fekdhkdeh kI dhkkdhk Rt *::k

% 3

*
i1 CHAPTERTI, K %
%******fc*******#***ﬁ}f

%




f} L] l

CHAPTER I

INTRODUCTION

Nevanlinna Theory.

Let £(z) be a function meromorphic and non-constant
in the complex plane C. Nevanlinna theory gives the idea
of how densely the roots of the equation

f(z) = a {(zeg; aecUu ’;,00})

are distributed over C; it also studies the mean approximation .

of the function £(z) to the value & along iarge concentric
circles around the origin z = 0, a problem which turns out

to be equivalent to the former,

Nevanlinna theory originates from a general formula
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wher.e a functioncf£(z) ismeromorphic in |z} < R, O<R<OD

with z=:c'e:Le 0 <r<R, such that £(z) # 0,00 and that a:;_ s, the
zeros and b_;- s are the poles of £(z2) in }z‘ <R, This formula
is due to F and R Nevanlinna EL?J + by which they were develo-

ping a general method for the investigation of meromorphie
functions, This formula includes both the ppisson formula o

and the Jensen formula as special cases, and in its most
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important form it expresses the logarithm of the modulus of
an arbitrary meromorphic function by the boundary values of
the function along a concentric circle around the origin and
the zeros and poles of the function inside this circle.
Nevanlinna theory created in 1924 when Rolf Nevannlina gave
the formula an ingénious interpretation, Thé most genéral
result of Nevanlinna theory can be summarized by saying that
the distribution of the solutions to the equation £(z)€ a is
extremely uniform for almost all values of a except for a
small minority of values which the function ta?es relatively
rarely and these values are known as exceptional values.

The main task of the wvalue distribution theory in the sense
of ﬁevanlinna theory is to investigate these exceptional

values,

The earlier valde distribution theory before Navanlinna
¢an be traced ba¢k to the year 1876 when K.Weierstrass [30]
proved that a meromorphic function £(z) approacHes to every
vaiue closely in the yicinity of its isolaten essential
singularity, But thé actnal study of exceptional values for
entire functions started with the famous theorems of E.,Picard
and Borel Picard!s theorem states that if £(z) is‘an entire
function, then ﬁ(z)-a has infinity of zeros except possible
for one value of a, Further in 1879 Picard [19] even proved'
the surprising f£act that a meromorphic function takes in the
vicinity of an isolated essential singularity every finite

or infinite value a with 2 exceptions at the most. Theseﬁ
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exceptional values are called as_Picard exécﬁtional values

of the function. The results which were found after by the .
mathematiciané E.Laguerre, H.Poincaré;j.Hadamard,E.Borel

and others revealed that inspite of the_possibLe existence

of Picard excéptional values the dis£ributidﬁ of zerosor,

more generally, the distribution of a-points of an entire -
function is conﬁrolieé,at least in gpme séhsé;by the growth
behaviour of the maximum moculus funééion

M(r,£f) = max}f (=)},
fzi=r
And hence it is quite natural to define the order of an entire

function by

limsup log log Mlr,£)
r=> 0 103 r -

Since for an entire function £,M(r,f) satisfies the double in-
M(r,£)=1£ (0))
r

<M(g,£') £ M(R,£)
R=r

equality

for all 0 < r <R, it follows that the order of ant entire fun-
ction £ is the same as the order of its derivative f£';Iifact

it is also known that ?f+g$ max (Pf.pg) and Qg€ max(Qf:pg)

where Pf denotes the order of £, In discussing meromorphic
fgnctions £(z) we can no longer use the maximum modulus function
ds a convenient +tool for expressing the rate of growth of the
function as the earlier approach to the value distribution

theory breaks down,since M(r;£f! becomes infinite if £ (z)

has a pole on the circleLzL=r.E.BorelE31had tried to include
meromorphic functions in th;s frame-work,but he was not very

successful., Rolf Nevanlinna replaced the roll of log M(r,f)
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by an increasing real valued functior T(r,f),which is called
the"Nevanlinna characteristic function" of £ (z)and plays a
cardinal role in the whole Nevanlinna theory.

For an entire function f(2z), the Nevanlinna characterstic
function T(r,f) is connected by log M(r,f) by the following
ineguslity
T(cr,£). ¢ log M(r,f) ¢ - TR,£),
where 0 £ ¥ <€R. Using the above inwddalify,it is easy to show °
that for an entire function £,

1i i
imsup lo oérrﬁ) = limsup log log M(r,f)

This motivated the follwwing

Definition, The order P of a meromorphic function £(z) is

defined by
o = M og m(r,s) ‘

cr —-> M log r
This definjtion also gives similar relations regarding order

of meromorﬁhic function viz.ﬁf+g £ max(pf,Pg) etc, Let us note
however that though the order being definew by either)the
characteristic function or,the logarithmic function give the
same value,the functiohs T(r,f) and log M(r,f) are not the
same, Infact if f is an entire function of order P having
e:éceptional valxlle Borel (defined onp=»S)then log %7(%%)- =™
as r > 0 .A great deal of wopk had been done fh establishing
the relationship between distribution of values and growth
when Rolf Nevanlinna created his epoQue making theory.

This theory,which applies to entire functions,as well as
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to meromophic functions, even improved tremendously the

earlier value distribution theory of entire functions.,Picard's
and Borel's theorems have been provéd in a more general context
of meromorphic functions by R.Nevanlinna, The second fundamental
theorem of Nevanlinna furnishes a very simple proof of Picard
and Borel theorems,Borel's theorem states that if £(z) is an
entire function of finite order then ﬁ(a) = except possible
for one value of a and if this exceptibn occurs then £ must

be an integer Q(a) denoting the exponent of convergence of

the zeros of f£(z)=-a and given by

q(a) = . limsup - 195 n(r,a) where
r > 0 og r

n(r,a) denotes the number of zeros of £(z)-a in }z\ £ r, and
Pdeﬁotes the order of the function, For functions of £finite
order, the theorem of Borel includes the theorem of Picard

as a particular case. Borel later geheralized his theorem
for infinite order. He introduces a variable order W(r) and

showed that for certain categories~of entire functions,

limsup 1o +h(;,a)

>00 = 1
= M (r) log r

except possibly for one value of a in which case the left
hand side of the above equality is less than 1, Valiron has
entended Borel's theorem in a sector and proved that if £(z)
is a mermorphic function, then there exists a direction D

(which he calls Borel direction) such that in every angle
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containing that line in its interior, the exponent of conver-

gence of the zeros of £(z)-a is equal to the order of the
function for all values of a except possibly two (for a=00,

the zeros of f(z)-a are to be replaced by the poles of f(zD'

Many have attempted to eXtend the Nevanlinna theory
in sevaral directions. One of these, known as the theory of
holomorphic or meromorphic curves, which was initiated by H.
andl.Weyl [31] in 1938; the most difficult problem of this
extension, the proof of the defect relation for holomorphic
curves, was solved by L.Ahlfors (1) ; recently a very modern
treatment of this theory was given by H.Wu{33] . In its simplest
form this theory investigates the distribution of the zeros
of linear combinations Agfg(z) + = = = +A £ (2)
of finitely many integral functions wy = fj(z) for different
systems of constant multipliers A= (AO,...,An) + or, in other
words, the theory amalyses the position of a non-degenerate
meromorphic curve C —» p™ relative to the hyperplanes
AgWptes. + AW, = O in the complex project - . space p®, This
theory by Weyl-Ahlfors was further extended to a higher di-
mensional in a most general way by W,Stoll [29] .Then there
have been many attempts: to extend the theory of holomorphic
curves in different direction, stressing Hermitian geomettic
aspects, by S,S. Chern [67] , R.Bott and S.S.Chevn {4]
and other authors, Again in 1972, giving‘very interesting new
ideas, this theory was extended in a different direction,

stressing to algebraic geometry,by J,Carlson and P.Griffiths[S]

A
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to equidimensional holomorphic mappings cmunz'vm, where Vp,
is a projective algebraic veriety. This theory was further
generalized in the same direction by P.Griffiths and J.,King

[12] to the study of holomorphic mappings’

. fi:d > V,

where A is an algebric, V a projective algebric variety.Given
an algebralt subvariety 2« V, the two basic questions which
are treated in this setting are in analogy to Nevanlinna
theotys (A) can you find an upper bound on the size of fl(z)
interms of 2 and the "growth" of the mapping f£; (B) can you
. find a lower bound on the.size of f'l(Z), again interms of
Z and the growth of the mapping. The most important special

case of this problem is when a=C" and V = Pn, the complex

projective space. Then f may be given by n meromorphic functions

f$2)=(f; (2), 000ty )], ;2= (7 eeuuzy) € C,
The subvarieties' Z will be the zero sets of collections of
polynomials Py (wy,....,w,) and so the questions amount to

globally studying solutions to the eqguations
Pa(Ey(2)see., £ (2)=0.

We refer to L.Sario and K.Noshifo [20] for the extension
of Nevanlinna theory for holomorphic mappings between Riemann
surfaces and to the more Hermitian differential geometrical
versions of S.S.Chern i?] and H,Wu [32] . Thers are several
extensions of Nevanlinna theory to certain classes of non-

helomorphic functions and the extension 6f B,F,Beekenbagh
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and G.A.Hutchison [2] to triples of conjugate real harmonic

functions.

Nevanlinna éheory has also been used in case of
exceptional values, asymptotic values for entire and mero;
morphic functions in different directions. For an entire
function f£(z) we say that a is an asymptotic value if there
exists a curve starting from 2z=0 and extending up to infinity
along which f (2)=—> a (finite)., Valiron and Iverson have
shéwn that infinity is always an asymptotic value for an
entire function. Denjoy conjectured that' an entire function
of order £ (0 <« P < M) has at most 2Pasymptotic values.

this conjecture was proved by L.V.,ahlfors. That this best
sin VE‘_

N~
The result with 5 instead of 2f was proved by Carleman.

lpossible result can be seen from the example

But in case of meromorphic function of finite order the result
of Denjoy-Ahlfors is not true. G.Valiron has constructed a
meromorphic function of finite order having an infinity of
asymptotic walues which ferm uncountable set, Exceptional

values and asymptotic values are related in some way.

With the above mentioned theory in the background,
we now give the motations and the preliminary results that

will be useful in our work in further develaeping the

Nevanlinna theory,
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Notations, Terminology.and preliminary results,

Let f(z)be a non-constant transcendental function
meromorphic in the compltex plane C.Let C = C v {00lthe extended ¢
" ¢omplex plané’, For any complex number a, we denote by =

n(r,a)=n(r,a,f) the number of roots of £(z)=a in 12\ g r ,
the multiple roots being counted with their multipticity,
and let n(r,a)=n(r,f,a) denote the number of distinct roots
of £f(z)=a in |2\ r. For a=W, n(r,a)=n(r,f) and
n(r,a)=n(r,f) respectively denote the number of poles and

the number of distinct poles of £(z) in {zi¢ r. We write

a1

- 1
s

N(r,a) = n(toa)t-n(O;a) dt <+ n(o,a)l.og'r,

rl

H o

N(r,a)= g_(tla)-;n(OLa) dt + n(0,a)log r.

r

N (z,£)=N(r, ® )= [n(t'm)- n(0,®0) 3¢+ + n(0,0) log ra.

" - s
0

N (r,f) being similarly defined.
Here the term N(r,a) which refers to the number of roots
of £(z)=ain |z1 ¢ r, or to the number of poles of £ (z) if

a=00, is called enumerating function.Also we write

1)
mlr,a) = - | 1og o —% } ag
2T | (rézr—-a
0 an .
) . 5
m‘ H'Q’-/“H“'”': LAY, T
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The term m(r,f) is a 'sort of averaged magnitude of log‘ﬁ &
on :‘arcs of \zl = r where |fl is large , and th€ term m(r,a)
refers to the average smallness in a certain seénse of £-a,

on the circle \z| = r,

As usual for any complex number a, including 0 ,we

get -

s(a) = 8(a,f) =1 = limsup N(r,a)
- r-»® T(r,£)

® () =)(a,£f) =1 - limsup N(r,a)

‘r =300 T(r,£)

liminf N(r,a)

AMa) = Aa,£) = I~ r>® T(£)

o(a) =6(a, £) = liminf NG ®< N(r,a) ope.
: r —> 00 © T (r,£)

The quantity §(a) is called the deficiency of the value a.
Finally the term S(r,f.) wil]l. denote any gwantity satisfying
s(r,£) = ‘o(T(r,f)) as r—>0 through all values if £ is of
finite order and as r =¥ ®, possibly outside a set of finite
lihear measure if £ is of infinite order.

One of the fundamental theorem of the Nevanlinna's theory is

T(r,£) = N(r,a)#m(r,a)+0(1)  * (1.1)

It provides an upper bound for N(r,a) and so to the
nurber of roots of the equation f(z) = a valid for all r and
a. This theorem. in general form is

T(r,f?_‘_ja—) = T(r,f) + 10g {£(0)-al +&(a,R)
where fe(a,R) ¢ }:og+ lal + log 2

and is normally known as the first fundamental theorem of

€
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Nevanlinna (1964) see W,K,Hayman [13] « The more flifficult
question of lower bounds is found out with the help of
Nevanlipn's second fundamental theorem which states that

forqg % 3 and distinct complex quantities Q14850000008 i

q
q
z m(r,a;) € 2T(r,£)=N, (r)+S(r,£) (1.2)
i=1

where N, (r) is a positive term related with multiple roots -
of the equation f(z)=a and S(r,f) is a small error term,
This theorem tells us that the term m(r,a) is small compaged
to T{r,£) and so N(r,a) comes near to T(r,f), the maximum
possible growth allowed by the first fundamental theorem,
Thus the term

{ — Um Sup N¢r,as)
is defined and denoted by Sia,f) and is called deficient

value of a,

There are various directions in which the deficient
values can be studied, In the present dissertation7 we plan
to work on deficient values of meromorphic functions,
deficient values of their derivatives and deficient values
of homogeneous differential polynomials of degree n, where
by homogenocus differential polynomials of degree n,we mean
a finite sum of the terms of the form

a@ (@) b @ ) ... ¢ ® @) yh
where 4o + L1+,....Lk%n and a(z) is any meromorphic function

satisfying T,alz))= S(r.f).
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Let £(2) be entire or a meromorphic function we say that a
is'e.v.p. (exceptional value in the sense of Picard) if
n{r,a) =©(1) (0'g jalg W). a is called e.v.B. (exceptional
value in the sense of Borel) if Q, (a)-<{. a is called

€,Vl.N, (excepf:ional value in the sense ©f Nevanlinna) if

§a) >0. a is called e.v.E if liming T(z£) >0
r vp> ®On(r,a) ¢ (r)

where # (x) is any positive non—-deo‘reasring function such

that ® '
J. gx < 0,
P X B(x)

For an qntire function every e.v.p..is an asymptotic wvalue,
and every e.,v.B is also an asymptotié value in case if a
function is of finife order. Nevanlinna put the question
whether every e,v.N is also an asymptotic value, This was
disproved by Arakelian, a Russian mathematician, who conste-
‘ructed an entire function of finite order having infinity of
" e4VeN whitch obiviously cannot all be asymptotic values ?ecause
by ahlfor's theorem, an entire function cannot have at. most
Ze asymptotic values, See Arakclian, "Doklady Akademy Nayuk,
U.S.S.R.,1966." S.M,Shah in 1952 has proved that if £(z) is
an entire function of finite order e having a as e.v.E then
the number of asymptotic values of f(;) is preciselyf) and
each asymptotic value is a,Newanlinna conjectured that if

a is e,v,N for an entire function or meromorphic function
then @ must be an asymptotic value, But this was proYed to

be false 4in 1941 by Madame Laugent Schwartz. She constructed
{ - .
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a meromorphic function £(z) for which$§(0)= §(00) > 0, and thus
0 and Ware e,v.N,,but they were not asymptotic values, See
16} . For~ an entire function of infinite order it was proved
to be false by W,K,Hayman and for finite order it was proved
to be false by A.A.Goldberg See[10}, But with some additional-
hypothesis the conjecture of Nevanlinna is true. A.Edrei ané
Fuchs have proved that if £(z) is an entire function of finite
order and ifZlS(ai)= 2, that is.the total deficiency is
attained, then each deficient value of £(z) is also an asympt-
otic value .See[Qj 'Later on by replacing some other smoother
condition in the place of §_5‘(ai}= 2, Edrei proved that the
restriction that f£(z) must be of finite order can be remm{ed
and each deficient value will be asymptotic value, See A.Edrei
{8l .

The deficient values corresponding to zeros and poles
being counted only once have also been studied extensively.
Nevanlinnag's theorem on deficient values states that if f£(z)
is meromorphic function then the set of values of a,for which
8Ga) > 0 or ®(a) > 0 is countable and%@(a) ¥ 2. This c)early
implies that %S(a) € 2. If 28(a)= 2 then we say that the
total deficiency is attained., 3.K,Singh and H,S.Gépalkrishna
{273 have shown by an example that a'merOmorphic function
may be such thata%‘é-g(a) = 1 wherasZ@(a) = 2., Relative
deficiencies i.e.deficiencies fom:td by considering the function
and its derivative have' also been studied in comparing
them with the usual deficiencies [34? . For instance

Xiong Qing-Lai in the above mentioned paper pas proved that
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if £ is a non-constant meromorphic function with Wand a
finite value a with maximum defect them the x{'elative defect
and the usual defect of any value o with respect to :ék)ére
equal, The relative defects corresponding to distinct zeros
and poles have been defined by A.P.Singh [24] , where he has
proved various relations between the relative defects and the
relative defects corresponding to the distinct zeros and poles
of £, Later in {25]’these definitions have been carried
. over to form defects correspondingi%wo functions simultaneo-
usly, viz forming the defects with respeci': to distinct zeros

@f‘{; (a), common zeros @ék) (a) )of two meromorphic functions.
Using these he has proved in [25] that if £, and £, are two
meromorphic functions which have o and 00 as exceptional values
of defect 1,and if a; are finite distinct non-zero ‘complex
numbers tha'gl@:(:: (a;) £ 2.

Deficient values of entiré and meromorphic functions
have been studied J.n the context of orders of the functions
also., S.M.Shah and S.K,Singh have shown that if S(a1)=1 and

SmS(ai)=1 , then the order @ must be a positive integer.

%2 see {23}But if the hypothesis only states that the total
deficiency is attained, then Q need not be an integer because
of Nevanlinna who constructed an example of a meromorphic
function for which total deficiency is attained and its

order is 2n;- 1. There is a longstanding conjecture of

Nevanlinna that if ZS(a ;) = 2 and function is of finite
]
i



order, then the order of the meromorphic funttion must be

elther an integer or an integer divided by two,

. Pflugar [1@ Proved that if £(z) is an entire

function of finite order such that

Z S(a) = 2'
a

then P must be an integer. However Singh and Gopalkrishna have

- th
shown that if the total deficienty for the 17 derivative
" of meromorphic’ function is attained ( 4y 1), then @ must be

a positive inteder see [27] .

S.M,Shah and S.K.Singh have studied exceptional values

in another context also. They have compated. the growth of
T(r,£') with respect to T(r,f) under different hypothesis.
Most of our work is developed in this context only. For

~

an entire function of finite order one has N
log M(r,£) ~ log M(r,£')

Hence it is reasonable to conjecture that f:'or an entire
function of finite order'.
T(rif) ~ T(r,£9).
Neva}nlin'na acéua%.ly conjectured that for an entire function
D (ry£) ~ “I‘(r“,f'),.
and for a meromorphic function either
"' T(,£') ~ T(r,f)i

F

or T(L,EV) ~ 2T(r,‘f) .

-

These conjectures have been ‘triéed by many - °




meromorphic function of finite order if

S = 8§ =1, a # ®,
then T(r,f') ~o T(r,f)’

and if &(ag) = 8(_&2)=1, a, % o,
{ocll <®, |af <@,
then ' T(r,£*) ~ 2T(x,£),

See S.M,Shah and S.,K.Singh [21] . Further these results -

were improved by the same authors, They proved that if r
@
tad <o, T8 =2,
1

then T(r,f') &~ 2T(r,f)

where £(z) is a meromorphic function of finite order.See {22] .-

These results were extended by P.K.Kamathan [143 and
proved that if £(z) is a meromorphic function of finite order

such that

gmcgka) =1, Sm)=1 a#®, (153)
*then T(r,f(l')) ~ T{r,£f)
and if §laq) = Slay)=1, o¥# a, (134)

el < @, oy} < 0O,
then T(r,£ (%))~ (L41) T(c,E).
In our work we have extended these results further in third
chapter and proved with the same hypothesis as in (1,3) that.

for a homogenous polynomial P of degree n in a meromorphic

function of finite order and P does not contain £

P
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T(r,p) ~ n T(r,£)
and if (1,4) is true for a moncmial  of degree n, consisting

just one term

X L : X
az) EENE @I . ... €% @)

k

Then with additional hypothesis
N(r,p) € (n+ ki ) T(c,£)

we have shown that

T(r,p) o (n-!-kik) T(r,£).

By weaking -the hypothesis (1.3) P.K.Kamthan [15) has compared .
(4)

the growth of T(r,f ) with respect to T(r,f) and proved

that for a metromorphic function of finite order such that -

£(0,£) = M(0,£) = 1,

Then

(+)

T(r, £ ) o~ T, £)~ N (£, )
-a

for all a, except possibly o and 0, We have extended this
result in chaptgr IIT for a homogencous polynomial P of
degree n in meromorphic function £ of finite?ﬁdsrdoes not
involve £). In the same chapter we have considered the

estimatton of i §(a,£) interms of deficient values
00

$0,p), 5(®,p) which emtends the work of P.K.Kamthan [15] .
We have also found out certain other types of estimations

of &(0.p), E 5 (,p) and A(o,p) which are also extensions
a

of work of same author,

The second chapter of our work is devoted to find

the bounds for liminf ‘I'(r!f(k)) and limsup T(r f(k)) interms

Lo > 00 T(r'f) r—> 00 T('E’,f)
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of deficient values @(ai,f ) (where £ is a meromorphic function
and a_{ s are complex constants) and compali'e‘d the growth of
T(r,ék)) with respect to T(r,f) (k3> 1) under various hypothesis
on deficient values. Several other results are also derived

with the help of these bounds, and we have also used the above

mentioned bounds and its corollaries to give some direct
applications to the deficient values of two meromorphic functions
using the theorem proved by A.,P.Singh in [25] « In this chapter
we have also defined the relative defects and the absolute defects
of meromorphic functions and have obtained a relation between

those two defects.,

foy
.

The method of the proof that we have followed in both
these chapters is the classical theory of entire funcéions
dealing with the order of entire functions and the classical ~
Nevanlinna theory of meromorphic functions which heavily dépends
on the first and second fundamental theorems, We have made an
extensive use of the Milloux's theorem which gives a bound for
the Nevanlinna characteristic of a derivative with respect to
the Newanlinna characteristic function T(r,f). We have also
used some properties of meromorphic functions of non-integral
order, and have also used the rate of growth of zeros and poles
of a meromorphic function and compared it with T(r,f). We have
also used the principie of counting the number of zeros and
poles of a meromorphic function and‘used it to compare with
the pumber of zeros and poles of its derivatives. And finally
the Nevanilinndé&.:theory of deficient values héé been used almost

. everywhere: in.-pur work. ;
'



