_{2} y\right\|\left[1+\left\|x-T_{1} x\right\|+\left\|y-T_{1} x\right\|\right]}{1+\|x-y\|}\right\} \ldots \text { (3.4.1) }
\end{aligned}
$$

for all $x, y \in x, x \neq y$ and $0<q<1$,

Then T_{1} and T_{2} have unique common fixed point.

Proof :

For any arbitrary $x_{0} \in X$, let us define the
sequence $\left\{x_{n}\right\}$ as follows.

$$
\begin{aligned}
& x_{1}=T_{1} x_{0}, \quad x_{2}=T_{2} x_{1}, \\
& x_{2 n+1}=T_{1} x_{2 n}, \quad x_{2 n+2}=T_{2} x_{2 n+1}, \quad n=0,1,2, \ldots
\end{aligned}
$$

By (3.4.1) we have
$\mid x_{2 n+1}-x_{2 n+2}\|=\| T_{1} x_{2 n-T} x_{2 n+1} \|$
$\leq q \max \left\{\left\|x_{2 n}{ }^{-x} 2 n+1\right\|\right.$,

$$
\frac{\left\|x_{2 n+1}-T_{2} x_{2 n+1}\right\|\left[1+\left\|x_{2 n}-T_{1} x_{2 n}\right\|\right]}{1+\left\|x_{2 n}-x_{2 n+1}\right\|},
$$

$$
\left.\frac{\| x_{2 n}-T_{2} x_{2 n+1} \mid\left[1+\left\|x_{2 n}-T_{1} x_{2 n}\right\|+\mid x_{2 n+1}-T_{1} x_{2 n} \|\right]}{1+\left\|x_{2 n}{ }^{-x_{2 n+1}}\right\|}\right\}
$$

$\leq \quad q \max \left(\left\|x_{2 n}{ }^{-x}{ }_{2 n+1}\right\|\right.$,

$$
\frac{\left\|x_{2 n+1}-x_{2 n+2}\right\|\left[1+\mid x_{2 n}-x_{2 n+1} \|\right]}{1+\left\|x_{2 n^{-x}} x_{n+1}\right\|}
$$

$$
\left.\frac{\left\|x_{2 n}-x_{2 n+2}\right\|\left[1+\left\|x_{2 n}-x_{2 n+1} 1+\right\| x_{2 n+1}-x_{2 n+1} \|\right]}{1+\left\|x_{2 n}-x_{2 n+1}\right\|}\right\}
$$

$$
\leq \quad q \max \left\{\left\|x_{2 n}-x_{2 n+1}\right\|,\left\|x_{2 n+1}^{-x_{2 n+2}}\right\|, \frac{1}{2}\left\|x_{2 n}-x_{2 n+2}\right\|\right\}
$$

Since

$$
\begin{equation*}
\left\|x_{2 n+1}-x_{2 n+2}\right\| \leq q \mid x_{2 n+1}-x_{2 n+2} \| \text { is impossible, } \tag{q<1}
\end{equation*}
$$

Then one has $\left\|x_{2 n+1}-x_{2 n+2}\right\| \leq q \max \left\{\left\|x_{2 n}-x_{2 n+1}\right\|, \frac{1}{2}\left\|x_{2 n}-x_{2 n+2}\right\|\right\}$

If max

$$
\left\{\left\|x_{2 n}-x_{2 n+1}\right\|, \frac{3}{2}\left\|x_{2 n}-x_{2 n+1}\right\|=\left\|x_{2 n}-x_{2 n+1}\right\| \quad \ldots(3.4 .2)\right.
$$

Then

$$
\begin{equation*}
\left\|x_{2 n+1}-x_{2 n+2}\right\| \leq q\left\|x_{2 n}-x_{2 n+1}\right\| \tag{3.4.3}
\end{equation*}
$$

If maximum of two members in (3.4.2) is

$$
\frac{\frac{1}{2}}{2}\left\|x_{2 n}-x_{2 n+2}\right\|
$$

then

$$
\begin{aligned}
\left\|x_{2 n+1}-x_{2 n+2}\right\| & \left.\leq \frac{1}{2} q \| x_{2 n}-x_{2 n+2} \right\rvert\, \\
& \leq \frac{1}{2} q\left\{\left\|x_{2 n}-x_{2 n+1} \mid+\right\| x_{2 n+1}-x_{2 n+2} \|\right\}
\end{aligned}
$$

Thus

$$
\begin{align*}
\| x_{2 n+1}-x_{2 n+2} \mid & \leq \frac{q}{2-q}\left\|x_{2 n}^{-x_{2 n+1}}\right\| \\
& \leq q\left\|x_{2 n-1}-x_{2 n}\right\| \tag{3.4.4}
\end{align*}
$$

then from (3.4.3) and (3.3.4) we have

$$
\left\|x_{2 n+1}-x_{2 n+2}\right\| \leq q \mid x_{2 n-1}-x_{2 n} \|
$$

proceding in this manner we obtain

$$
\begin{align*}
& \left\|x_{2 n+1} x_{2 n+2} \mid \leq q\right\| x_{2 n-1} x_{2 n} \| \\
& \leq q^{2}\left\|x_{2 n-2^{-x_{2 n-1}}}\right\| \leq \cdots \cdot . \\
& \leq q^{n}\left\|x_{0}-x_{1}\right\| \\
& \text { For any } m>n \text { we can show that } \\
& \left\|x_{n}-x_{m}\right\| \leq \frac{q^{n}}{1-q}\left\|x_{0}-x_{1}\right\| \tag{3.4.5}
\end{align*}
$$

Which is cauchy sequence (Since $q \rightarrow 1, q^{n} \rightarrow 0$ as $n \rightarrow \infty$)

```
from (3.4.5)
```

Again since X is complete, then there exists any point $u \in X$ such that,

$$
\lim _{n \rightarrow \infty} x_{n}=u
$$

i.e. $x_{n} \rightarrow u$, consequently $x_{2 n} \rightarrow u$.

Now we shall prove that u is a fixed point of T_{1} and T_{2}.

$$
\text { Let } T_{1} u=u
$$

Consider

$$
\begin{aligned}
& \mid u-T_{2} u\|\leq\| u-x_{2 n+1}\|+\| x_{2 n+1}-T_{2} u \| \\
& \leq\left\|u-x_{2 n+1}\right\|+\mid T_{1} x_{2 n}-T_{2} u \| \\
& \leq \| u-x_{2 n+1} \mid+q \max \left\{\| x_{2 n}-u \mid,\right. \\
&\left\|u-T_{2} u\right\|\left[1+\left\|x_{2 n}-T_{1} x_{2 n}\right\|\right] \\
& 1+\left\|x_{2 n}-u\right\|
\end{aligned}, \quad \begin{aligned}
& \left.\frac{\mid x_{n}-T_{2} u \|\left[1+\left\|x_{2 n}-T_{1} x_{2 n}\right\|+\left\|u-T_{1} x_{2 n}\right\|\right]}{1+\left\|x_{2 n}-u\right\|}\right\}
\end{aligned}
$$

$$
\leq q \max \left\{\left|u-T_{2} u\right|, \frac{1}{2}\left\|u=T_{2} u\right\|\right.
$$

Clearly $\quad\left\|u-T_{2} u\right\|=0$

Which follows that u is fixed find T_{2}.

$$
\text { Similary we can show that } T_{1} u=u_{1}
$$

Now we shall show that u is unique common fixed point of T_{1} and T_{2}.

$$
\text { Suppose } v \neq u \text { is another fixed point of } T_{1}
$$

and T_{2}.
then,

$$
\begin{aligned}
& \|u-v\|=\mid T_{1} u-T_{2} v \| \\
& \leq q \max \{\|u-v\|, \\
& \frac{\left\|v-T_{2} v\right\|[1+\|u-T u\|]}{1+\|u-v\|}, \\
& \left.\frac{\frac{1}{2}}{} \frac{\left\|u-T_{2} v\right\|\left[1+\left|u-T_{1} u\right|+\left\|u-T_{1} u\right\|\right]}{1+\|u-v\|}\right\} \\
& \|u-v\| \leq q \max \left\{\left\|u-v \left\lvert\,, \frac{3}{2}\right.\right\| u-v \|\right\}
\end{aligned}
$$

Clearly,

$$
\begin{gathered}
\|u-v\|=0 \\
\text { which implies } u=v
\end{gathered}
$$

i.e. u is common fixed point of T_{1} and T_{2}.

This completes the proof.

REFERENCES

1. Chaterjea, s.K. : Fixed point theorems for a sequence of mappings with contractive iterates, Publ.Inst.Math. 14(28), 15 (1962).
2. Ciric L.B. : Publ.Inst.Math; 17, 45-51 (1974).
3. Dass B.K. and Gupta S. : Indian Jour. pure. Appl. Math. 6, 1455-1458 (1975).
4. Edelstein M. : On fixed and periodic points under contractive mappings, J.London Math.Soc. 37, 74, (1962).
5. Hardy, G and Rogers, T. : A generalisation of a fixed point theorem of Reich, Canad.Math.Bull. 16(2), 201,(1973).
6. Iseki K. : Math. Seminar. Notes, Kobe Univ.2; 1-3 (1974).
7. Iseki K. : Math. Seminar. Notes, Kobe Univ.3, 1-11 (1975).
8. Jaggi and Bal Kishan Dass : An experssion of Banach fixed point theorem through a rational expression, Bull. Cal. Math. Soc., 72, 261-262 119801.
9. Kannan R : Some results on fixed points, Bull.Cal.Math. Soc. 60, 71.
10. Pachpatte B.G. : Proc.Nat.Acad.Sci. India 46(A),76-80 (1976).
11. Pathak A.K. : Some fixed point theorems on contractive mappings, Bull.Cal.Math.Soc. 80, 183-188 (1988).
12. Reich, S. : Kannan's fixed point theorem. Bull.Un.Math. Ital. 4. 1.

$$
.73
$$

13. Rhoades B.E. : Fixed point theorem using matrices, Trans.Am.Math.Soc. (1974) Vol. 196, 161-176.
14. Rhoades B.E. : A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc. 226-227 - (1977).
15. Youel A.K. Sharma P.L : Fixed point theorem on contraction mappings : Indian J. pure Appl. Math. 13(4) 426.
