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CHAPTER I

INTRODUCTION 

Nevanlinna Theory.

Let f (z) be a function meromorphic and non-constant 

in the complex plane C. Nevanlinna theory gives the idea 

of how densely the roots of the equation 
f (z) - a (zfc.?; a fir c u too})

are distributed over C? it also studies the mean approximation - 

of the function f(z) to the value a along large concentric 

circles around the origin z * 0# a problem which turns out 
to be equivalent to the former.

Nevanlinna theory originates from a general formula
2TT
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where a f unctidnc.f (z)' is meromorphic in | z J ^ R, 0<R<0® 

with z=re 0 <r<R, such that f (z) £ 0,00 and that s/ the 

zeros and bj a are the poles of f(z) in jz{ <R. This formula 

is due to F and R Nevanlinna Qlt] , by which they were develo 

ping a general, method for the investigation of meromorphic
»*

functions. This formula includes both the poisson formula 5
\

and the Jensen formula as special cases, and in its most
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important form it expresses the logarithm of the modulus of
an arbitrary meromorphic function by the boundary values of
the function along a concentric circle around the origin and
the zeros and poles df the function inside this circle.
Nevanlinna theory created in 1924 when Rolf Nevannlina gave
the formula an ingenious interpretation. The most general
result of Nevanlinna theory can be summarized by saying that

c *the distribution of the solutions to the equation f(z)** a is 
extremely uniform for almost all values of a except for a 
small minority of values which the function takes relatively

t

rarely and these values are known as exceptional values.
The main task of the value distribution theory in the sense 
of Nevanlinna theory is to investigate these exceptional 
values.

The earlier valiie distribution theory before NQvanlinna 
can be traced back to the year 1876 when K.Weierstrass [30l 
proved that a meromorphic function f(z) approaches to every 
value closely in the vicinity of its isolatea essential 
singularity. But the actual study of exceptional values for 
entire functions started with the famous theorems of JE.Picard 
and Borel,Picard*s theorem states that if f(z) is an entire 
function, then f(z)-a has infinity of zeros except possible

e

for one value of a. Further in 1879 Picard [ 19^ even proved 
the surprising fact that a meromorphic function takes in the 
vicinity of an isolated essential singularity every finite 
or infinite value a with 2 exceptions at the most. These.
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exceptional values are called as Picard exceptional values 
of the function. The results which were found _ after-by/ the .

tmathematicians E.Laguerre-, H.Poincare'/ J« Hadamard,E.Borel
and others revealed that inspite of the.possible existence

' * *»

of Picard exceptional values the distribution of zetos or,
more generally, the distribution of a-points of an entire
function is controlled,at least in some senseiby the growth
behaviour of the maximum modulus function

M(r,f) = max jf (z)| „ 
fz(=r

And hence it is quite natural to define the order of an entire
function by
limsup log log M(r,f) 
r CD log r *
Since for an entire function f,M(r,f) satisfies the double in
equality --r' fj.“^-(0) 1 ^M(r,f ■) ^ M(R,f) 

r R-r
for all 0 < r <R, it follows that the order of ant entire fun
ction f is the same as the order of its derivative f14 Infact 
it is also known that pf+g!$ max ^Pf'Pg) max^9f'Pg^

where p^ denotes the order of f. In discussing meromorphic 
functions f (z) we can no longer use the maximum modulus function 
as a convenient *tool for expressing the rate of growth of the 
function as the earlier approach to the value distribution 
theory breaks down,since M(r;f) becomes infinite if f(z) 
has a pole on the circle |z i«r.S-.BorelE3l had tried to include 
meromorphic functions in this frame-work,but he was not very 
successful. Rolf Nevanlinna replaced the roll of log M(r,f)



f \ *' 4r>

by an increasing real valued function T (r, f) * which is called 

the"Nevanlinna characteristic function" of f (z)and plays a 

cardinal role in the whole Nevanlinna theory.

For an entire function f (z), the .Nevanlinna ch^racterstic 

function T(r,'f) is connected by log M(r,f) by the following 

inequality

T(r,f), 4 log M(r,f) $ |±|r- T(R,f),

where 0 4 r <R. Using the above inequality,it is easy to show 
that for an entire functioh f,

lunsup logTtr,f,) _ llrasup lotJ 1<XJ M(r,f) 
r -* 00 9 r * 00 log r

This motivated the following

Definition. The order p of a meromorphic function f (z) is 

defined by
0 . limSUP W T(r,f) •
‘ • r —> 03 lQS r

This deflation also gives Similar relations regarding order 
of meromorphic function viz.jj^g ^ max (p^, p^) etc. Let us note 

however that though the order being defined'ty either^the 

characteristic function or^the logarithmic function give the 

same value,the functiohs T(r,f) and log M(r,f) are not the 

same. Infact if f is an entire function of order p having 

exceptional value Borel (defined on £-5)then

as r CO . A great deal of work had been done in establishing 

the relationship between distribution of values and groVth 

when Rolf Nevanlinna created his epoque making theory.
This theory,which applies to entire functions,as well as



to meromophic functions#, even improved .tremendously the 

earlier value distribution theory of entire functions.Picard's 

and Borel's theorems have been proved in a more general context 

of meromorphic functions by R.Nevanlinna. The second,.-fui!idamental 

theorem of Nevanlinna furnishes a very’ simple proof of -Picard 

and Borel theorems.Borel's theorem states that if f (z) is an 
entire function of finite order then (a) = £ except possible 

for one value of a and if this exception occurs then p must 
be an integer ^(a) denoting the exponent of convergence of 

the zeros of f(z)-a and given by

»

rt \ t- . limsup - loj n(r,a) where 
r CD log r

n(r#a) denoted the number of zeros of f(z)-a in \z\ 4 r# and 
f>derioted the order of the function. For functions of finite 

order# the theorem of Borel includes the theorem of Picard 

as a particular case. Borel later generalized his theorem 
for infinite order. He introduces a variable order tyr) and 

showed that for certain categories of entire functions#

U""® ta>+n(r..) , !
r-»00 n(r) log r

except possibly for one value of a in which case the left 

hand side of the above equality is less than 1. Valiron has 

entended Borel's theorem in a sector and proved that if f(z) 

is a mermorphic function# then there exists a direction D 

(which he calls Borel direction) such that in every angle
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containing that line in its interior, the expon'ent of conver
gence of the zeros of f(z)-a is equal to the order of the 
function for all values of a except possibly two Cfor a-00, 
the zeros of f (z)-a are to be replaced by the poles of f (z^

Many have attempted to extend the Nevanlinna theory 
in sevaral directions. One of these, known as the theory of 
holomorphic or meromorphic curves, which was initiated by H. 
andJ.Weyl [31] in I938y the most difficult problem of this 
extension, the proof of the defect relation for holomorphic 
curves, was solved by L.Ahlfors [ ll ; recently a very modem 
treatment of this theory was given by H.Wu[33] • In its simplest 
form this theory investigates the distribution of the zeros 
of linear combinations Aj^fq (z) + - - - +&nfn(z5 
of finitely many integral functions Wj = fj(«) for different 
systems of constant multipliers A=* (A0#...»An) ■ or, in other
words, the theory analyses the position of a non-degenerate 
meromorphic curve c —Pn relative to the hyperplanes 
AqWq+.Anwn = o in the complex project ~ . space Pn. This 
theory by Weyl-Ah'lfors was further extended to a higher di
mensional in a most general way by W,Stoll [29] .Then there 
have been many attempts • to extend ’the theory of holomorphic 
curves in different direction, stressing Heasraitian geometric 
aspects, by S.S. Chem , R.Bott and S.S.Chevn {[4]
and other authors. Again in 1972, giving very interesting new 
ideas, this theory was extended in a different direction, 
stressing to algebraic geometry,by J. Carlson and P.Griffithsfs]

m mi i
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to equidimensional holomorphic mappings Cm—it Vm, where vm 

is a projective algebraic veriety. This theory was further
generalized in the same direction by P.Griffiths and J.King

\ *

[121 to the study of holomorphic mappings
f sA —> V,

%

where A is an algebric, V a projective algebric’ variety.Given
an algebraic subvariety Z<cr v< the two basic questions which
are treated in this setting are in analogy to Nevanlinna

—1theotyi (A) can you find an upper bound on the size of f (z) 
interms of Z and the "growth" of the mapping f?(B} can you 
find a lower bound on the.size of f (z), again interms of 
Z and the growth of the mapping. The most important special 
case of this problem is when A=Cm and V = Pn, the complex 

projective space. Then f may be given by n meromorphic functions

f(z)=(3| (z)/...,fnCz)^ t z= (zj ,.. ,,zm) £ C111.
The subvarieties' Z will be the zero sets of collections of 

polynomials *•-•/Wn) and so the questions amount to
globally studying solutions to the equations

Pa(f 1 (z),... ,fn(z$= <0.

We refer to' L’.Sario and K.Noshiro [203 for the extension 

of Nevanlinna theory for holomorphic mappings between Riemann 
surfaces and to the more Hermitian differential geometrical 
versions of S.S.Chern [71 and H.Wu [32] . There are several 

extensions of Ne-vanlinna theory to certain classes of non- 
helomorphic functions and the extension ©f S.¥.BCSkenbaSh
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and G.A.Hutchison [2l to triples of conjugate real harmonic 
functions•

Nevanlinna theory has also been used in case of 
exceptional values, asymptotic values for entire and mero- 
morphic functions in different directions. For an entire 
function f (z) we say that a is an asymptotic value if there 
exists a curve starting from z=0 and extending up to infinity 
along which f (z)—— > a (finite). Valiron and Iverson have 
shown that infinity is always an asymptotic value for an 
entire function. Denjoy conjectured that' an entire function 
of order (f (0 < p < CD) has at most 2f asymptotic values.
This conjecture was proved by L.V.Ahlfors. That this best 
possible result can be seen from the example ■==£—=— .-y-r
The result with 5f instead of 2p was proved by Carleman.
But in case of meromorphic function of finite order the result 
of Denjoy-Ahlfors is not true. G.Valiron has constructed a 
meromorphic function of finite order having an infinity of 
asymptotic values which form uncountable set. Exceptional 
values and asymptotic values are related in some way.

With the above mentioned theory in the background,
we now give the Rotations and the preliminary results that

/

will be useful in our work in further developing the 
Nevanlinna theory.
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Notations,Terminology and preliminary results ,

Let -f (z)be: a non-constaint transcendental function

meromorphic in the ‘complex plane 'C. Let C - C U {OC^the extended c

cfOmplex plant*. For any complex number a, we denote by -

n(r,a)=n(r, a,f) the number of roots ,of f(z)=a in 1 zl ^ r ,

the multiple roots being counted with their multipticity,

and let ntr/aJ^Cr/f/a) denote the number of distinct roots

of f(z) = a in izt< r. For a=00, n (r,a)=n (r,f) and

n(r,a)s=n (r,f) respectively denote the number of poles and

the number of distinct poles of f(z) in Izl ^ r. We write 

. , r

N(r,a) Si-tit§2zS.i.9£3,) dt + n (o* a)log'r ,

0
r

N(r,aX= / dt + 5(0,3) log r„

r
r

N (r,f) =N (r, GD ) = Si^i, °°i T-S dt + n (0,00 ) log- r,
t

N (r,f) being similarly defined.
I

the term N(r^a) Which refers to the number of roots

of f (z)=;ain \z\g rt or to the number of poles of f (z) if

a=00, is called enumerating function.-Also we write 
1 2TT

■m(r,a) = -L- f log*

2TT J
f (r^J~a|

djzf

2U

m(r#G0 ) = m(r,f )* 2TT J log* | f Cre1^) J drf

*&KK. fifiljv,...... -m
'/>a
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The term m(r,f) is a 'sort of averaged magnitude of log|fJ* 

on arcs of Izl = r where |f l is large t and the' term nv(r,,a) 
refers to the average smallnes.s in a certain sense of a, 
on the circle \z\ =.r.

As usual for any complex number' a# including CO ,we

set -
S(a) - S(a,f> = 1 - limsup .

r-*00 T(r,f)
©(a) =©(3,1) = 1 limsup £i£i5l ,

r “-^OO T (r, f)

X (a) = X(a,f) = 1- liminf N (r,a) 
r—> CD T (r,f)

0 (aD =6(a, f) «= liminf N(rYg)~ ft(r,a)
r ^ 00 • T(r#f)

The quantity 8(a) is called the deficiency of the value a. 

Finally the term S(r,fJ will denote any quantity satisfying 
S (r,f ) = ' o (T (r, f)) as r--KD through all values if f is of 
finite order and as r -*> 00 _ possibly outside a set of finite 
lihear measure if f is of infinite order.
One of the fundamental theorem of the Nevanlinna1s theory is

T(r,£) = N(r,a)-nn(r*a)+0(l) '* (1.1)
It provides an upper bound for N(r,a) and so to the 

number of roots of the equation f (z) = a valid for all r and 
a. This theorem in general form is

T(r,£—~) ■ T(r,f) + log \ f (0)-a[ +fc(a,H) 
where f6-(a,R)i ^ Jtag" (a( + log 2
and is normally known as the first fundamental theorem of
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t&evanQLinna (1964) see W.K.Hayman £l3l . The more difficult 

question of lower bounds is found out with the help of 
Nevanlinn's second fundamental theorem which states that 
forq % 3 and distinct complex quantities a^a^.... ag/

q̂
 m(r,ai) 4 2T(r#f (r)+S (r/f) (1*2)

i=l

where (r) is a positive term related with multiple roots • 
of the equation £(2)=a and S(r>f) is a small error term.
This theorem tells us that the term m(r,a) is small compared 
to T(r#£) and so N(r,a) comes near to T(r,f), the maximum 
possible growth allowed by the first fundamental theorem. 
Thus the term

1 ■Lim ®up Mtr.a) 
r->03 T(r,f;

is defined and denoted by £(a,f) and is called deficient 

value of a.

There are various directions in which the deficient 
values can be studied. In the present dissertation we plan 
to work on deficient values of meromorphic functions, 
deficient values of theii: derivatives and deficient values 
of homogeneous differential polynomials of degree n, where 
by homogenous differential polynomials of degree n,we mean 
a finite sum of the terns of the form 
a(z) (f(z))^o(£ (z) J,1.... (f ^ (z) ) k 

where .JL-y^n and a(z) is any meromorphic function
satisfying I(r,&(z),) = S(r.f).
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Let f (zj- be entire or a meromorphic function we say that a
is e.v.p. (exceptional value in the sense of Picard) if
n(r,a) =0(1) (0 ^ Jal^ 00). a is called e.v.B.(exceptional
value in the sense of Borel) if ^ (a-)-~<£:‘. a is called
e.v.N. (exceptional value in the sense bf Nevanlinna) if
$(a) >0. a is called e,v.E if liming T(r,f)_____^ 0

r '•*+> ODn (r,a) $ (r)
where (x) is any positive non-deoreasing function such
that qq

7 .-Ss_ <oo -.
^ x /#(x)

For an entire function every e.v.p. is an asymptotic value,
t

and every e.v.B is also an asymptotic value in case if a 
function is of finite order. Nevanlinna put the question 
whether every e*v*N is also an asymptotic value. This was 
disproved by Arakelian, a Russian mathematician, who const- 
•ructed an entire function of finite order having infinity of 
e.v.N which obiviously cannot all be asymptotic values because 
by Ahlfof1s theorem, an entire function cannot have at. most 
2.^ asymptotic values.. See Arakelian, "Doklady Akademy Nayuk, 
U.S.S.R.,1966." S.M.Shah in 1952 has proved that if f(z) is 
an entire function of finite order^ having a as e.v.E then 
the number of asymptotic values of f(z) is precisely p and 
each asymptotic value is a,Nevanlinna conjectured that if 
a is e-.v.N for an entire function or meromorphic function 
then a must be an asymptotic value. But this was proved to

v.

be false in 1941 by Madame Laurent Schwartz. She constructed
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a meromorphic function f (z) for which $(0) = S(00) > 0, and thus 

0 and (DOare e„v.N.,but they were not asymptotic values. See 
&<a. For an entire function of infinite order it was proved 

to be false by W.K.Hayman and for finite order it was proved 
to be false by A,A.Goldberg. See £l 0} , But with some additional- 
hypothesis the conjecture of Nevanlinna is true. A.Edrei and 
Fuchs have proved that if f(z) is an entire function of finite 
order and if ^S(a^) = 2, that is. the total deficiency is 

attained, then each deficient value of f (z) is also an asympt- 
otic value .SeeC-a .Later on by replacing soke other smoother 
condition in the place of ^*ai5"2-Earei proved the

restriction that f(z) must be of finite order can be removed 
and each deficient value will be asymptotic value,See A.Edrei 

.
The deficient values corresponding to zeros and poles

being counted only once have also been studied extensively.
Nevanlinna's theorem on deficient values states that if f (z)
is meromorphic function then the set of values of a,for which
#(a) >0 or @(a) > 0 is countable and 7,© (a) & 2. This cjearly

a
implies that 4 2. If ]T§Xa)= 2 then We say that the

ct
total deficiency is attained. 3.K.Singh and H.S.Gdpalkrishna
[27^ have shown by an example that a meromorphic function
may be such thatJ^S(a) = 1 wheras^S(a) - 2 . Relative

deficiencies i.e.deficiencies formed by considering the function
and its derivative have also been studied in comparing
them with the usual deficiencies £ 34} . For instance

Xiong Qing-Lai in the above mentioned paper has proved that
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if f is a non-constant meromorphic function with 00 and a
finite value a with maximum defect them the Relative defect
and the usual defect of any value a with respect to 3^ are

equal. The relative defects corresponding to distinct zeros
and poles have been defined by A„P.Singh [ 24] , where he has

proved various relations between the relative defects and the
relative defects corresponding to the distinct zeros and poles
of f. Later in [25], these definitions have been carried

toover to form defects corresponding two functions simultaneo
usly viz forming thgp defects with respect to distinct zeros 
^1,2 ^) common zeros (a)^of two meromorphic functions.

Using these he has proved in [.25] that if f ^ and f2 are two 

meromorphic functions which have o and 00 as exceptional values 
of defect l,and if are finite distinct rion-zero complex 
numbers then^^f^ (a^) ^ 2.

) » i

Deficient values of entire and meromorphic functions
}

have been studied in the context of orders of the functions
also. S.M.Shah and S.K.Singh have shown that if S(a1)=1 and 

(DO
©(a-^Hl, then the order p must be a positive integer.

See £23^But if the hypothesis only states that the total
deficiency is attained,then ^need not be an integer because
of Nevanlinna who constructed an example of a meromorphic
function for which total deficiency is attained and its
order is —^-=-. There is a longstanding conjecture of
Nevanlinna that = 2 and function is of finite

i

4
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order# then the order of the meromorphic fundtion must be 
either an integer or an integer divided by two,

* Pflugar proved that if f (2) is an entire
function of finite order such that

H £ (a) « 2#
a
4 ,

then p must be an integer. However Singh and Gopalkrishna have
• thshown that if the total deficiency for the !• derivative 

of meromorphic' function is attained ( 1)# then jp must be
a positive integer see £27] •

S.M.Shah and S.K.Singh have studied exceptional values 
in another context also. They have compared, the growth of 
T(r#f*) with respect to T(r*f) under different hypothesis.
Most of our work is developed in this context only. For 
an entire function of finite order one has

log M(r,f)*'-' log M(r,f)

Hence it is reasonable to conjecture that for an entire 
function of finite order,

T(r/f) *** T(r#f‘).
Nevanlinna actually conjectured that for an entire function *

‘ T(r*f) •"* Ttr/f') ■
9

and for a meromorphic function either 
' T(r,f1) T(r,f) a

or T(r#f1) 2T(r,f).
These conjectures have been 'tried by. many 

persons + But SJM. Shah and S.K.Singh have proved that
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meromorphic function of finite order if

Sia) m g(00) = 1, a £ (D, 
then T (r, f') T (r, f) ^ 
and if £(0^) “ cl^j4 a2

laj < 03, \ < GO ,

then T(r,f») ^ 2T(r,f).

See S.M.Shah and S.K.Singh £21^ . Further these results *

were improved by the same authors. They proved that if 1
00

<00/ X ® ̂) = 2j 
1

then T(r,f‘) r"> 2T(r,f)
where f(z) is a meromorphic function of finite order.See £221 .

These results were extended by P.K.Kamathan £i4*[ and 

proved that if f(z) is a meromorphic function of finite order 

such that
• T. S\a) = l # £(00)=1 a ^ 00/ (i«3)

<*#re
then T(r/f ^ h ^ T(r,f)

and if £(0^) = £(a2)=l/ al^ a2 1 (1*4)

\a±\ < 00/ \a2\ < 00/ J 

then T (r / f ' *) *>j. (i+i) T(r/f).

In our work we have extended these results further in third 

chapter and proved with the same hypothesis as in (1.3) that- 

for a homogenous polynomial P of degree n in a meromorphic 

function of finite order and P does not contain f
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T(r,p) n T(r,f)
/

and if (1*,4) is true for a monomial of degree n, consisting 

just one term
a (z) (f (z)f°(f' (z)fj . . . , (f(k)(z) )lk

Then with additional hypothesis

N<r,p) 4 (n+ kikv ) T(r,f)

we have shown that

T(r,p) (n+kik) T(r,f).
v

By weaking -the hypothesis (1.3) P.K.Kamthan [.151 has compared..
(4. ) *the growth of T(r,f ) with respect to T(r,f) and proved 

that for a mesomorphic function of finite order such that - 

6(0,f) = ©(00,f) = 1,

Then

T (r,f T(r,f)‘

for all a, except possibly o and GO , We have extended this 

result in chapter III for a homogeneous polynomial P of 
degree n in meromorphic function f of finite°^^Prdoes not 

involve f). In the same chapter we have considered the 

estimation of £ 8««.« interns of deficient values .
aSoo

&(°#p)# S (CD ,p) which extends the work of P.K.Kamthan [is] «

We have also found out certain other types of estimations
of £(O.p), X S W,p) and \(o,p) which are also ^tensions

cmm
of work of same author.

The second chapter of our work is devoted to find
(k)the bounds for liminf T(r<f---L and limsup T(r,f (k)) interms

r—>00 T(r,f) co T(r,f)
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of deficient values ®(a^#f) (where f is a meromorphic function

I
and s are complex constants) and compared the growth of
T(r Jk)) with respect to T(r*f) (k£ 1) under various hypothesis

on deficient values. Several other results are also derived
with the help of these bounds, and we have also used the above
mentioned bounds and its corollaries to give some direct
applications to the deficient values of two meromorphic functions
using the theorem proved by A.P. Singh in [25] . In this chapter
we have albo defined the relative defects and the absolute defects

*

of meromorphic functions and have obtained' a relation between 
those two defects*.

t- The method of the proof that we have followed in both 
these chapters is the classical theory of entire functions 
dealing with the order of entire functions and the classical~ 
Nevanlinna theory of meromorphic functions which heavily depends 
on the first and second fundamental theorems, We have made an 
extensive use of the Milloux’s theorem which gives a bound for 
the Nevanlinna characteristic of a derivative with respect to 
the Nevanlinna characteristic function T(r,f). We have also 
used some properties of meromorphic functions of non-integral 
order* and have also used the rate of growth of zeros and poles 
of a meromorphic function and compared it with T(r,f). We have 
also used the principle of counting the number of zeros and 
poles of a meromorphic function and used it to compare with 
the number of zeros and poles of its derivatives. And finally 
the Nevanilinna?&^theory of deficient values has been used almost 
everywhere. ^n~r>ur, work.

s


