CHAPTER - II-

FIXED POINT THEOREMS IN

COMPLETE ‘METRIC SPACES



INTRODUCTION :

This chapter has been divided into two sections.
Section first consists some theorems on common fixed
points for a pair of mappings in complete metric spaces.
While in the section second, we represent fixed point
theorems, for a sequence of mappings in complete metric
spaces. Further we extend this work of f;xed point
theorems for family of mappings and also for non-expansive

mappings.

SECTION ~ I

In this section we ©prove some theorems on

pair of mappings in complete metric space.

Here we have extended the result of P.L.Sharma
and A.K.Yuel [16] and established a theorem on common
fixed points for a pair of mappings in complete metric
space. It is further shown that ‘the results of P.L.Sharma
and A.K.Yuel are the special <cases of our theoren.
Consequentely, the results of Banach, Kannan, Fisher

and Jaggi are the particular cases of our theoren.

Banach contraction principle states that,
a contraction mapping on complete metric space has

unique fixed point.

Kannan [12] has generalized this principle

as follows.
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Theorem A -

If T is a mapping of complete metric space

X into itself such that;

da(rx,Ty) B { d(x,Tx) + d(y,Ty)}

for all x,y € X, where 0< B <%,

Then T has a unique fixed point.

B. Fisher [7] in 1975 proved the following

+

theorems.

Theorem B -

If T is a mapping of the complete metric

space X into itself such that,

d(Tx,Ty)<v{da(x,Ty) + d(y,Tx)}

for all x,y € X, where 02X Y <}%

Then T has a unique fixed point.

Theorem C -

If T is a mapping of the complete metric

space X into itself such that,

d(Tx,Ty)<ad(x,y)+B{da(x,Tx)+d(y,Ty)}

+ y{d(x,Ty)+d(y,Tx)}
a+B+Y

for all € X wher 0 < <
X,y ere _1-B-—'Y-

1,
B+Y< 1, O+ 2Y<1, Y 20,

Then T has unique fixed point.




.27.

Afterwards, Jaggi (1977) [10] proved the

following theorem.

Theorem D -

If T is a mapping of complete metric space

X into itself such that,

a(Tx,

Ty) f."{ a(x,Tx) d(XlTY)}
d(XIY)

+B da(x,y),
for all x,y € X, where @, B € (0,1) with ¢ + B < 1,
Then T has a unique fixed point.

At last P.L.Sharma and A.K.Yuel in [16] (1980)

generlized this result through the following experssion.

Theroem E -

If T is a mapping of the complete metric

space X into itself such that,

a(Tx,Ty) <ai d(x'ngxd(§'T¥)}+B{d(x,Tx) +a(y,y)l

+y {d(x,Ty)+d(y,Tx)} +8d(x,y),

<, B+y+$

for all x,y € X, where I-a-B-y

<1,

B+y<1, 2Y+6 < 1, Y2 0.

Then T has a unique fixed point.

Main Results :

Now we wish to establish a theorem which

includes all above five thgasfms .as. a?“s@%ikth‘gases
- e

(L VR
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of the following theorem.

Theorem : 2.1 :

Let Tl and T2 be two continuous self mappings

of a complete metric space (X,d) such that.

d(x,Tlx) d(y,sz)

d(Tlx,sz)ga{ }+ B {d(x,Tlx) +d(y,T§)}

d(x,y)

+v{ a(x,1,y) +dly,T;x)} +8d(x,y)...(2.1.1)

B+ v+ 9O

for all x,y € X, where 05,——i-i4—- <1
l-og -8 -y

B +y<1, 2y+8<1, §>0.

Then T1 and T2 have a unique common fixed point.

Proof :

Let xo be any arbitrary point in X, and define

a sequence {xn}as T, X

*2n+17"1%2n" *2n427T2%on4yr PE0/1020

=T.x x,.=T.x Xx,=T.x

X17T %o X5TpXy s X3=T %50 X,=Tox5...

then by(2,1.1) we have

a( ) = d(Tlx n' Tx

Xon+l’ *2n+2 2 2n+1’

)

dlx Y alx, h1 To¥one: |

2n,T1%2n
d(x

<af
X
2n, 2ﬂ+l)

+ g{d(x. T.x_ ) + d(x

2n, 1%2n an+1’ T2%¥ons1’!

+ y{d(x T_x n)+d(x2 /T X

2n, T2%; n+1'T1%on)t + 8d(x,

X
n, 2n+l:‘,



.29.
) d(x

)

d(x X
) <Q{ Zn, 2n+1

X
2n+l’ "2n+2’ =
a5, *an+1!

i.e. d(x

2n+1

2n+1’'*2n+2 }

B{ d(xzn[ X ) +d(x2n+1l

*Y{d(XZn' x2n+2 In+l

) +d(x

+BAlxy X,

ia{d(x2n+l,x2n+2)}

vlalx, rix, )b+ 8dlx, X, 1)

<a  d(x X ) +Bd(x2n;x2n+l) +Bd(x2n¥1,x

2n+l  2n+2

+Y d(x.n,x ) +yd(x ) X ) +8 d(x2

2n+l 2n+l’ 2n+2

B+ v+ &
Toosy 920 *2n41

B+ v+ §

where 0 l? TaBy

80 d(x2n+l' x2n+2)§

Again d(x2n,x

) +d(x oy, x2n+1)} +§d(x

x2n+2)

2n+2)

1 X )
n

2n+l

..{221.2)

}

X
2n, 2n+l)

2n+1‘x2n+2))}
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Lee. dlxy Xy ) <0 A%, oy 1) ¥8A(X, X0

+8 d(xzn--l'XZn).thﬁ(XZn--l,x2n)wd(x2n,x2n+l)

+ Sd(xzn,xZn_l)
5%53%15% alxyn 1 ¥50-1) |
where 0% -Ei;lj;é-:q < 1
l-a B -y
so d(x2n, x2n+1)5'q d(x2n'x2n-l) . {21.3)

Hence from(2l1.2) and(2l1.3), we get

< 1
d(xn+l'xn) < q d(xnxn_l) for all n2
2
£4q d(xn--l'xn-Z)
—<- ® ® & o » e e
< qnd(xlxo),
for m> n, we have
+.. 3
d(xm,xn) < d(xm ,xmx)+d(xm_l,xm_2) +d(xm—n+l' dm—n)
- -n+1l
< ...qdm(xl:xo)+qm ld(xl'xl)+oo-+qm n d(xlrxo)
m m-1 m-n+1
< (q +q 4 +.-49 ) d(xlrxo)
qm
<|—-——
l—q d(xl:xo)
* as n* *® , since q< 1.

o Xn} is a Cauchy sequence sgince, X is complete, there

exists z € X, such that z =limxp.
n-»
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z and x -+ z for all n.

Clearly, Xon+l > 2n+2

Now we show that z is fixed point of T and T,. 1If

1 2
possible let z # le.
Now
d(ZITlZ)S_ d(ZlT2X2n+l)+d(T2X2n+l rTlZ)
<
b d(z'x2n+2)+d(le'T2x2n+l) ...0.1.4)
using2.1.1) we have
d(z,T,2)d(x /T X )
d(le,T2x2n+l)£0{ 1 2n+l "2 2n+l |
azrxy4q)

) }

+ B{ d(z'le)+d(x2n+l'T2x2n+1

+v{ a(z, )+d(x

,le)} +8 d(z,x ) ...(2.1.5)

T2x2n+1 2n+1 2n+1

from@2.l.4) and(2.1.5) we have -

d(lelz) d(x )

2n+l'x2n+2 }

d(z'x2n+l)

)

d(Z,TlZ) f_d(zlx )+t

2n+2

+ X

2n+2

+Bi d(z,TIZ) +<3i(x2m_1

+yl a(z,x ) +d(x (T 248 alzx )

2n+2 2n+1 2n+1

2n+1'x2n+2) }

d(z,Tlxzn)

d(Z'T Z) d(x
) +af 1

<
d(z,le)__d(z,x2n+2

)}

+ Bla(z,1,2) *d(x, 11 %042

+vla(z,x ) +d(x ,le)} +8d(z,x

2n+2 2n+1 )

2n+1
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on letting n >< .
we have
d(z,1y2) < (B +Y ) a(z,T z) °
since (B+ Y) < 1

so d(z,T,z) < d(z,T, z)
1 1
which is contradiction
hence d(z,TlZ) = 0, therefore

it follows that le = Zy

i.e. z is fixed point Tl.

Similarly we can show that z is fixed point T2.

In order to prove 2z is wunique fixed point of
Tl and T., let w be another fixed point of T, and T

2 1l 2
such that z # w.

Then we have by(2.1.1)

d(ZIW) = d(lel TZW)

d(z,le) d(w,Tzw)}

<a

+ B{d(z,TlZ) +d(w,TZW)}
d(z,w)

+v1 d(z,Tzw) +d(w,le)} +8 d(z,w)
<y{ d(z,w) +d(w,z)} +8d(z,w)

< (2y+38) a (z,w)
since 2y + 6§)< 1,
it follows that

d(z,w) = 0
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=> Z = W

Hence z is the unique common fixed point of T1 and T2.

This completes the proof.

Remark :

If Tl and T2 are not necessarily continuous,

then we have following observations

(a) When T1=T2,

theorem (E).

we get P.L.Sharma and A.K.Yuelﬂ5]

(b) 1f T1=T2 and @ =B=Y=0 then 0£6<1, we get Banach

contraction principle.

(c) When T =T, and ¥=y=$=0 then OB<%, we have

theorem due to Kannan (1968).

(d) When T1=T2 and @ =B=6=0, then 0%Y<%,> the

resulting theorem (B) is of Fisher (1975).

(e) When @ =0, regarding T1=T2 we get the theorem

(C) of Fisher (1975).

(£) When B=Y=0 and T,=T, then 0f¢, 8<1, and we

get the theorem (D) of Jaggi [1977].

We now extend our theorem (21) for a pair
of mappings Tlp, Tzq, where p,q are some positive integers;
in the follows theorem.

Theorem s 2.2 :

Let Tl and T2 be two continuous self-mappings

of metric space (X,d) such that,
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1
d(XrY)

a(x,T%x) d(y,Tzqy)

d(Tlpx,Tzqy)ga { }+ B{d(x,Tgx) +d(y,Tgy)}

+y{ a(x,1dy) +d(y,T‘l’x)} +8 dalx,y)  ....2.1)
for all x,y € X, where

o < Bxyxd g (a +y)< 1, (2r +8)< 1, vy 20,
l-a-B-Y

and p,q are some positive integers

Then Tl and T2 have unique fixed point.

Proof :

Let X0 € X be any arbitrary point.

Define sequence {xn} as

Tpx [

X2n+l "1%2n n=0,1,......

x2n+2=T2x2n+1,

By theorem (2.1) Tlp and T2q have unique fixed point

z € X.

P_. q__
Now Tl z=2z and T2 Z2=2.

p . p —
Hence Tl (T,2z) = Tl(Tl z) = le

i.e. T.z is fixed point of T P,

1 1

But z is unique fixed point of Tlp.

therefore le = 2z,

. q - 1 -
Again T2 (Tzz) T2(T2 z) = Tzz

i.e. T,z is a fixed point of T 9,

2 2

Since 2z in unique fixed point of Tzq = TZZ'

Therefore z is a fixed point of Tl and TZ'
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To prove uniqueness, let z # w be another

fixed point of Tl and T2:
a(z,w) = d(Tlpz, Tzqz)
a(z,T pé) a(w,T. %)
<af 1 2 J+B8{ d(z,Tlpz)+d(w,T2qw)}
d{z,w)

+ Y{d(Z:Tqu)+d(w,Tlpz)} + 8 d(z,w)
< (2 y+ &) d(z,w)

Since 2 v+ ¢ < 1

therefore it follows that z = w

i.e. z in unique fixed point of T, and T2

Hence the theorenm.

Remark : On taking p=g=1, T,=T,, a=B=Y=0, we get
following result due Edelstein (1962) [6] as a corollary

to our theorem (2.2).

Carallary :

If X be a complete metric space such that
d(Tx,Ty) <d(x,y) for all x # y € X and if

for some x, € X, sequence { X } be defined as

then z is the unique fixed point of T.
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SECTION - II

In this section we prove some theorems on
common fixed points for a sequence of mappings in complete

metric spaces.

P.L.Sharma and A.K.Yuel have {16] proved
the existance of fixed point of an operator T mapping

a metric space (X,d) into itself by using the condition :

d(x,Tx) d(y,Ty)
a(Tx,Ty) <of b+ Bla(x,Tx) +d(y,Ty)}
a(x,y)

+v{ a(x,Ty) +d(y,Tx)} + 8 d(x,y)

for x,y, € X, where Of Bry+d 1, (B+ Y)<1'

ey
(2'y+é)<l, Yy > 0.

Baidyanath Ray [l] obtained a following theorem

in complete metric space into itself.

Theorem (A) -~

Let {Ti} be a sequence of maps each mapping a

complete metric space (X,d) into itself such that.

(i) for any two distinct maps Ti, Tj
d(Tix, ij)f,rd(x,y):

Where 0Lr<1l1 for all x # vy,

(ii) There 1is a point X in X such that any two

consencutive members (xn=T ) are distinct.

X
n n-1

Then Tk has a wunique common fixed point.
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Here we generalize this result and show that

it will be special case of our result.

Main theorem : 2.3 :

Let { Tn} be a sequence of maps, each mapping
a complete metric space (X,d) into itself such that,
(i) for any two maps Ti' Tj’

d(x,Tix)d(y,T.y)

d(TiX:ij)iﬂ{ }+ B{d(x,Tix)+d(y,ij)}

a(x,y)
+v1 d(x,ij)+d(y,Tix)} +8 a(x,y) ...(2.3.1)
Where OXf —Eilié— <1 B+ )< 1 (2 +6)< 1 > 0
- I=a-B-v ’ ( Y ' Y ’ Y 2 ’

for x # y in X.

(ii) qhere is a point x, € X such that any two distinct

e

consecutive members (x =T x ).
n n n-1

Then {Tn} has a unique common fixed point.

Proof :

First we show that {xn} is cauehy segquence defined

as xl = Tle' x2 = szl cecsens

then by 2.3.1) we have

d =
(xl,xz) d(Tle, szl)

d(xO'Tle) d(xl'szl)

d(xoxl)

<af

}+8{ d(x,TlXo)+d(xl,T2x1)}

oy KRR ‘KM§U3NU5
mv\iﬁ\;‘x‘b‘;, g r‘;} :;Zr‘:}m‘-( oL APUE
1)
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§
+ Y{d(xO,szl) +d(xl,Tle)} + d(xo'xl)

d(xo,xl)d(xl,xz)

d(xolxl)

i.e. d(xixz) <ai b+ B{d(xo,xl)+d(x1,x2)}

<a d(xl:X2)+Bd(xoxl)+8d(xlx2)
+yd(xo,xl)+yd(xl,x2)+éd(xo,xl)

B+y + 8

S Toagoy dlxgrxy) e-12.3.2)
_ _ B4y+s
i.e d(xl,xz)f_ rd(Xo,Xl) where r —m 1
Again 4 = d{ )
gain (x2,x3) d\Tlxz, szll

dlx, /Ty x,)A(%) 1 Tyx;)

<a {

TP }+B{d(xzyTlx2)+d(xl,T2xlﬂ
2!

+ y{d(x2,Y2x1)+d(xl,Tlx2)} + 5d(x2,xl)

A(x4 X% yda(x, /x,)
ia { 2 3 l 2 }+ B{d(x2Ix3)+d(xlx2)}
d(lexl)

+yfalx, ) +dlx x )b + 8d(x,,x,)

13 1

A

a d(x2:x3)+sd(X2;x3)+Bd(x1x2)+Yd(xl,x3)+6d(x2,x1)

< a d(x2,x3)+8d(x2,x3)+6d(xl,x2)+Yd(xl,x2)+Yd(x2,x3)

+5d(x2,xl)

A
w
+
<
+
[=3)
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Thus d(x2.x3)_§ r d(x/xz)
from(2.3.2) and(2.3.3) we have

d(x21x3) < r?*dlxg,x;)

continueing the same process we have

B+ Y + J
l-a-B -y

d(xnrx )f_rn <1

n+l d(xo,xl) where r =

Further for any p >0, we have

d(xn+plxn) < d(xn'xn+l)+ """'+d(xn+p-l'xn+P)
< (rn+rn+l+......+rn+p-1)d(x01xl)
rn
£ 17 9lxgrxy)

.. 02.3.3)

..{2.3.4)

as p~> «, the bracketed guantity will be a sum of infinite

G.P. with first rn and common ratio r.

on letting n + » in(2.3.4) we have

a( ) > 0

X X
ntp’''n
Hence {xn} is a cauchy's sequence. Since X is

Then {xn} must 'be converge to some point u

i.e. 1lim x = u
N0 N

Now we show that u is fixed point of Tn

n, consider.

d(uleu) i d(u,xn)*'d(xn,'l‘mu)

A

d(u,xn)+ d(Tnx ,Tmu)

n-1

< d(u,xn)+ rd(xn )

-1

complete,

in X.

for fixed

...{2.3.5)



Since lim x_ = u
N0

therefore(2.3.5) becomes
d(u'Tmu) = O
Thus Tmu=u for all m
Hence u is common fixed point of {Tn } n = 1,2.....

For uniqueness, let v 1is another fixed point such

that u #v.

Consider
d(u,v) = a(Tu, TjV)
d(u,Tiv)d(V,TjV) )
+ d(u,T,u)+d(v,T,v)
< af 300 b+ 8{atu,T, V!
| d(u,Tv)+a(v,T,v) b+ 8d(u,v) .

h (2y+48) d(u, v)

<  d(u, v)
which is contraction.
Thus u = V
Hence u is unique common fixed point of { Tn}.

This completes the proof.

Remark -

If we put @ =0=B=yin theorem (1) then we get the

result of Baidyanath Ray [1l].



Theorem : 2.4 :

Let F = {Tn} is a family of maps each mapping
a complete metric space (X,d) into itself such that
d(xlTpx)d(YIT Y)

i [T 9 B ’ : d +T )}
(1) arx qy) <ef pr b+ Bla(x T x)+A(y T Y

+v1 d(x,Tqy)+d(y,Tpx)} + 8 a(x,y)

8
where Oii-%ial:gt_-_—;<l, (B+Y) <1, (2Y+<5)<1, Y20,

for any x # y € X.

(ii) corresponding to each countable subfamily {Ti}
of F. There 1is a point X5 in X such that any

two consecutive members are distinct.

Then there 1is a unique fixed point common to

each member of F.

Proof :

Consider a countable subfamily {Ti} of F.
apply theorem (1) we get a unique fixed point u <ommon
to {T}, i = 1, 2 .... suppose Tp = F\{Tg , and now
consider T and Ti as countable subfamilies of F. By

theorem (1) u' is common fixed point for T and Ti'

But u 1is wunique fixed point for 'Ti which

implies that
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Hence u is common fixed point for the family F.

°

Hence the proof.

Recently Khan (1976) [12], Chatteglee (1981)
[3], have discussed a number of interesting results

related to the theorem of Bryant as follows :

Theorem (B) -

Let (Xx,d) be a complete metric space,

and T be a self mapping on X such that

a(r’x, Tny) La4d(x,y);: for all x,y, € X,

0< ®<1 and n € N; then T has a unique fixed

point in X.

In (1988) Y.C.Paliwal [14] proved a theorem
for a pair of mapping, which is the extension of
the theorem of Jaggi and Bal Kishan Dass [1l1] as

follows

Theorem (C) -

Let Tl and T2 be two continuous self mapping
of a metric space (X,d) such that,

Lo wdx,r x) aly,m,%y)
d(Tl X/T2 y)<

= = + Bd(x,y)
d(x,T2 y)+d(y,Tl x)+d(x,y)

for all x, vy € X, x # y, where r>0, s> 0 are integers
and a ,B are non=-negative real numbers such that

(a+ B) = 1. 1f for some X, € X, the sequence { xn}



consisting of points.

__Tr =Tr
¥on+l - "1 *2n’' *2n+2 2 ¥a2n+l

has a subsequence ({ xn} converging to a point u:

k
then Tl and T2 have a wunique common fixed point
u.
Following this formalism, we  prove the

following for sequence of <continuous mapping in

complete metric space X.
Our theoram :

Theorem : 2,5 :

Let { Tn} be the sequence of continus self
mapping of complete metric space (X,d} such that
any two distinct maps Ti' and Tj satisfies

al[l+d(x,Tipx)}[1+d(y,T2qy)}

acr.Px,r.%) <
i ] »1+d(_Tipx’quy)

az[d(x,Tipx)d(x,quy)+d(y,T?y)d(y,T?x)}

+ i

d(X:quy) +d(y, ;%)

+ oa, d(x,y) - a eed2.5.1)

1

for all x, y € X, a;r a,s; a, are positive real numbers
such that(al+a2+a3)< 1 and p,q are positive integers,
then the sequence { Tn } has unique common fixed point

in X.



Proof -

For some X, € X, define a sequence {xn}

’ - P - q
such that x2n+1 = Ti x2n' x2n+2 Tj

then by(2.5.1) we have

x2n+1: n=0,1,2,...

a [1+a(x,,T.Px )1(1+d(x. ,T.% )]
lT.qx )< 1 0 170 1 J 1

d(x.,,x )=d(T.px
1’72 i "0o'ty "1 - P q
1+d(Ti Xq ! Tj xl)

a2{ (xo'Ti xo)d(xo, ; x1)+d(x1'Tj xl)d(xlTixO)]

q p
d(xOITj x1)+d(xl'Ti xo)

+ a, d(xo,xl) - al

al[1+d(x0,xl)][l+d(x1,x2)]

A

l+d(xer2)

az[d(xo,xl)d(xo,xz)+d(x1x2)d(xl;xl)]

+
d(xo,x2)+d(xl,x1)
+ ay d(xo,xl) - al
. al[l+d(x0,xl) +d(x1,x2)+d(x0,x1)d(xl,x2)]
1+d(xl,x2)
a [d(x (X, ) d(x_ ,x )]
+ 2 0 1 0 2 4, d(x _,x.) - a
alx.,x.) 3 0 1 1
0'"2
. al[l+d(xl,x2)+d(xo,xl) l+d(x1,x2) ]
- 1+d(xl,x2)
+ a a

p A(xguxy) +as(xqg.x)) - a)

a | {l+d(x1fx2)} {1+d(xo,xl)}]

in

{ 1+d(x1,x2)}
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+ azd(xo,xl)+a3d(xo,xl) - ay

A

al[1+d(x0,xl)]+a2d(x0,xl)+a2d(x0:xl)-a

1
< ay*ra dlxg x) )+a,dlxg %) )+a,dixg Xy )-a)
< (a1+a2+a3)d(x0,xl)

d(xl,xz) < rd(xo,xl) where r = a,+a +a, < 1

continuing this process weget

n
d(xn'xn+l) <r d(xolxl)

In general, for m>n € N

d(xnrxm)f,d(xn,xn+l)+d(x )+ ... +Ad(xm

n+l’'*n+2 -1 %p)
m-1
< rnd(xo,xl)+rn+ld(x0,xﬁ* see TOE d(xo,xl)

n n+l
(r '+r

A

+....+rm“l)d(x0,xl)

n n+l m-1 .
where r , r ceee + I is G-p.

with common ratio r

eh

S d(x_x_ )< d(x~r%X,)
ntmt - L 0'"1 °
+* 0 as n =+

Thus {xn} is cauchys sequence and from completeness

of X it must be convergent and converges to some

element inXi.e.

Lim, xn=uGX
n >+ Q0

Now we have to show that is fixed point Tip & qu

let u =T, P,
1
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4

P P P
a(u,Ty u) < d(u,x2m+2) + (x2n+2’Ti u)id(u,x2n+2)+d(Tiu,x2n+l)

al[l+d(u,Tipu)][1+d(x )]

q
2n+1’ " 3%2n+1
)

Now d(T.pu,T.qx ) <
i j "2n+l’ -~ P q
1+d(Ti u,Tj Xon+l

P q g P

q
d(M’Tj xm+l)+d(x2n+

1l 2n+1

+

1

+ a_d(u,x

3 2n+1) 72

1

)1

p
al[l+d(u,Ti u)][l+d(x2n+1:x2n+2

< p
1+a(t, "urx, 5)

?.n+2)+d(x

d{u,x

N az[d(u,TEu)d(u,x

p
2n+1 ' ¥ons2)9(Xop 1 /T i) ]
)+d(x Tipu)

2n+2 2n+l’

+ajdlurx, q) -2,

i-e- d(u;Tipu)i d(ulx2n+2)

a,la(u,m;Pwaluix, ,,)+d(x )a(xy, .1 150 ]

2n+2 2n+1'%2n+2

-+

P
Alurx, o) +dlx, 1 /Ti70)

+ a.,d(u,x ) - a

3 2n+1
on letting n —

al[l+d(u,Tipu)][1+d(u,u)]

d(u,T?u)i + d(u,u)

l+d(tipu,u)

a2[d(u,Tipu)d(u,u)+d(u.u)d(u,Tipu)]

+
d(u,u)+d(u,Tipu)

+ a3d(u,u) - a1
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p
a [1+d(u,T.%u)] a. [0 + 0]
1 1 +0+=2

= [1+d(T§u,u)] [0+d(u,Tipu)]

+ O - al

. u is fixed point of Tip.

Similarly we can show that u is a fixed point of

.9,
3

For uniqueness, 1let V #u be another fixed

peint of Tip and qu.

then d(u,v) = d(Tipu, quv)

al{1+d(u,Tipu)1[1+d(v,quv)1

I A

l+d( Tipu leqV}

azid(u.Tipu)d(u:Tiqu)+d(v,quv)d(v,Tipu)]

|~

d(u:quv)+d(v:TiPU)

+ a,d{u,v) - a

3 1

a
1 + a2{0]+a3d(u,v) - a
1+d{(u,Vv)

| A

1

2
a1+a3d(u,V)+a3[d(u,V)] —ald(u,v).—al

| A

1+d(u,v)
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ajd(u,v)+a [d(u,v)1%-a dtu,v)
<

l+d(UrV)
a,-a,-1
[d(u:V)]z < S 1 d(u,v)
l-a
3
let d(u,v) #0
aB—al—l
then it follows d(u,y) = ——=
l-a
3
) —(l—a3)-al
l—a3
2 -k
(l1-a,)-a
where k = 3 1

which follows d(u,v) O

Hence it is contiadiction.

s d(u,v) = 0

u = Vv

.o u is unique common fixed point of

This completes the proof.
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A fixed point theorem : For non-expansive mapping.

Belluce and Kirk[2)proved their theorem
on fixed point ‘for a certain class of non-expansive
mappings. Dunford N. and Schwarfz [5] had given
a useful note on linear operators. Robert H. Martin J.
[15] have studied non linear operatdrs and differential

equantions in Banach spaces.

Following the work of Belluce and Kirk
we prove a theorem on fixed point for non-expansive

mappings in complete metric space as below.

Before it we consider a definition of

non-expansive mappings in metric space.

Definition

Let X be a metric space. A mapping T : X * X
is said to be non-expansive;%or each pair x, y € X

and x # y such that
d(Tx ’TY) __<__ d(XIY)

we prove one lemma which we require for our theorem

Lemma § 2.6 :

Let T be a non-expansive mapping on a

subset S of X, where S is compact and convex. Further
’ i

G be a mapping on S defind by %
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G(x) = ax +b(Tx), for all x € S g ...(2.6.1)

where X5 € S8 is a fixed point in S, and a, b are two
possitive numbers such that
(a + b)=1

Then G has a unique fixed point in S.

Proof :

Since x Tx € S and a+b=1, it follows

ol
from convexity of S that G maps S into itself.

Let u, v e S, then we have from the definition

of G and T.

d[G(u),G(v)]

d[ax0+b(Tu), ax +b(Tv)]

d[{b(Tu), b(Tv)]

1t

I

bd(TUl TV)
< bd(u,v) by def”

Note that S is complete and b<l.
{ Because S € X and (@+b=1}

Hence we conclude from the contraction mapping
principle that, G has a wunique fixed point in S,
for every pair (a,b) of two positive numbers such

@

that (a + b) = 1. and the proof is complete.

Main theorem is as follows :




.51.

Theorem : 2.7 :
Let X be a complete metric space and let,
T be a non-expansive mapping of S into itself where
S 1is compact and convex subset of complete’ metric
- 7

space X. Then T has a fixed point in S.

£4

Proof -

Let X5 be a fixed point of S and { an},

{bn} be two real possitive sequences, such that,
(an+b3=1 and a, * 0 as n > 00.

For each pair of such sequences, there exists, by
the above lemmaf2éh unique fixed point x of G is

S, where G is defined by (2.6.1)
Hence we have

X = G(x ) = a x
n n

N +bn(Txn).

0]

[ x1=G(x1)=ale+bl(Txl)]

X +b2('1‘x2)

x,=G(x,)=a,x,

. . ® o ¢

Further it implies that

no
anx0+(bn—l)Txn

anxo—anTxn {2' an+bn=l}

...T 3 + —
X xn a x bn(Txn) Txn

= an(xo-Tx ) oo (2.7.1)

n

From (271!)we conclude that xn--Txn + 0.
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{ fim a_ (xO—Txn) o s a, * 0O as n ~* G)}
n-+ oo .

This shows, by virtue of compac:tness of
S, that there exists a subsequence of{ xn} converging

to some x € S, and this x is fixed point of T.

This completes the proof
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