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INTRODUCTION :

This chapter has been divided into two sections. 
Section first consists some theorems on common fixed 
points for a pair of mappings in complete metric spaces. 
While in the section second, we represent fixed point 
theorems, for a sequence of mappings in complete metric 
spaces. Further we extend this work of fixed point 
theorems for family of mappings and also for non-expansive

o

mappings.

SECTION - I

In this section we prove some theorems on
pair of mappings in complete metric space.

Here we have extended the result of P.L.Sharma 
and A.K.Yuel [16] and established a theorem on common
fixed points for a pair of mappings in complete metric 
space. It is further shown that the results of P.L.Sharma 
and A.K.Yuel are the special cases of our theorem.
Consequentely, the results of Banach, Kannan, Fisher 
and Jaggi are the particular cases of our theorem.

Banach contraction principle states that, 
a contraction mapping on complete metric space has 
unique fixed point.

Kannan [12] has generalized this principle
as follows.
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Theorem A -

If T is a mapping of complete metric space 
X into itself such that;

d(Tx,Ty)4p { d(x,Tx) + d(y,Ty)} 
for all x,y 6 X/ where 0£ 8 <\,
Then T has a unique fixed point.

B. Fisher [7] in 1975 proved the following
theorems.

Theorem B -

If T is a mapping of the complete metric 
space X into itself such that,

d(Tx ,Ty )<_ y( <3( x ,Ty) + d(y,Tx)} 
for all x ,y 6 X, where 0 < Y <\

Then T has a unique fixed point.

Theorem C -

If T is a mapping of the complete metric 
space X into itself such that,

d(Tx,Ty)<_ad(x,y)+B(d(x,Tx)+d(y,Ty)}
+ d( x ,Ty) +d(y ,Tx)}

for all x,y G X where 0 £ ■■■■■■ ^. <_ i#
1 -p -y

8 + Y < 1, a + 2 Y < 1, Y>0,

Then T has unique fixed point.
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Afterwards, Jaggi (1977) [10] proved^ the

following theorem.

Theorem D -

If T is a mapping of complete metric space 
X into itself such that,

d(Tx,Ty) <„{ dU,Tx) dd-al) +6 d(x,y) ,
d(x,y)

for all x,y G X, where a , 3 € (0,1) with a + 0 < i, 

Then T has a unique fixed point.

At last P.L.Sharma and A.K.Yuel in [16] (1980) 

generlized this result through the following experssion.

Theroem E -

If T is a mapping of the complete metric 

space X into itself such that,

d(Tx,Ty)5°( d(x-’r;) dty-^’I.Bldtx.Tx) +d(y,Ty)}
Q\x >y)

+ Y { d( x ,Ty)+d( y ,Tx)} +6d(x,y),
/ 0 + y + 6for all x ,y G X, where OS j-q <1/

0 +Y<1 , 2Y + <5< 1, Y10.

Then T has a unique fixed point.

Main Results :

Now we wish to establish a theorem which
includes all above five th^mg ^.as, .a ^s^li^^ses

•HIVaji / koluawm



.28.
of the following theorem.

Theorem : 2.1 :

Let T1 and T2 be two continuous self mappings 
of a complete metric space (X/d) such that.

d(x,T.x) d(y,T y)
d(T x,T y)<a{-------------- -—}+ 8 fd(x,T x) +d(y,T|)}

d(x,y)

+ y{d(x,T2y) +d(y,T1x) } +5d(x,y)--(2.1.1)

8 + Y + 6for all x,y 6 X/ where 0£-------- < 1
1-a- 8-Y

8 + Y < 1 f 2 Y + 6 <1/ 6 >^0.

Then and T2 have a unique common fixed point.

Proof :

Let xQ be any arbitrary point in X, and define 

a sequence { xp} as *2n+l=V2n' x2n+2=T2x2n+l' "=oa,2,...

Xl=Tlxo' x2=T2X1' X3=T1x2' X4=T2X3--

then by(2.1.1) we have

d(x2n+l' X2n+2J = d(TlX2n' Tx2n+1)

Illd(ll2n.Tlx2n) d(x2n+l' VWl1) 
d(x2n, X2n+1)

+ 8{d(x T x ) + d(x , T x )}2n, 1 2n 2n+l 2 2n+l 1

+ Y { <3 (x_ T x ) +d( x / T x )} + 6d(x_ X.11 2n, 2 2n 2n+l 1 2n 1 . 2n, 2n+l),
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x 1 < i d( 2n. 2I1+11 ( 2n+l' 2I1+21,

1-*‘ d(x2n+l' *2n+2)i<,t •— ' t
1 2n, 2n+l'

+ 61 d(x2n, x2n+1) +d(*2n+1. x2n+2) 1

+ *fd(x2n' X2n+2> +d(xln+l' X2n+1>> +* d(X2n,X2„+1>

-a*d(x2n+l,x2n+2)) + Sd(x2n'X2n+l) +d(x2n+l,X2n+2)’l 

+ Y^ d^ x2n'X2n+2 ^ + *d<X2n'X2n+11

d(x2n+l'X2n+2) +Bd(X2n'X2n+l) +6d(x2n+l,X2n+2>

+ Yd(x2n'X2n+l> + Y d( X2n+1'X2n+2> + 6 d(x2n'X2n+l)

6+ I* 6 d(x, /X )i —a —p —y 2n 2n+l

i 8 + y + 6
uhere 0 4jzzzhr = <j x x'

80 d(x2n+l' x2n+2> - q d(x2n'x2n+l)

Again d<x2n,x2n+J) = dd^)

£ a {■
d(x2n'Tx2n> d(x2n-l'T2x2n-1>

d<X2n'X2n-l>

. . .(2 2.2)

+ B,d(x2n'TlX2n> +d<x2n-l'V2n-l)(

+ ^l dlx2n'T2X2„-l) +d(x2n-l'TlX2n)» + 5dlX2n'X2n-i>

i d(x2n'X2n+l) d*x2n-l ,X2n> , . „rj, „
-------------------:-------- ) +B{d(x2n'X2n+l)+d(x2n-l' x2n) |

d< x ,x ) 2n 2n-l

+ Y{d(x /X )+d(x^ , x )1 + <5 d f x x *2n 2n 2n-l'*2n+l/ 1 2n'X2n-l}
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i.e. x2n ,x2n+l ^ —a dU2n'X2n+l)+8d<X2n'X2n+2)

+ 8d(x2n-l'x2n>^d(X2n-l,X2n)+Yd<X2n,X2n+l>

+ 6d(x2n'x2n-l)

0 + Y + ^ \----ir---  d(x_ ,X- . }l_a_$ _y 2n 2n-l

0 + y + 6where 0£ ---------;q < 1
1_ a -8 - y

s° d(x2n' x2n+l)-q dlx2n'x2n-l) .(21.3)

Hence from(2.1.2) and (2.1.3), we get

d(x , ,x ) 1 q d(x x .) for all n>l n+1 n n n-l —

- q2d(xn-l'xn-2)

- q"d(xlx0) '

for m > n, we have

d (x /x ) < d(x ,x x)+d(x ,x ) + .. + d(x d )vm n _ m m m-1 m-2 m-n + 1 m-n

<_ . . .qd (x^,x^)+q d(x^ ,x^) +...+q ^xl'X0

< ~m~n+1) d(Xl,xo)(q +q +...+q 
m

" ri d(x1'x0)

as n since q < 1.

{ xn } is a Cauchy sequence since, X is complete, there
exists z G X, such that z =limxn. 

n-*a»
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Clearly, x2n+l * z and x2n+2 z f°r a11 n*

Now we show that z is fixed point of and T,,. If
possible let z / T^z.

Now

d(z,T1z>£dU,T2x2n + 1)+d(T2x2n+1,T1z)

- d*z'x2n+2’+d*Tlz,T2x2n+l> . . .(2.1.4)

using(2,l.l) we have

d(TlZ,T2x2n+1) <dj <3(z,T1z)d(x2ntl,T2x2ntl) ^

d(z'x2n+l)

+ M d(z,V)*a<x2n+1,T2x2n+1> )

+ Yt d(Z,T2x2n+1)+d(x2n+1,T1z) ) + S d(z-x2n+1) -..(2.1.5)

from (2.1.4) and (2.1.5) we have -

d(z.T,z) d( x„ , , x_ . )d(z,T1z) £d( z ' x2n+2 ^+0t^---—-------1
d(z ,x ) 2n+l

+ B { d( z ,T1 z) +d( x ,x )}1 2n+l 2n+2

+ Y1 d( z , x_ _) +d( x ,Tz)}+Sd(z,x ) ' 2n+2 2n+l 1 2n+l

d(z,T z) d(x /X _) , d( z,T z)£ d( z , x_ .) +«{-----i^--2n+2_ }
1 2n+2 d(z,T x )

1 2n

+ 6fd(z'Tlz) +d(x2n+l'X2n+2)}

+ lld(z'X2n+2) +d(X2n + l'TlZ>} +Sd(z'X2n+l>
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on letting n -*-00 .

we have

dU^z) £ (B +Y ) d(z,Tlz)

Since (B + Y ) < 1

so dCz/T^z) < d(z #T^z)
which is contradiction
hence dCz^z) = 0, therefore
it follows that T^z = z,
i.e. z is fixed point .
Similarly we can show that z is fixed point .

In order to prove z is unique fixed point of 
and , let w be another fixed point of and T

such that z ^ w.

Then we have by(2.1.1)

d(z,w) = d(T^z/ T^w)
fd(z/T.z) d(w,T w),

<at----- ±-------- i—1+ Bfdtz/T.z) +d(w,T w)ld(z,w) 2

+ Y{ d(z,T2w) +d(w,T^z)1 + <$ d(z,w)

< Y { d(z/w) +d(w,z) } +6d(z,w)

< ( 2 y + 6 ) d (z,w) 
since (2 y + S) < 1 /
it follows that 

d(z/w) = 0
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=> z = w

Hence z is the unique common fixed point of and .

This completes the proof.

Remark :
If T^ and T^ are not necessarily continuous, 

then we have following observations

(a) When T^=T^, we 9et P.L«Sharma and A. K. Yuel'fl 

theorem (E).

(b) if T^ = rj» ana a _g_Y=o then 0£<S<1, we get Banach 

contraction principle.

(c) When Ti=T2 an<^ =y =6 =0 then QSB^, we have

theorem due to Kannan (1968).

(d) When Ti=T2 an<3 <*=8=6=0, then 0£Y<!j,' the

resulting theorem (B) is of Fisher (1975).

(e) When a =0, regarding we *3et the theorem

(C) of Fisher (1975).

(f) When $=Y=0 and T^T^ then 0£a , <5<1, and we 

get the theorem (D) of Jaggi [1977].

We now extend our theorem (24) for a pair 

of mappings T , where p,q are some positive integers;

in the follows theorem.

Theorem : 2.2 :

Let and be two continuous self-mappings

of metric space (X,d) such that,
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d(x,TPx) d(y,T qy)
d(T Px,T,qy)<a {---- —------------- }+ 8{d(x,Tpx) +d(y,Tqy)}

1 1 d(x,y)

+ y( d(x,Tqy) +d(y,TPx)} +6d{x,y) ...(2.2.1)

for all x,y 6 X, where

0 < l±l±i <i, (a + y) < 1, (2* +S)< 1, Y > 0,
l-a-8-Y

and p,q are some positive integers
Then T^ and T2 have unique fixed point.

Proof :

Let Xq G X be any arbitrary point.

Define sequence { x } as n
x_ L =TPx_ i 2n+l 1 2n X v2n+2 2*2n+l, D II O I—1 * • • • •

By theorem (2.1) T^p and T2q have unique fixed point
z G X.

Now T^pz=z and T2qz=z.

Hence T1P(T,z) = T^T^z) = T-^z

i.e. T^z is fixed point of T^p.

But z is unique fixed point of T^p. 

therefore T^z = z.

Again T2q(T2z) = T2(T2qz) = T2z

i.e. T2z is a fixed point of T2q.

Since z in unique fixed point of T2q = T2z.

Therefore z is a fixed point of T^ and T2.
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To prove uniqueness, let z ^ w 

fixed point of T^ and T2;

d(z,w) = d(T1Pz, T2qz)

d(z,T pz) a(w,T qw) D
<a{-------------------- }+6{ d(z,T Fz)+d(w

d(z,w)

+ y{d(z,T2qw)+d(w,T^Pz)} + 6 d(z,w)

£ (2 i ) d( z ,w)

Since 2 y + < l

therefore it follows that z = w 

i.e. z in unique fixed point of and T2

Hence the theorem.

Remark : On taking p=q=l, T =T2 , a =8 -Y = 
following result due Edelstein (1962) [6] as

to our theorem (2.2).

Carallary :

If X be a complete metric space

d(Tx,Ty) < d(x ,y) for all x i y S 

for some xQ € X, sequence { Xp } be defined

be another

T2qw) }

i, we get 

a corollary

such that

X and if 

as

then z is the unique fixed point of T.
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SECTION - II

In this section we prove some theorems on 
common fixed points for a sequence of mappings in complete 
metric spaces.

P.L.Sharma and A.K.Yuel have [16] proved 
the existance of fixed point of an operator T mapping 
a metric space (X,d) into itself by using the condition :

d(x,Tx) d(y,Ty)d (Tx , Ty) £0( [--------------- } + 3{d(x,Tx) +d(y/Ty)I
d( x,y)

+Yt d(x,Ty) +d(y,Tx)I + 5 d(x,y) 

for x,y, 6 X, where 0< f ~~ -— < 1/ (3 + y)<l,
- i_a_g_Y \ '

(2y + «)<1, Y > 0.

Baidyanath Ray [1] obtained a following theorem 
in complete metric space into itself.

Theorem (A) -

Let {T|} be a sequence of maps each mapping a 
complete metric space (X,d) into itself such that;

(i) for any two distinct maps Ti/ Tj 
d( T^x , T_.y) £ rd( x ,y) ,
Where 0<.r<i for all x i- y,

(ii) There is a point xQ in X such that any two
consencutive members (x =T x ,) are distinct.n n n-1

Then T^ has a unique common fixed point.
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Here we generalize this result and. show that 

it will be special case of our result.

Main theorem : 2.3 :

Let { T } be a sequence of maps# each mapping n
a complete metric space (X/d) into itself such that/ 

(i) for any two maps T^, T_,.

d(x ,T.x)d(y,T .y)
d(T.x,T.y)<a{----- i---- --- 3—} + ${d(x,T.x)+d(y,T.y)}

1 1 d(x,y) 1 3

+Y { d( x ,T..y)+d(y/^x)} +6 d(x,y) . ..(2.3.1)

Where 0< < 1' ( &+y) < 1 / (2 Y + «) < 1, Y 1 0,
-e-Y

for x 5* y in X.

(ii) There is a point x^ G X such that any two distinct
o

consecutive members (x =T x ,).n n n-1

Then { T^} ^as a uni<lue common fixed point.

Proof :

First we show that { x } is cauehy sequence definedn
as = Tlx0, x2 = t2x2

then by (2.3.1) we have

d(x2'x2) = d(T1x0' T2xi)

d( x ,T x ) d( x /T x )<a{ --^--r-^--L_L.}+8{ d(x,T1x())+d(x1,T2x1)}
d(xoxi^

XOl WAim**
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+ y{ d(xQ/T2x]L) +d(x1,T1xQ)} +6 d(xQ/x1)

d(x ,x1)d(x. ,x2)
i.e. d( x' x„ ) <0f{---2—----- ----- }+ 3{d(xnfX-,)+d(x /x )!

1 2 ~ d(x_/x.) 01 1 20 1

+ Y { d(xQ/X2)+d(x1 /Xj^Jl+SdCxQ/x-j^) 

<a dCxj^ ,x2)+Bd(x0x1)+8d(x1x2)

+ Yd(xQ/X1)+Yd(x1 /x2) + 6d{x(),x1)

< B+y+<s H/y x )- l-a-B-Y d(x0'Xl} .3.2)
3 4*y +6i.e d(x ,x )< rd(x ,x ) where r = ... • Q ^ <11 2 — 0 1 l-a-8 -y

Again d(x2,x3) = d(T x2# T^) 

d(x,Tx)d(x ,T2x.)
<a {.......-.. ——=-i-}+8{d(x2/'T1x2)+d(x1 ,T,Xl )}

d(x2,Xl) 1,A2~1

+ y{ d(x2 ,Y2x1)+d(x1 /T1x2)} +6d(x2/x1)

d(x2/X3)d(x1,x2)
<a {------------------ }+ 8{d(x~ ,xJ+d(x. x2) }

d(x2'Xx)

+ y{ d(x2 ,x2)+d(x1x3)} +6d(x2,x1)

< a d( x2/x3 )+3d( x2 ,x3)+8d( x^x2 )+Yd( x^ ,x3)+6d( x2 , x^ )

£ a d(x2/X3)+8d(x2,x3)+6d(x^/x2)+Yd(x^,x2)+Yd(x2,x3)

+ 5d(x2 /x^)

0

8 + Y + 5 . ,---- '■---- d(x. /x )l-a-8-Y 1 2
8 +Y + <S < . l-a-8-Y ==> r < 1
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Thus CKX2/X2) £ r d(x/X^) 

from(2.3.2) and(2.3.3) we have 
d(x2 'x3) - r2d(x0/Xl)

continueing the same process we have
n 0 + y + 6d( x /X .)< r d (x , x. ) where r = ----- ---- <1n n+l - 0 1 i-a-0 - Y

Further for any p >0, we have

d( x ,x ) < d(x /X ) + n+p n — n n+l ,+d(x ./X _) n+p-1 n+P
< , n n+l,_ (r +r +, .+rn+P 1)d(xQ/X1)

. (2 .3.3)

<
nr

1-r dtxQ/X^) .(2.3.4)

as p -*• the bracketed quantity will be a sum of infinite 
G.P. with first rn and common ratio r.

on letting n -*■ 00 in(2,3.4) we have

d( x 1 x )n+p n
Hence { x } is an
Then {x } mustn

0

cauchy's sequence. Since X 
be converge to some point

is
u

complete. 
in X.

i .e. lim x = utv-* 00 n

Now we show that u is fixed point of for fixed
n, consider.

d(u/T u) < d(u,x )+d(x iT u) m — n n m

< d(u,x )+ d(t x ./T u)— n n n-1 m

< d(u,xM)+ rd(x ,/u)— n n-1 . . .(2 .3.5)
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Since lim x = u
rwoo n

theref ore(2.3. 5 ) becomes

d(u,T u) = 0 m
Thus T u=u for all m m
Hence u is common fixed point of { T^ } n = 1,2....

For uniqueness, let v is another fixed point such 
that u / v.

Consider
d(u,v) = d(T.u:, T^v) 

d{u,T.v)d(v,T.v)
< a { ------------- 3—}+ ${ d(u,T.u)+d(v ,T.v)}

d(u,v) 1 1

+ Y { d(u,TjV)+d(v,Tiv) } + 6d(u,v)

1 (2 y + 6 ) d( u , v )

< d(u / v ) 
which is contraction.
Thus u = v
Hence u is unique common fixed point of { T }.n
This completes the proof.

Remark -

If we put a =0 = 3 = y in theorem (1) then we get the 
result of Baidyanath Ray [1].
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Theorem : 2.4 :

Let F = { T } is a family of maps each mapping n
a complete metric space (X,d) into itself such that

d(x,T x)d(y,T y)
(i) d(T x,T y) <a{----- 2-------3—}+ Btd(x,T_x)+d(y,T y)lP q ~ d {x / y) p q

+ Y{ d(x/T y)+d(y,T x)} + 6 d(x,y)
q p

where 0 < < 1, (B + y)< 1, (2Y + 0<1< Y>0,

for any x y G X.

(ii) Corresponding to each countable subfamily {T,.} 

of F. There is a point x^ in X such that any 
two consecutive members are distinct.

Then there is a unique fixed point common to 

each member of F.

Proof :

Consider a countable subfamily (t.) of F.
1 l

apply theorem (1) we get a unique fixed point u common 

to { T^} , i = 1, 2 .... suppose T^ = F\{T} , and now

consider T and T^ as countable subfamilies of F. By 

theorem (1) u' is common fixed point for T and T..pi

But u is unique fixed point for T_^ which 

implies that

u = u'

9652e>
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Hence u is common fixed point for the family F. 

Hence the proof.

Recently Khan (1976) [12], Chattefjee (1981)
[3], have discussed a number of interesting results 
related to the theorem of Bryant as follows :

Theorem (B) -

Let (X,d) be a complete metric space, 
and T be a self mapping on X such that

d(Tnx, Tny) £ad(x,y); for all x,y, 6 X,

0*- a< 1 and n G N; then T has a unique fixed 
point in X.

In (1988) Y.C.Paliwal [14] proved a theorem
for a pair of mapping, which is the extension of
the theorem of Jaggi and Bal Kishan Dass [11] as
follows

Theorem (C) -

Let and be two continuous self mapping 
of a metric space (X,d) such that,

ad(x,T rx) d(y,T ®y)
d(T1rx,T2sy)< ------±±---------  + $ d( x ,y)1 * d(x,T2sy)+d(y,T1rx)+d(x,y)

for all x, y G X, x f y, where r > 0, s> 0 are integers 
and a ,8 are non-negative real numbers such that 
(a+ 8) = 1. If for some xQ G X, the sequence { x^ }
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consisting of points.

X2n+1 " T1 X2n' X2n+2 = T2 x2n+l

has a subsequence { x^} converging to a point u;

then and have a unique common fixed point

u.
Following this formalism, we prove the

following for sequence of continuous mapping in

complete metric space X.

Our theoram :

Theorem : 2.5 :

Let { } be the sequence

mapping of complete metric space 

any two distinct maps , and

of continus 

(X,d) such 

satisfies

self
•?

that

d(T.Px,T. 
i 3

a [l+d(x,T px)][l+d(y,T qY)]
4y) i ------------------------------

•l+d(TiPX/Tjqy)

a [d(x ,T.Px)d(x,T .qy)+d(y ,T%)d(y ,T?x) ] 
+ _£_______i_________ 3_I________ J 3___

d(x,T..qy) +d(y,TAqx)

+ a3 d(x/y) - ax .(2 .5.1)

for all x, y G X, a^, a^, a^ are positive real numbers 

such that (a^+a^ + a^) < 1 and p,q are positive integers, 

then the sequence { Tn } has unique common fixed point

in X.
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Proof -
For some xQ 6 X, define a sequence { x^} 

such that x2n+1 = T.Px2n, x2n+2 = T.q x2n+1, "=0,1,2,... 
then by(2.5.1) we have

d(x1 /X2)=d(TiPxQ/TjV4x1) <
q a1[l+d(x0,T.Px0)3[l+d(x1,T.qx1)]

l+d(TiPxQ/ Tjqx1)

a2[d(xo-TiPxo)d(xo/'r^<3xi><3<xjTixo^ ^
d(x_iT.^x.)+d(x. fT.pxA)‘O' j "1 1' i 0‘

+ a. d(x0,Xl} a 1

a1[l+d(xQ/x1)][l+d(x1/x2>] 
l+d(x^/x2 3

a2[d(x(),x1)d(x0,x2)+d(x1x2)d(x1 /Xj^) ] 
d(xq,x2)+d(X1 ,xi^

+ a3 dtXg/X.^ - a1

a^l+dtXg/X^ +d( x^^ ,x2)+d( xQ/Xj^ )d(x1 ,x2 ) ] 
< --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -l+d(x^ fx2)

a_[d(x ;x.) d( x ,x ) ]
+ ----------aix" V ^ a3d(x ,x ) - ad(xQ,x2)

a1[l+d(x1,x2)+d(x0/x1) l+dfx^x^ ] 
l+d(x^'x2)

+ a2 d(xQ/x1) + a3(xQ,x1) - a^^

a1[ { l+d(x1#x2)} { l+d(xQ,x1)} ]
1 {l+d(x1/X2)}
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+ a2<3( xQ , x^ )+a3<3( xQ /

< a [l+dU^Xj)]+a2d(x0,x1)+a2d(x0/X1)-a1

< a1+a1d(x0,x1)+a2d(x0,x1)+a3d(x0,x1)-a1

< (a^+a2+a3^^xo,xl^

d(x1,x2) < rdCxQ/X^^) where r = a1+a2+a3 < 1

continuing this process weget

d(x /x ) £ rnd(xA,x1) n n+1 01

In general# for m>n € N

d(xn'x,n)-d!Vxn+l)+<3<Xn+l'xn+2) + •" + d< Vl ' V

< rnd(x0,x1)+rn+1a(x0,x1)t + c d(x0'xl>

, , n. n+1 m-1. x<_ (r +r +....+r )d(xQ/X^)
, n n+1 m-1where r , r .... + r xs G-p.

with common ratio r 
n

.*. d(x ,x ) < n m — 1-r d(xQ#x1)

as n 00

Thus {xn} is cauchys sequence and from completeness 
of X it must be convergent and converges to some 
element inXi ,e.

Lim, x = u 6 X
00 n

Now we have to show that is fixed point T.p & T
13

= T.P. llet u
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Qd(u,TiPu) <d(u,x2m+2) + <*2n+2'’,1Putd(u,*2[H.2)+d(TPu,x2n+1)

Now d(T-PU/T.qx_1)j 2n+l —
< a1tH-d(u,T.Pu)HH-d(x2n+1,T^x2n+1)l

l+d(T.pu,T.'3x2n+l)

[d(u,T.Pu)d(u,T.qx2n+1)td(Xm+1,T.qx2n+1)d(x2n+1TPu)]
n nd(u'Tjqi!n,+ l)+d(x2n+l'TiPu)

+ a3d(U'X2n+l>-al

< a1tH-d(u,T.pu)][l.d(x2n+1,x2n+2)l
l+d(t,Pu,x2n+2)

+ a2ld(u'Tiu>d<u<x2n+2)+d(x2n-H'’‘2n.2)d(x2n-U'Tiu) ^
d(u'x2n+2,+d(x2n+l'TiPu)

+ a3d(u'X2n+l> * al 

i.e. d(u/TiPu) £ d(u,x2n+2)

+ a2ld(u,T1Pu)d(u,x2nt2)->d(x2ntl,x2ii+2)d(x2n+.L,Tpu)]
d(u'x2n+2)+d(x2n+l'TiPu)

+ a3d(u'x2n+l> - al

on letting n 00

a.[l+d(u,T Pu)][l+d(u,u)]
d(u,Tpu) < —--------i-r------------ +

l+d(t. u,u)
d(u,u)

a_[d(u/T.Pu)d(u/u)+d(u/u)d(u,T.^u)]
* 1 X

d(u,u)+d(u,T^Pu)

+ a^d(u,u) - a^
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a [l+d(u,T. u)] a,[0 + 0]—---------i----  +0+-
[l+d(T^u /u)] [0+d(u,T.Pu)] + 0 - a.

1 al “ ai

< 0
^dCu/T^u) = 0
—>T^u = u

u is fixed point of .

Similarly we can show that u is a fixed point of

For uniqueness, let v ^u be another fixed
point of T.P and T.q.

ID
then d(u,v) = d(T,Pu, T.qv)

1 3 ®
a1[l+d(u,TiPu)][l+d(v,T.qv)]

— l+d(T^Pu,T^qv)

a [d(u,T.pu)d(u,T.qu)+d(v,T,qv)d(v,T.Pu)]
< ________ 1_________-__ ____ .___ 2_________i____

d(u,T ^vJ+dtv/T^u)

+ a^d(u,v) - a1

l+d(u,v)
+ a2[0]+a3d(u,v) -

a1+a3d(u,v )+a3[d(u ,v) ] -a^Cu ,v ) -a 
l+d(u,v)
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a3d(u/v)+a3[d(u,v)] -a^dCu/v) 
l+d(u,v)

[d(u,v)]2 < 3l.1 • d(u,v)
— l-a_

let d(u,v) ^ 0

then it follows d(u,v)
a3 al 1
l-a„

-(1-a)-a _____ 3 1
1-a.

< - k,

where k (l-a3)-a^
1-a,

which follows d(u/V) 0

Hence it is contiadiction,

d ( u , v) = 0
u

.*. u is unique common fixed point
and T

of T.P
l

This completes the proof.
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A fixed point theorem: For non-expansive mapping.

Belluce and Kirk£2] proved their theorem 
on fixed point for a certain class of non-expansive 
mappings. Dunford N. and Schwartz [5] had given 
a useful note on linear operators. Robert H. Martin J. 
[15] have studied non linear operators and differential 
equantions in Banach spaces.

Following the work of Belluce and Kirk 
we prove a theorem on fixed point for non-expansive 
mappings in complete metric space as below.

Before it we consider a definition of 
non-expansive mappings in metric space.

Definition

Let X be a metric space 
is said to be non-expansive j^for 

and x / y such that

A mapping T 
each pair x,

X -*• X
y G X

d(Tx,Ty) < d(x,y)

we prove one lemma which we require for our theorem

Lemma J 2.6 :

Let T be a non-expansive mapping on a 
subset S of X, where S is compact and convex. Further 
G be a mapping on S defind by
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G(x) = ax0+b(Tx), for all x 6 S J ...(2.6,1)

where x„ € S is a fixed point in S, and a, b are two 0
possitive numbers such that 

(a + b)= 1
Then G has a unique fixed point in S.

Proof :

Since xQ, Tx 6 S and a+b=l, it follows 
from convexity of S that G maps S into itself.

Let U/ v 6 S, then we have from the definition 
of G and T.

d[G(u)/G(v)] = d[axQ+b(Tu), axQ+b(Tv)]
= d[b(Tu), b(Tv)]
= bd(Tu/ Tv)
1 bd(u,v) by defn

Note that S is complete and b<l.

{ Because S C X and (a+fc&=l }

Hence we conclude from the contraction mapping
principle that / G has a unique fixed point in S,
for every pair (a,b) of two positive numbers such

o

that (a + b) = 1. and the proof is complete.

Main theorem is as follows :
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Theorem ; 2.7 :
Let X be a complete metric space and let,

T be a non-expansive mapping of S into itself where
S is compact and convex subset of complete metric

fspace X. Then T has a fixed point in S.

Proof -

Let x0 be a fixed point of S and <V
two real possitivo sequences, such that

(a +b )=i and a_ -*■ 0 as n ^ 00.n n n
For each pair of such sequences, there exists, by
the above lemmafrl]a unique fixed point x of G isn
S, where G is defined by (2.6.1)

Hence we have

xn G(x ) n a n xn+b (Tx ). On n

- x1=G(x1)=a1x0+b1(Tx1)-
_ *2~G^x2)=a2xo+b2(Tx2)_

Further it implies that

x -Tx n n a xrt+b (Tx )-Tx n 0 n n n
a x +(b -1)Txn 0 n n
a x«-a Tx n 0 n n
a (x -Tx ) n 0 n

. a +b =1]|. n n J
From (2.74)we conclude that x -Tx + 0.n n

(2.7.0
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j lim a (x -Tx ) 0 a + 0 as n -►1 n + oo n 0 n n

This shows, by virtue of 
S, that there exists a subsequence of { 
to some x 6 S, and this x is fixed

This completes the proof

00 }
compactness of 
x^} converging 
point of T.
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