CHAPTER - I

PRELIMINARIES

o 28 Y

This chapter consists of all the basic definitions

and results which will be usoful in the second chapter..

1.1  SOME GATEGORIGAL NOTIONS:

Defanition (1.1.1)
A cotegory is a classJ% together with a class

which is a disjoint union of the form

o= U[A,Bly
(AB)e A e

To avoid logical difficulties we postulate that each [A,B]{:,k
is a set (possibly void. When there 1s danger »f no )
confusion we shall write [A,B] in place of [A,qu_).
Furthermore, for cech triple (A,B,C)_of member§ OfU% we
are t» heve, a function from [B,C] x [A,B] +to [A,C]. The
image of *the pair (B, @) under this function will be called
the composition of B by &, and will be denoted by Ba,  The

composition functions ere subject to two axioms.
(1) Assoycietivity : Whenever the compositions make
sensc we have (YR)a = v(pa).

(ii) Existence of identities : For each A 6‘}(
we have an element 1, €[A,A] such that 1,+@ =@ and B.1,=B

whenever the compoasition make sense,



The members osz are called ?bjects and the members
of £ are called morphisms. If a € [A,B] we shall call A
the domain of a and B the codomain, end we shall say ®a is
a morphism from A to B®, This last statcment is Fepresented

. a
by %o : A —> B¥, or sometimes ®A —> BF,

Definition (1.1.2)

v
A cetegory 9{ is called a subcategory of a category,ﬁ

under the following conditions :
. 4~ r
( l) { ((, vt ‘.//4

( i1) [A,B]%l (_:_: [A,B} for all (AaB) < ){{ Xu".:'{‘

A

)
(1ii) The composition of any two morghisms in‘}L

4
is the same as their composition in &

i ! ¢
(iv) 1, is the same 1nj¥ as in @ for all A GQQL

]

If furthermore [A,B]({; = [A,B]q for 211 (A,B) € M 4
’ ¢ (5
we say thath{ is a full sub-category obe{ '

Defanitiz>n (1.1.3) :

A morphism f : A —> B is an isomorphism if there

exists a morphism g : B > A such that gf = ;ﬁ and

fg = lBo

If there exists an i1somorphism f : A ——> B, then A

and B are seid to be isomorfic objects.



Definition (1.1.4) :
A morphism f ¢ A > B 1s callced & monomarphism if

fq = fh 1mplies that g = h for all pairs of .morpaisms f, g

with codomain A,
Definition (1,1.5) :

A morphism f ¢ A ~—> B is called an epim~2rphism 1f
gf = hf implies that ¢ = h for all pairs of morphisms f,g

with domain B,
Re

An isomorvhism is both, a monomorphism and an
epimorphism. The converse is not true 1.e. a morphism which

H

is both monomorphism and epimorphism may n>t be an isomorphism,
Definition (1.1.6) :

Lotupt and i? be categories. A covariant functor
F :ervnme-z? is an assignment of an object F(A) € %) to
cach object & € j( and a2 worphasm F(a) : F(A) —> F(A') to
each morphism @ : A —==> A" in {f subjcct'ts the following

cnnditions @

(i) Preservation of compositions If o'a 1s defined

inlf{ then F(a'a) = F(a'),5(a).

(ii) Preservetion >f identities : For each AGLP%

we have F(lﬁ) = lF(AY’



We shall call the categﬂry‘ﬁ the domain of F and
the category jg the codomein and we shall say that T has

velues 1n B

Remarks (1) :

gyt

(1) If we replace the conditions @ : 4 —3> A' implies

thet F(a) : F(A) —~> F(A'") and F(a'a) = F(a'). F(a) by the

i

conditions @ : A ~=> A' implies thet F(a) : F(A') —~—> F{A)
ond F(a'a) = F(a), F(a') in the above definition we obtain

the definition of & contravariant functnor from‘;( to g?

(2) The unqualifiéd term *functor® will usually mean

coavariant functor,
R

The forgetful functor F : %; —— éf'frqm the category

A

of abelien grohups t» the cetegory of sets is the functor which
forgets the abelian group structure on the objects of ~
That is, if G 1s an abelian group, then F(G) is the underlying

set G of G and if @ is a group morphism, F(a) = a,
Definition (1.1.7) :

An o?ject u 6}{,is called an initial object ofﬁ}{

if the set [u,A]<{ contains precisely »>ne mcrphism for each
A e
Definition (1.1.8) :

Given two morphisms f, g : A —> B, a morphism

-



Definition (1.1.8) :

Given two morphisms f, g : A —> B, a morphism
H ¢ B —>K is called a ccequalizer for f and g if the

fo1llowina diagram

‘{‘ e Hn W e g Y STAEE A~ -=->B

' |
f P M

1

i

. 4

B AT TH LT WTE YR A DR T S W W AT AR -‘>K

1

commutes, and if, whenever there is M' : B —> K' meking the

following diagram

3 A B
i f . i
g | o
§
: J
I
commutative, then there exists a unique morphism 7 : K —% K!
such that i
B — K
> |
~
\\\ v

1!
\\\\\\\\v R

commutes,



Definition (1.1.9) :

Let {A. be a family >f objects 1n a category jy
{had . i
A coproduct for this family 1s a family of morphisms

{fa 2 Ay, f\} with the prop:rty that, for any

fga 2 Dy > Bf there 1s a unique morphism f : A —> B

such that the following diagram commutes for every agl :

f
"N = > A
.\\\\ t ]
0> |
7
B

Definmition : (1.1.10) :

Let I be a directed sect and\}{ is a category. A direct
. . , o, R nd
systmn:uuptwath index set I is a functor F ¢ 1 > A

L4

That is, for each ¢ € I, there 1s an object Fa and
whenever ¢, B € I satisfy @ < B, there 1s a morphism

¢BG : Fo > FB such thet

(1) P ® By —> Fy s the identaty for every ogl;

(fi) If axp<r, there is a commutetive diagram

Py
Fy ' > F :
/
, ¢Ba /’/¢')' ﬁ



Definition (1,1.11) :

——— ey

Let F = {Fy, Ppy} be a direct system in M The direct

limit ~f this system, densted by lin_;F s 15 an object and a

family of morphisms f, : F, ——> lll'n)Fa with £, = fB'¢BOt

whenever o £ B satisfying the following universal mapping

problem :

for every object X and svery family of morphisms 9qFg—> X -
with Y = gB¢BOL° Whenever @ < B, there is a unique morphism

g : llg F_ ~—> X making the above diagram commute.

Definition (1.1,12)':

A diagram scheme I is a triple (I, M, D) where I is
a set whose elements ere celled vertices, M is a set whose
elements are celled arrows, and D is a function from M to I x I,
If m CMand D(m) = (a,8 we call o the nrigin ~»f m and £

the extremity of m.

A diagram 1in a cazcgory bé{ over the scheme X is a
function ¥, which assigns 15 each vertex @ € I an object

m‘(C‘S[{ and to each arrow m wsth origin ¢ and extremity B a

morphism £ (m) = [@aa J‘)B]M



If § 1s a diagram in$ over § = (I,M,D), we call a
family of morphisms{{, —> X:l‘ qcr @ co-compatible family

for @ if for every arrow m € M the diagram-

X %L(
ifﬁ)(m)
D
is commutative. The family is called a colimit for *' if it

is cocompatible and 1f for every cocompatible family

1By, — Y} ﬁ?ere is a unique morphism X —> Y such that for
ae
each ¢ & I, the diagram

X > Y

1s commutative. .

finition (1.1.13) :

P )

A categorqu; is called co-complete if every diagram

irx}{ over every diagram scheme has a colimit.

Remarks :

"

Colimits are unique upto isomorphisms.

(1
(2) Initial objects, coequalizers, coproducts and direct
limits are the special types of colimits.

(3) The dual notions of co-ccmpatible family, limit,
complete category and inverse limit can be obtained
by reversing the arrows in the definitions of



cocompatible family, colimit, cocomplete category and
direct limit respectively., Since we are not dealing
with these notiors in the present work we avoided to
define these notions in details In the second chapter

we are primarily dealing with colimits,
Proposition (1.1.1) :

If a categoryj4, has a finite coproducts and direct

limits, then it has arbitrary coproducts.

Proposition (1.1.2) :

A cat@gory‘ﬁi is complete if 1t has coproducts and

coequalizers,

Remark :

A category of algebras and modules are complete.

1.2  THE_DERIVATION MODULES :

Convention :
R denotes a commutative ring with unit and A denotes

a commutative unitary 8-algebra.
Definition (1.2.1) :
Let M be an A-module. A&n R-derivation d from A into

It is an R linear mapping d : A —> M satisfying the condition

d(ab) = a d{b) + b d(a) for all a, b € A,
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-

Definition (1.2.2) :

P S

An R-derivation module is an ordered triple (A,M,d)
where A 1s commutative umitary R-algebra M 1s unitary A-module

and d : A —> M is an B-derivation.
Definition (1.2.3) :

An R~derivation module (A, N, &) is said to be a
derivation A-submodule of a derivation mndule (A,M,d) 1f N

is A-submodule of M and d restricted to N is 6.
NDefinition (1.2.4) :

A derivation module (A, M, d) is called simple if it does

not contain any proper derivation A-submodule.

Remarks :

(1) Let (A, M, d) be an R-derivation module and let N be the
A-submodule of M generated by dA = ida/aGA} Then (A, N, d)
is a derivation A-submodule of (A,M,d) and thus every

derivation A-module contains a derivation A-submodule.

(2) From the above remark and the definition of simple
derivation module, it follows that (A, M, d) 1s simple’'1f and

only if M is generated by dA as an A-.module,

Defainition (1.2.5) :

v ey anaeny

Let (A,M,d) and (B,N,8) be two derivation modules. An
order pair (@,f) is called a decrivation module homomorphism

of (A,M,d) into (B,N,8) and written as



(#,£) * (A,M,d) —> (B,N,s), if

( i) ¢ ¢+ A == B is an R-algebra homomorphism;
(i1) f : M ~> N is an R-module homomorphism;
(i1i) £(am) = @(a).f(m), aC4& m € M and

( 1v) the diagram

commutes,

Instead of saying that

(@,£) : (A,M,d) =—> (B,N,8) is a derivation module
homomorphism, somestimes 1t will be said that

f : (A,},d) —> (B,N,8) is a P-derivation module

homomorphism,

Definition (1.2.6) :

A derivation module homomorphism
(8,£) : (A,M,d) —> (A,N,8) is called an A-derivation

module homomorphism if @ = I,. In this case, fd = 6 and such
a derivation module homomnrphism will be denoted by simply f.

Remark

won e

(1) Let (A,M,d) be & simple derivation module. If there

exists an A-derivation module homomorphism
f : (A,M,d) —> (A,N,8), then f is unique,

11
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(2) If (A,N,5) is simple, then any fi-derivation module
homomorphism
f : (A,M,d) —> (A,N,8)

is an epimorphism,

Proposition (1.2.1) :

The class of all B-derivation modules and the derivation
module homomorphisms forms a category,
This category will be denosted by R-DM.

Proposition (1.2.2) :

The class of all dcrivation modules of an R-algebra A

and A-derivation module homomorphisms forms a category.
This category will be denoted by A-DM,
Definition (1.2.7)

An initial object in the category A-DM 1s called a

universal A~derivation module,

Obviously it 1s uniaue upto A-derivation module
isomorphism.,

A universal derivation module (A,M,d) can be constructed
in the following way : .

Let u = AQRA/J where J is the A<submodule of AQRA

generated by all 1 @ab - b®a - a®b, a, b € A,

Define d ¢ 4 —=> u by d(a) =7 (1 ® a), a A where

7T = A @RA ~—>u is the natural A-module homomorphism. The

(A,u,d) is universal derivaticn module of A.



Remark :

Let (A,u,d) be universal A-deraivation module and
@ : A~—> B is any unitary algebra homomorphism, then there

. exists a unique @ ~ derivation module homomorphism
f : (A,u,d) ~--~> (B,M,5).
Proposition (1.2.3) :

For any unitary commutative R~algebra A, there exists

a universal derivation module of A,

Proposition (1.2.4) 3

A categorv of derivation module is complete and

cocomplete.

1.3  FIELD EXTENSIONS :

heorem (1.3,1) :

w—

If k is a field and K (xl, X xn) is an algebraic

2 * e s
extension of k,—then

n
K(xl, Xo seeees X ) = ?k(x.)

Theorem (1.3.2) @

Let K be a modular inseparable extension of the field
k with finite exponent (not necessarily finite extension),
then K is the coproduct of simple extension.iK(b)} bEB
where B is a modular base for K [22].
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