

CHAPTER II

DEFICIENT VALUES AND \because RELATIVE DEFECTS OF MEROMORPHIC
FUNCTIONS.
We mentioned in the previous chapter that the Nevanlinna theory is heavily dependent on its two fundamental theorems, the first and second... There have been minor variations given by different authors for the second fundamental theorem, though basically they give the same result. One of these is given by Haymán [13, 31] in the following form. "Suppose that $f(z)$ is a non-constant meromorphic function in $|z| \leqslant r$. Let $a_{1}, a_{2}, \ldots, a_{q}$ where $q>2$, be distinct finite complex numbers, $\delta>0$, and suppose that $\left|a_{j}-a_{i}\right| \geqslant \delta$ for $1 \leqslant j<i \leqslant q_{0}$ Then
$m(r, \infty)+\sum_{i=1}^{q} m\left(r, a_{i}\right) \leqslant 2 T(r, f)-N_{1}(r)+S(r)$,
where $N_{1}(x)$ is positive and is given by
$N_{1}(r)=N\left(r, \frac{1}{E^{1}}\right)+2 N(r, f)-N\left(r, f^{1}\right)$
and $S(r)=m\left(r_{i} \frac{f^{\prime}}{f}\right)+m\left(r, \sum_{i=1}^{q} \frac{f^{\prime}}{f-a_{i}}\right)+q \log \frac{3 g}{f}+\log 2+$ $+\log \frac{1}{\sqrt[f^{\prime}(0)]{ }}$, with modifications if $f(0)=0$ or ∞,
or $f^{\prime}(0)=0!$ In the above theorem it is not necessary to just consider $\sum_{j=1}^{q} m\left(r, a_{i}\right)$. Infact we can replace this
term by $n \sum_{i=1}^{q} m\left(r, a_{i}\right)$ for any positive integer n and
still inequality remains valid. More precisely we have the following

Theorem Ld Let $\mathrm{f}(\mathrm{z})$ be a non-constant meromorphic function in $|z| \leqslant r$. If $a_{1}, a_{2}, \ldots, a_{q}(q \geqslant 2$) , be distinct finite complex number's such that $\left|a_{j}-a_{i}\right| \geqslant \delta(\delta>0)$ for $1 \leqslant j<i \leqslant q$, then for all positive integers n, we have $m(r, \infty)+n \sum_{i=1}^{q} m\left(r, a_{i}\right) \leqslant 2 T(r, f)-N_{1}(r)+S(r)$
where $N_{1}(r)=2 N(r, f),+N\left(r, \frac{1}{f^{\prime}}\right)-N\left(\dot{r}, f^{\prime}\right)$ and $S(r)=m\left(r, \frac{f^{\prime}}{E}\right)+m \cdot\left(r, \sum_{\left(f-a_{i}\right)^{\prime 2}}^{\left(f^{\prime}\right.}\right)+n q \log +\frac{3 q}{\delta}+n \log 2+$ $+\log \frac{1}{\operatorname{li}^{\prime}(0)}$.

Proof.\quad Set $F(z)=\sum_{i=1}^{q} \frac{1}{\left(f(z)-a_{i}\right)^{n}}$,
we first suppose that for some i, $\left|f(z)-a_{i}\right|<\frac{\delta}{3 q}$.

Then for $j \neq i$,

$$
\begin{aligned}
\left|f(z)-a_{j}\right| & \geqslant\left|a_{j}-a_{j}\right|-\left|f(z)-a_{i}\right| \\
& \geqslant \&-\frac{\delta}{3 q} \\
& \geqslant \frac{2 \delta}{3} \quad \text { (since :q }>i \text {) }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{\left|f(z)-a_{j}\right|} & \leqslant \frac{3}{2 \delta} \\
& \leqslant-\frac{3}{2} \quad \frac{1}{\left.3 q\right|^{f}(z)-a_{i} \mid} \text { since }\left|f(z)-a_{i}\right|<\frac{f}{3 q}
\end{aligned}
$$

Thus
$\frac{1}{\left|f(z)-a_{j}\right|} \leqslant \frac{1}{2 q\left|f(z)-a_{i}\right|}$
Consider

$$
\begin{aligned}
|F(z)| & \geqslant\left|\frac{1}{\left(f(z)-a_{i}\right) n}\right|-\sum_{j \neq i}\left|\frac{1}{\left(f(z)-a_{j}\right)^{n}}\right| \\
& \geqslant \frac{1}{\left|f(z)-a_{i}\right|^{n}}-\sum_{j \neq i} \frac{1}{2^{n} q^{n}\left|f(z)-a_{i}\right|^{n}} \quad \text { (using 2.2) } \\
& =\frac{1}{\left|f(z)-a_{i}\right|^{n}}\left\{1-\frac{q-1}{2^{n} q^{n}}\right\} \\
& \geqslant \frac{1}{\left|f(z)-a_{i}\right|^{n}} \cdot \frac{1}{2^{n}}
\end{aligned}
$$

since $\quad 1 \geqslant \frac{1}{2^{n}}+\frac{1}{2^{n}}$ for $n \geqslant 1$ and

$$
1-\frac{q-1}{2_{q}^{n} n} \geqslant 1-\frac{q^{n}}{2^{n} q_{n}^{n}}=1-\frac{1}{2^{n}}
$$

which gives $1-\frac{g-1}{2^{n} n} \geqslant \frac{1}{2^{n}}$.

Hence

$$
\begin{aligned}
\log ^{+}|\mathrm{F}(z)| & \geqslant \log ^{+} \frac{1}{\left.\right|^{f(z)-\left.a_{i}\right|^{n}}}-n \log 2 \\
& \left.=\sum_{j=1}^{q} \log ^{+} \frac{1}{\left|f(z)-a_{j}\right|^{n}}-\sum_{j \neq i} \log ^{+} \frac{1}{\left|f(z)-a_{j}\right|^{n}-n \log 2}{ }^{n} 2.3\right)
\end{aligned}
$$

But since for $j \neq i,\left|f-a_{j}\right| \geqslant\left|a_{j}-a_{i}\right|-\left|f-a_{i}\right|$

$$
\begin{aligned}
& >\delta-\frac{\delta}{3 q} \\
& =\frac{(3 q-1)}{3 q} \delta \\
& \geqslant \frac{\delta}{3 q} .
\end{aligned}
$$

We have
$\log ^{+} \frac{1}{\left|f-a_{j}\right|^{n}} \leqslant \log ^{+}\left(\frac{3 g}{\delta}\right)^{n}$
or
$\sum_{j \neq i} \log ^{+} \frac{1}{\left|f-a_{j}\right|^{n}} \leqslant(q-1) \log ^{+}\left(\frac{3 q}{\delta}\right)^{n}$

$$
\leqslant n q \log ^{+}\left(\frac{3 q}{\delta}\right)
$$

Hence from (2.3), we have

$$
\begin{align*}
\log ^{+}|F(z)| x \sum_{j=1}^{q} \log ^{+} \frac{1}{\left|f(z)-a_{j}\right|^{n}} & -n q \log +\frac{3 g}{\delta}- \\
& -n \log 2 \tag{2.4}
\end{align*}
$$

Next we consider the case when
$\left|f(z)-a_{i}\right| \geqslant \frac{\delta}{3 q}$ for all i.
Then we have
$\log ^{+} \frac{1}{\left|f(z)-a_{i}\right|^{n}} \leqslant \log ^{+}\left(\frac{3 q}{\delta}\right)^{n}$
and so
$\sum_{i=1}^{q} \log ^{+} \frac{1}{\left|f(z)-a_{j}\right|^{n}} \leqslant n q \log +\frac{3 a}{\delta}$.
This shows that right hand side of (2,4) is negative.

But left hand side of (2.4) is nonnegative and therefore (2.4) is trivially true in this case and it is true , in all cases. Multiplying (2.4) both sides by $\frac{1}{2 \pi}$ and integrating over $[0,2 \pi]$ we get

$$
\begin{aligned}
m(r, F) & \geqslant \sum_{i=1}^{q} m\left(r, \frac{1}{\left(f-a_{i}\right)^{n}}\right)-n q \log +\frac{3 q}{\delta}-n \log 2 \\
& =n \sum_{i=1}^{q} m\left(r, a_{i}\right)-n q \cdot \log +\frac{3 q}{\delta}-n \log 2:
\end{aligned}
$$

Now, to get required inequality we consider
$m(r, F)=m\left(r, \frac{1}{f} \frac{f}{f}, f^{\prime} F\right)$

$$
=m\left(r, \frac{1}{E}\right)+m\left(x, \frac{f}{f}\right)+m(r, f(\underline{E}) .
$$

But from (1.10) of Hayman $[13,4]$ we have
$T(r, f)=T\left(r, \frac{1}{\frac{1}{f}}\right)+\log |f(0)|$
This gives
$m\left(r, \frac{f}{f^{\prime}},\right)=m\left(r, \frac{f^{\prime}}{f}\right)+N\left(r, \frac{f^{\prime}}{f}\right)-N\left(r, \frac{f}{E}, i+\log \left|\frac{f^{\prime}(0)}{f^{\prime}(0)}\right|\right.$
and
$m\left(r, \frac{1}{\frac{1}{E}}\right)=T(r, f)-N\left(r, \frac{1}{\frac{1}{f}}\right)+\log \frac{1}{\mid(f(0) \mid}$.
So we get finally

$$
\begin{aligned}
& m(r, F) \leqslant T(r, f)-N\left(r, \frac{1}{f}\right)+\log \frac{1}{|f(0)|}+m\left(r, \frac{f^{\prime}}{f}\right)+N\left(r, \frac{f^{\prime}}{f}\right)- \\
& \quad, \quad-N\left(r, \frac{f}{f^{\prime}}\right)+m\left(r, f^{\prime} F\right)+\log \left|\frac{f(0)}{f^{\prime}(0)}\right|
\end{aligned}
$$

This inequality combined with (2.5) gives

$$
\begin{aligned}
n \sum_{i=1}^{q} m\left(r, a_{i}\right)+m\left(r^{\prime}, \infty\right) & \leqslant m(r, F)+m(r, f)+n q \log +\frac{3 q}{\delta}+n \log 2 \\
& \leqslant T(r, f)-N\left(r, \frac{1}{f}\right)+N\left(r, \frac{f^{\prime}}{f}\right)-N\left(r, \frac{f}{E},\right)+ \\
& +m\left(r, \frac{f^{\prime}}{f}\right)+m\left(r, f^{\prime} F\right)+\log ^{\prime} \frac{1}{\left.f^{\prime}(0)\right|^{+}} \\
& +T(r, f)-N(r, f)+n q \log ^{+}\left(\frac{3 g}{\delta}\right)+n \log 2
\end{aligned}
$$

Now. by Jensen's formula

$$
\begin{aligned}
N\left(r, \frac{f^{\prime}}{f}\right)-N\left(r, \frac{f}{\frac{f}{f}},\right. & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{f\left(r e^{i \theta}\right.}{f^{\prime}\left(r e^{i \theta}\right)}\right| d \theta-\log \left|\frac{f(0)}{f^{\prime}(0)}\right| \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta-\log |f(0)|- \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F^{\prime}\left(r e^{i \theta}\right)\right| d \theta+\log \left|f^{\prime}(0)\right| \\
& =N\left(r, \frac{1}{\frac{1}{f}}\right)-N(x, f)-N\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, f^{\prime}\right)
\end{aligned}
$$

Hence we obtain lastly

$$
\begin{gathered}
n \sum_{i=1}^{q} m\left(r, a_{i}\right)+m(r, \infty) \leqslant 2 T(r, f)-\left\{2 N(r, f)-N\left(r, f^{\prime}\right)+\right. \\
\left.+N\left(r, \frac{1}{f}\right)\right\}+S(r)
\end{gathered}
$$

Where, $S(r)$ is defined as in Theorem 1 and this completes proof.

$$
\text { We now find bounds for } \frac{T(r, f(k)}{T(r, f)} \text { in terms of the }
$$ deficient values. We start with the following lemma.

Lemma 1. If f is a meromorphic function and if $a_{1}, a_{2}, \ldots a_{q}$ are distinct elements of C then

$$
\begin{equation*}
\sum_{i=1}^{q} m\left(r, a_{i}, f\right)+N\left(r, \frac{1}{f(k)}\right) \leqslant T(r, f(k))+S(\dot{r} ; \dot{f}) \tag{2.6}
\end{equation*}
$$

where q, k are any positive integers and $S(r, f)=0(T(r, f))$ as $r \rightarrow \infty$ through all the values if \dot{f} is of finite order and $S(r, f)=O(T(r, f))$ as $r \rightarrow \infty$ except possibly for a set of finite linear measure if f is of infinite order

For the proof we shall require theifollowing well known lemma of Milloux $[13,55]$
temma 2 . Let 1 be a positive integer and:

$$
\Psi^{\prime}(z)=\sum_{i=0}^{1} a_{i}(z) f^{(i)}(z)
$$

Then

$$
m\left(r, \frac{K(z)}{f(z)}\right)=S(r, f) .
$$

and

$$
T(r, \psi) \leqslant(I+1) T(r, f)+S(r, f)
$$

Proof. If $q=1$ then writing

$$
\begin{aligned}
m\left(r, \frac{1}{f-a_{1}}\right)+N\left(r, \frac{1}{f(k)}\right) & =m\left(r, \frac{f(k)}{f-a_{1}} \frac{1}{f^{(k)}}\right)+\dot{N}\left(r, \frac{1}{f(k)}\right) \\
& \leqslant m\left(r, \frac{f(k)}{f-a_{1}}\right)+m\left(r, \frac{1}{f(k)}\right)+N\left(r, \frac{1}{f(k)}\right) \\
& \leqslant m\left(r, \frac{(k)}{f-a_{1}}\right)+T\left(r, \frac{1}{f(k)}\right.
\end{aligned}
$$

and using Lemma 2 and Nevanlinna's first fundamental theorem, the result follows. So; let $q \geqslant 2$.

Set
$F(z)=\sum_{i=1}^{q} \frac{1}{f(z)-a_{i}}$, then by inequality (2.1) of Hayman $[13,33]$

$$
\begin{aligned}
\sum_{i=1}^{q} m\left(r_{, ~} a_{i^{\prime}} f\right) & \leqslant m(r, F)+O(1) \\
& =m\left(r, \frac{F f}{f(k)}(k)+O(1)\right) \\
& \leqslant m(r \mid F f(k))+m\left(r, \frac{1}{f(k)}\right)+O(1) \\
& \leqslant \sum_{i=1}^{q} m\left(r, \frac{f}{f-a_{f}}\right)+m\left(r, \frac{1}{f(k)}\right)+O(1)
\end{aligned}
$$

The result now follows by adding $N\left(x_{j} \frac{1}{i}(k)\right.$ to both the sides and using Lemma 2 and the first fundamental Theorem of Nevanlinna.

We now prove

Theorem 2. If f is a'meromorphic function of order p and $a_{1}, a_{2}, \ldots, a_{q}(q \geqslant 1)$ are distinct elements of C, then for any positive integer k,

$$
\liminf _{r \rightarrow \infty} \frac{T(r, f}{T(r, f)} \geqslant k \sum_{i=1}^{q} @\left(a_{i}, f\right)-q(k-1) \quad \text { (} 2.7 \text {) }
$$

Where $r \rightarrow \infty$ without restriction if $^{\mathrm{f}}$ is finite and $r \rightarrow \infty$ outside an exceptional set of finite measure if $P=+\infty$.

Proof. ' By (2.6), Wa have
$\sum_{i=1}^{q} m\left(r_{p} a_{i} f\right) \leqslant T\left(r, f(k), N\left(r_{i}, \frac{1}{f^{(k)}}\right)+S(r, f)\right.$. Adding $\sum_{i=1}^{q} N\left(x, a_{i}, f\right)$ to both sides,.

$$
\begin{aligned}
\sum_{i=1}^{q} T\left(r, a_{i, f} f\right) & \leqslant T(r, f(k))+\sum_{i=1}^{q} N\left(r, a_{i}, f\right)-N\left(r, \frac{1}{f}(k)+s(r, f)\right. \\
& =T(r, f(k))+k \sum_{i=1}^{q} \bar{N}\left(r, a_{i}, f\right)-N_{0}\left(r, \frac{1}{f(k)}\right)+s(r, f)
\end{aligned}
$$

Where $N_{0}\left(r, \frac{1}{f}(k)\right.$ is formed with the zeros of ' $f(k)$ which are not zeros of any of the $f-a_{i}(i=1,2, \ldots, q)$. Since $N_{0}\left(x, \frac{1}{f^{(k)}}\right) \geqslant 0$ and

$$
\begin{aligned}
& T\left(r, a_{i}, f\right)=T(r, f)+O(\operatorname{logr}), \text { it follows that } \\
& q T(r, f)^{\prime} \leqslant T(r, f(k))+k \sum_{i=1}^{q} N\left(r, a_{i}, f\right)+S(r, f)
\end{aligned}
$$

So,

$$
\begin{aligned}
& q \leqslant \liminf _{r \rightarrow \infty} \frac{T\left(r_{, f}(k)\right.}{T(r, f)}+k \sum_{i=1}^{q} \operatorname{limusp}_{i \rightarrow \infty} \frac{N\left(r, a_{i}, f\right)}{T(r, f)}+\underset{r \rightarrow \infty}{\limsup } \underset{T(r, f)}{S(r, f)} \\
& =\liminf _{r \rightarrow \infty} \frac{T(r, f(k)}{T(r, f)}+k \sum_{i=1}^{q}\left[1-\Theta\left(a_{i}, f\right)\right] .
\end{aligned}
$$

Thus

$$
k \sum_{i=1}^{q} \Theta\left(a_{i}, f\right)-q(k-1) \leqslant \liminf _{r \rightarrow \infty} \frac{T(r, f}{T(r, f)}
$$

Remark. (i) In particular if $k=1$, then (2.7) reduces to

$$
\liminf _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \geqslant \sum_{i=1}^{q} \Theta\left(a_{i}, f\right)
$$

Now making $q \longrightarrow \infty$, we obtain

$$
\infty
$$

$\liminf _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \geqslant \sum_{i=1} \Theta\left(a_{i}, f\right)=\sum_{a \in C} \Theta(a, f)$
which yields Theorem 2 of [27].
(ii) In the above theorem we have found a lower bound for $\underset{r}{l i m i n f} \frac{T(r, f}{T(r, f)} \cdot$ for functions of any order. If now f is of finite order, then we can also find an upper bound for $\limsup _{r \rightarrow \infty} \frac{T(r, f(k)}{T(r, f)}$. More precisely we

Theorem 3. If f is a meromorphic function of finite order then for positive integers k, q

$$
\begin{align*}
& i=1 \\
& \leqslant k+1-k \Theta(\infty, f) \tag{2.8}
\end{align*}
$$

Proof. In view of Theorem 1, it is sufficient to prove the right hand side of inequality (2.8): We have,

$$
\begin{aligned}
T(r, f(k)) & =m\left(r, f^{(k)}\right)+N\left(r, f^{(k)}\right) \\
& \leqslant m\left(r, f_{f}^{(k)}+m(r, f)+N(r, f)+k \bar{N}(r, \dot{f})\right. \\
& =T(r, f)+k \bar{N}(r, f)^{\prime}+S(r, f)^{\prime}
\end{aligned}
$$

Thus
$\underset{r \rightarrow \infty}{\limsup } \underset{T(r, f)}{T\left(r_{l} f^{(k)}\right.} \leqslant 1+k \underset{r \rightarrow \infty}{\limsup } \frac{\bar{N}(r, f)}{T(r, f)}$

$$
=1+k[1-\infty(\infty, f)]
$$

So,

$$
\begin{equation*}
\limsup _{r \rightarrow 00} \frac{T(r, f(k)}{T(r, f)} \leqslant k+1-k \Theta(\infty, f) \tag{2.9}
\end{equation*}
$$

This completes the proof.
Remark In particular if $k=1$ and $\sum_{a \in C} \Theta(a, f)=2$, then from (2. $\overline{8}$) on making $\Phi \rightarrow \infty$ we obtain

$$
2-\Theta(\infty, f) \underset{r \rightarrow \infty}{ } \liminf _{r \rightarrow 0} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \leqslant \underset{r}{i \operatorname{linsing}_{\infty}^{\prime} \frac{T(r, f i)}{T(r, f)} \leqslant 2-\theta(\infty, f)}
$$

Thus

$$
\lim _{r \rightarrow \infty} \frac{T(r, f \cdot)}{T(r, f)}=2-\Theta(\infty, f)
$$

which gives corollary wei of [27].
We now give various applications of Theorem 3.
Corollary 1. If f is a meromorphic function of finite order such that $\Theta(\infty, f)=1$ and $\Theta\left(\begin{array}{l}\text { (a ff } \\ \text { a } \neq 1\end{array}=1\right.$ for some a $\neq \omega$, then

$$
T(r, f(k)) \sim(r ; f)
$$

Proof. Since $\sum_{a \in C} \Leftrightarrow(a, f) \leqslant 2$, follows that $q=i$ and hence from (2.8), we have

$$
\leqslant k+1-\dot{k}
$$

which gives, $\lim _{r \rightarrow \infty} \frac{\lim _{r}(k)}{T(r, f)}=1$.
This proves (2.10):
Corollary 2 Let be a meromorphic function of finite order.
(i) If $\Theta\left(a_{i}^{\prime}, f\right)=\frac{1}{2}$ for $i=1,2,3$ ($\left.a_{i} \neq \infty\right)$ and $\theta(\infty$, $f)=\frac{1}{2}$, then $\quad T\left(r^{\prime \prime} x^{\prime}\right) \sim \frac{3}{2} T\left(r_{j}^{\prime} f\right)$:
(ii) And if $\Theta\left(a_{i}, f\right)=\frac{1}{2}$ for $i=1,2,3,4$ where a_{i} are finite and distinct', then

$$
\begin{equation*}
T\left(r^{\prime}, f\right) \sim 2 T(r, f) \tag{2;12}
\end{equation*}
$$

proffer (1) Putting $k=1$ and $q=3$ we obtain from $(2,8)$ that

$$
\frac{3}{2} \leqslant \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \leqslant \limsup _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \leqslant \frac{3}{2}
$$

Which gives the desired result

$$
\lim _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)}=\frac{3}{2}
$$

(1i) Since $\Theta\left(a_{i}, f\right)=\frac{1}{2}$ for finite $a_{i} i=1,2,3,4$
we have $\Theta(\infty, f)=0$ and so from (2, 8) for $k=1$ we obtain as above

$$
\lim _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)}=2
$$

and hence we get (2.12).
Remark. Let us note that there do exist meromorphic functions satisfying the hypothesis of corollary $2(i)$. For example the Weierstrass's elliptic function $p(z)$ is one such example. Also if f satisfies (ii) of the above corollary then by Corollary 3 of $[28]$ it follows that:; ∞ which is clearly not e.v.N cannot bé e.v.V also.

Corollary 3. If f is entire function of a finite order such that $O\left(a_{i}, f\right)=\frac{1}{2}$ for finite $a_{i} \dot{\prime} 1,2$ then

$$
T\left(r, f^{\prime}\right) \sim T(r, f)
$$

Proof. Since f is an entire function, we have $\Theta(\infty ; f)=1$ and so as earlier by putting $k=1$ and $q=2$ we get

$$
\lim _{r \rightarrow \infty} \frac{T(I, f i)}{T(r, f)}=1
$$

and hence

$$
T\left(r, f^{\prime}\right) \sim T(r, f)
$$

Remark. Once again we observe that there do exist entire functions satisfying the hypothesis of the above corollary. For example for $f(z)=\sin z$; it is known that $\Theta(1) \equiv \Theta(-1)=\frac{1}{2}$, see $[13.45]$.

We end،this chapter by proving some relations dealing with the usual defects and relative defects of meromorphic functions. Milloux introduced the concept of absolute defect viz. $\delta\left(\alpha, f^{\prime}\right)$. This definition was later taken up by Xiong-Lai [34] , who defined the term

$$
\left.\delta_{r}^{(k)}\left(\alpha_{1} F\right)=1-\limsup _{r \rightarrow \infty} \frac{\left(r \frac{1}{(k)},\right.}{T(r ; f)}\right)
$$

and called it the relative defect of α with respect to f, and in contrast the usuall defect $\delta\left(\alpha_{,} f^{(k)}\right)$ was denoted by $\delta_{a}^{(k)}(\alpha, f)$, and he found various relations between $\mathcal{S}_{r}(k)(\alpha, f)$ and $\delta_{a}^{(k)}(\alpha, f)$; Later A.P.Singh [24] defined the relative defect corresponding to the distinct zeros and distinct poles viz.

$$
\Theta_{r}^{(k)}(\alpha, f)=1-\limsup _{r \rightarrow \infty} \frac{\left(r \frac{1}{1}, \frac{1}{2}\right)}{T(r, f)} \alpha
$$

and he found various relations between
$\Theta_{I}^{(k)}(\alpha, f)$ and $\delta(\infty, f), \Theta(\alpha, f)$ etc.

Here we shall find a relation between $\Theta_{r}^{(k)}\left(\alpha_{\Sigma}, f\right)$ and $\underbrace{(k)}_{a}(\alpha, f)$ where

$$
\Theta_{a}^{(k)}(\alpha, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r-\frac{1}{k}\right)}{T(r, f(k))}
$$

Thus we shall prove the following

Theorem 4. Let $f(z)$ beta meromorphic function. Then for each positive integer k

$$
(k+1) \Theta_{a}^{(k)}(\alpha, f) \leqslant k+\Theta_{r}^{(k)}(\alpha, f)
$$

'Proof. Using Lemma 2, we have

$$
T(r, f(k)) \leqslant(k+1) T(r ; f)+s(r, f)
$$

And so,

$$
\limsup _{r \rightarrow \infty} \frac{f\left(r, f^{(k)}\right.}{T(r, f)} \leqslant k+1 .
$$

Our conclusion now follows from

$=1-\limsup _{r \rightarrow \infty}\left[\frac{T\left(1+\frac{1}{(k)}\right)}{T\left(r, f^{(k)}\right)} \quad \frac{T\left(r_{k} f^{(k)}\right.}{T(r, f)}\right]$

$$
\begin{aligned}
& \left.\geqslant 1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f^{(k)}}\right.}{T(r, f(k)} \alpha\right)(k+1) \\
& =(k+1)\left\{1-\limsup _{r \rightarrow \infty} \bar{N}\left(r, \frac{1}{f^{(k)}-\alpha}\right)\right\}-k . \\
& =(k+1)\left(\mapsto_{a}^{(k)}(\alpha, f)-k_{0} .\right.
\end{aligned}
$$

The above concept of relative defects corresponding to distinct poles was also takeh up by A;P. Singh $[25]$ for two meromorphic functions f_{1} and $f_{2} ;$ and he defined

$$
\begin{aligned}
& (4)_{1,2}(\infty)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}_{1,2}(r, \infty)}{T\left(r, f_{1}\right)+T\left(r, F_{2}\right)} \\
& ⿴_{0}(\infty)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, \infty)}{T\left(r ; f_{1}\right)+T\left(r, f_{2}\right)}
\end{aligned}
$$

where

$$
\stackrel{\rightharpoonup}{N}_{O}(x, \infty)=\int_{0}^{r} \frac{\bar{n}_{0}(t, \infty)-\hat{\Lambda}_{0}(0, \infty)}{t} d t
$$

where $\overline{\mathrm{n}}_{\mathrm{f}}(\mathrm{r}, \infty)$ denotes the number of comimion poles of f_{1} and f_{2} in $|z| \leqslant r$, the poles being counted without their multipilicity and $\bar{N}_{1,2}(r, \infty) \doteq \mathscr{N}\left(r, \infty, f_{1}\right)+$
$+\overline{\mathrm{N}}\left(r, \infty, \mathrm{E}_{2}\right)-2 \overline{\mathrm{~N}}_{\mathrm{O}}(r, \infty)$.

He proved
Therem. 5 Let f_{1} and f_{2} be two meromorphic functions of finite order, and let

$$
T\left(r, f_{i}^{\prime}\right) \text { ra } T\left(r, f_{i}\right)
$$

where $a \geqslant 1$ and $i=1,2$. Then

$$
\Theta_{1,2}(\infty)+2 \Theta(\infty) \leqslant 4-a
$$

As an immediate consequences of the above theorem and using corollaries 1 to 3 of Theorem 3 we have the following corollaries.

Corollary 1:

If f_{1} and f_{2} are two meromorphic functions of finite order such that

$$
\Theta\left(\alpha, f_{j}\right)=1 \text { and } \Theta\left(\infty, f_{j}\right)=1
$$

for $\alpha \neq \infty$ a nd $j=1,2$, then

$$
\left(\Theta_{1,2}(\infty)+2 @(\infty) \leqslant 3\right.
$$

Corollary 2':

Let f_{1}, f_{2} be two meromorphic functions of finite order,
(i) If $(H)\left(a_{i}, f_{j}\right)=\frac{1}{2}$.
(H) $\left(\infty, f_{j}\right)=\frac{1}{2}$
for $i=1,2,3\left(a_{i} \neq 00\right)$ and $j=1,2$, then

$$
\left(_{1,2}(\infty)+2\left(\omega_{0}(\infty) \leqslant \frac{5}{2}\right.\right.
$$

(ii) And if f_{1}, f_{2} be two meromorphic functions of finite order and if
(H) $\left(a_{i}, E_{j}\right)=\frac{1}{2}$
for $i=1,2,3,4, j=1,2$, and
where a_{i} are finite, distinct then

$$
\bigoplus_{1,2}(\infty)+2 \Theta_{0}(\infty) \leqslant 2 .
$$

Corollary $3^{1}:$
If f_{1}, f_{2} are entire functions of finite order such that

$$
\Theta\left(a_{i}, f_{j}\right)=\frac{1}{2} \text { for } i=1,2, j=1,2
$$

then

$$
(-1)_{1,2}(\infty)+2 \Theta_{0}(\infty) \leqslant 3
$$

