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CHAPTER 1II

DEFICIEN'J;' VALUES AND . RELATIVE DEFECTS OF MEROMORPHIC

FUNCTIONS,
We mentioned in the previou§ chapter that the

Nevanlinna theory is heavily depencient on its two

fundamental theorems, the first and second,- There have
Y

been minor ¥ariations given by different éuthors f'or the
second fundamental theorem, though basically they c:;ixe_ '
the same result, One of these is given by Hayma"n[:ls, 35.] .
in the following form." Supposé" that £(z) is a non-constant
meromorphic function in \zlg r. Let 8y s8,s000s8 q wher;a

g >2 , be distinct finite complex numbers, §> 0 , and

suppose that iaj-ai{ 3:-3 for 1 g j<iggs Then
, ' q
m(r, ) +Zm(r,ai) € 2 T(r,£)=N, (r)+ s(r),
i=1

vhere N,(r) is positive and is given by

N (@) = Nz, F)+ 2 N5, £) ~N(z,£*)

’ q
Lf v '
and S(o)=m(mE) +m(r, 3 =) 4 g 105 39 4
- 3 l 2+
i=1f 31 4 5 -fh—- °9
i

{ f‘(o,w

or £'(0) = 0Y 1In the above theorem it is not necessary

q
to just consider S m(r,ai), Infact we can replace this

e

- di=1

+ log , with modifications if £(0) = 0 or M@,
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m(r,ai) for any positive integer n and

Ma

term by n

b2
]

1

still inequality remains wvalid, More precisely we have

the following

Theorem 14 Let f£(2) be a non-constant meromorphic
fanction in jz| g r. If é\l,,az‘,...,aq(q 22 ), be distinct
finite complex numbers such that iaj-ai\ ;>,§ &> 0 ) for

1¢j<igqg, then for all positive integers n, we have

m(r,0) + n m(r,ai) g 2 ’J.‘(r,f)--N1 (r)+s(r) (2,1)

M

e
ff
fud

where N, (r) = 2 N(r,£) + N(r,g)~ N(£,£*)

and S(r) = m(r,g-'—).p'm(f,zf-' N+ ng log+ 39 +n log 2 +
1 (‘f-ai)n
+ log T——r-)-_f, )
1 1
Proof Set F(z) = S N e e
’ g__-l(f (z)-ai)f1 3

we fimst suppose that for some i,

|£(2)= a, |< -3%

L

Then for j#i,
lf(z)-aj | 2 qaj—ail- \f(z) - ai‘
)
>8- o

> %{— (since G % 1)



Hence
1 < 3
\f(zs-aj(“ 23
1 \
3 .
<€ "5 m‘sn.nce ]f(&)-»ail <
Thus
1 1

tf(z)-aj\ $ 2qgf(§)~ail
Consider

\F(z)| 3 \TfTETéEETﬁ‘-jEE:](f(z;-aj)n l

> 1 -; 1
T lE@)-ay|® L 27 e (2)may|”

= 2 { g—l i
- n
‘ f(Z)-ail
1 1
a e .
Af(z)-ait n 2" ’
: 1 1
since 1 2= +=gforn 21 and
2 2
-] n 1
1- gﬁ’n 7 1- gﬁ~h =1-=n
2 g 27°q, 2
which gives 1- g=1 2 1 .
2n n 2n
q
Hence
+ +
“log | F(z)$ log gf“zl-ai!n - n log 2
q
= S log ————— - 5 log
j=1 \E@)-ay] " 54

L

(2.2)

(using 2.2)



But since for j ¥ i, ‘:E-_-ajl > \aj"@i\:-lf-ai(

&
> -5
. BBg-1) §
3q"
S
% 55 .
We have
+ 1 4+, 3 n
1 —_——— <1 =4
og !f_aj‘n < log ( 3 )
or ,
——a + 1 ; +, 3 n
>;; log Ty ¢ (g-1) log (3‘1—)
j#i j

£ ng 1og+( %.g-—)

Hence from (2,3), we have

q

logt|F @\ 3 S logt —t e - ng log" 24 -
. lf(Z)-aj[

=1
- nlog 2. ' (2.4)

Next we consider the case when

\f(z)-ai[ > 3% for all i ,

Then we have

+ 1 +( 3g D
log < log (—f——)
lf(z)-ai]n

and so

q
1o + 1 1 + 39
27 o, TS

This shows that right hand side of (2,.,4) is negative,

.

i=1

3
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¢

But left hand side of (2.4) is nonenegative and there-
fore (2,4) is trivially true in this case and it is true .
in all cases. Multiplying (2,4) both sides by -32'-1-1 and

integrating over \:'0, 21‘1 we get

q .
m(xr,F) 22 m(r, =) =g log+ —-339; - n log 2,
q . -
= nz m(r,ai)~nq 1ogt ___}_g_ - n log 2, {(2.5)

i=1 - - -

Now, to get required inequality we consider
m(r,F) = m(r,% -‘E—, £'F)
1 £ .. .
= m(r.i;) + m(r,g,) + m(t,£'%).
But from (1,10) of Hayman [13,4] we have

T(r,£) = T(r,P+ log (£@) -
This gives

miz,,) = ml, g, E-N 0 E ) + 1og|£%4,

and

m(r,%)= T(r,f)—N(r,%) + log Eo)| -

So we get finally
m(c, F) -_'s T(r,f)-N(r,%'):’*' log-\%'z—){'*' m(r;%-l-)-!- N(r.gf-:-)_

f(o) l
£1(0) U -

5

--N(r,f.) + m(x,E'F) + log}



This inequality comkined with (2,5) gives

q

nS m(r,a,)+m(r, 00)g m(z,F) 4m(r, £)+nglog’

+n log 2

s

i=1

§ Tz, £)=N (x,3) W (r, S -n . E )+

1
+ m(r,.g---)-l-m(r‘,f'JE‘)-l-loc_:,r’f:,L o) +
+ T(r,£)=N(r,£f)+ng log+(%g——)+ n log 2. -
Now, by Jensen's formula

N(r, )-N(r,f.)- —ﬁjlog £ (ze®? lde -log

£(0) g
f‘(re )

£'(0)

= %71' Slog‘f(re 9)\&9 - log {f(o)l -

0
27

-2-% (log lz&' (reie)l de + log 'f" (0)’

0

= N(r,%)—N(r,f)-N(r,%')+~N(r,f‘).

Hence we obtain lastly
q 1

z m(r,a Y4m(r,®) g 2 T(r,£f)=- (2 N{r,f) =N (x,f') +

i=1

+ N(r,"]"' )g + s(r)
f!

where. S(r) is defined as in Theorem 1 and this completes

. pro‘pf.



. T(r f(k)) £ th
We now find bounds for ==4== in terms O e

T(rcf)

deficient values. We start with the following lemma.

Lefmg 1. If £ is a meromorphic function and if

ar,az,...aq are distinct elements of ¢ then

— W,y T, £ K & s(eif) (2.6)
2- m rtai,f) rl'f"{i"} & r, é »

i=1

where q,k are ar;y positive integers and S(r,f)=o(T(r,£f))
as r —» 00 through all the values if £ is of finite
order and S(r,f)= o(T(r,f)) as r —» O except possibly
for a set of finite linear measure if £ is of infinite

orders

LY

For the proof we shall reguire the!following well

known lemma of Milloux [13,55 |

etma 2 \ Let 1 be & positive integer and .
1
L P@ =S ey @ @)
i=0 |
then

m(r,%—%—l-) = s(z,f),

and

T(ryp)g (A4)T(x,£) +8(r, £)
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f--a1

Proof. If g = 1 then writing
B i
m(rtgz‘-J+N(ro;1§50 =m (r,Z z _ETET) + N(r, =)
$ m(r £--(-]-{-)) + m(r —-‘%—-) AV (2, ~py )
'f—ql 'f k) ’ETE)
k) .
£ m(r,-é--—) + T(r,;%;f

and using lemma 2 and Nevanlinna's.first fundamental
theorem, the result follows

éo; let g > 2.

Set
q
F(z) = Zf(i)-a" then by inequality (2.1) of Hayman E_3'33J
i=1 i
q
. Em(raailf) < m(e,F) + Q(1)
: =1 '
re®) L0y
= iu(r, --—-(-——-) (1)
£ (k)

(k) 4
¢ m}FE )+ m (r, ) +0Q@1) .
fik)

qu
— (x)

< Z‘» n(r, £ ) +m(r,b-1—u-<-))+°(1)‘
i=1 £-ay £

- _—

The result now follows by adding N(r;- ) to both the
Y g o;ﬁa'

sides and using femma 2 and the first fundamental

Theorem of Nevanlinna.

We now prove



: t 27

!

Theorem 2. If £ is a  meromorphic function of order
P and al,azf..uaq(q 2> 1) are distinct elements of C,

then for any positive integer k,

q -
liminf (k) o
2Ef 7 o3k ) BNy, £) ~gk=1)  (247)

where r-—» @ without restriction 4f £ is finite and

Y —> (D outside an exceptional set of finite measure if

?z’-l-m. -

Proof. By (2.6), We have

q
zm(r,ai_f) < T(r,f(k)) =N (r,f.—%a) + S(r.f).
i=1 " )

q
Adding ZN(r,ai,f) to both sides,-

i=1

q (k) a '
ST Tragd) ¢ Tl ) + S N(z,a,,f) -N(r,-li-z-k3+ s(r,£)
£

i=1 . i=1
(k) g 1
= T(r,f )+ kizlﬁ (r'ai'f)"NO(r';Tk3+ S(r,£)

(k)

where N (x, 'L(k)) is formed with the zeros of 'f " 'which
£

are€ not zeros of any of the f-a; (i = 1,2,...,q9).

o 1 '
Since N (r, ;Tc-)—) 2 0 and

s



Fd

T(r,ai,f«) = T(r,f) + O(logr), it follows that
-q

qT(r,f)’.s T(r,f(k)) + kzﬁ(r,ai.f) + S(r,f)l‘
i=1 '
5o x| -
q< l"‘i“.iméo Tz, £ 4k limusp N(r.,a;,£) | 1imsup's(c,£)
r T(r,£) = P 00 T(r,f) r=
i=1 T (c,£)
/
q

_ minf g, e ()
r=> ® T(r,f)

+ k> - 0a,,)]
i=1 ’

Thus
d (x)

k SO, £) - qk-1) g Hminf ML

fory r=>® T(r,£)

Remark. (i) In particular if k = 1, then (2.7) reduces to

q
liminf T(r,£') 5 -2-:@(31':5)
r -> 0 T(r,=£f) i=1

Now making q - @, we obtain

@®
liminf T(r,£"*) =
r%mm ;Z—@(ailf) = z@(a;f)
i=1 aeC
which yields Theorem 2 of @7] .

(ii) In the above theorem we have found a lower bound

(k)

for liminf T(x,f ; T
Y ® E‘TE:_fT for functions of any order. If

now £ is of finite order, then we can also find an

upper bound for limsup T(r,f (k)

r =0 T(o E « More precisely we

have the following
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Theoram 3 If f is a meromorphic function of finite

order then for positive integers k,q

q
(k)
liminf T(r,f limsup T(r, £’
kze(ai'f) - q(k'l) r~=>® T(r,f "€r —>0OT r,f

i=1

(lc)'

Sk + 1 -k@(®,£) “ (2.8) -

Proof. In view of Theorem 1, it is sufficient to prove

the right hand side of inequality (2.8). We have,

e, %) = mie, X)) + N(r.;é"k’)

(k) ;
€ m(r,--) + m(r,f) + N(r,£) + kN(z,£)

= T(r,£) + kl'i(r,f) + S(z,£f)

Thus
limgup T(r,£ (k'):( '1 + k limsup N('f:f): ’
=1+%x [1 -B(0,£)]
So, -

. (k)
Limgup, Wm(g'f' $k+1-k®®,£) (2,9)

This completes the proof.

Remark, 'In particular if k = 1 and a%ce(g, £) = 2 ,

then from (2,8) on making q —» 0 we obtain

2 - EN00,£)€liminE  T(r,£') , 1{ins T(r, £
&Xoo, r-->00’i"('"?')"'r,- gL “%T“rlmﬁf € 2 -B(ws)

Thus

¥

lim T, £ - o
F 00 “TE 2 0w ,f£)
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which gives corollary 2. 1 of [271.°

RN Tig f

ye now g:we various applz.cat:.ons of Theorem 3.

Corollary 1 If f is a meromorphic function of finite

order such that E (o, f) = ] and@(a,f) = 1 for some

a ;4 (D then

(e, £ K >)M«T(r,f> . (2:10)

~h

P'Eééf. Since a2:@&;,4:‘) < 2, if follows that q = 1 and

hence from (2 8). we have

EF k) . . / ‘K)
k@(a £) - (k-l) llm.tnf T ( < limsup T(r':&“
’ £ ® —}&—T_T Tt =00 Tl E)

which gives, lim . T(rif‘K) - ;-
r>@ T = 1 \

~ G

This proves (2 .10).

Corollary 5. Let £ be a meromorphic fundtion 5f finite
[ R

order.

-

@) I£ Q(al,f) - i-for i=1,2'3, (& ;Z ®) ana Ol ;£)=3,

then T(r,f)m- T(r}f) ' (2511)

N -

(1) and if @(a;.£) = 3 For 1 =i12,3,4 where aare
finite and distinct, thed '

T(r,£') ~ 2 T(r,£) (2,12)

Brobf, (1) Putting k = 1 and q = 3 we obtain £rom(2.8)that



$ ¢ liminf T(r,£') _ limsup _T(r,£') _ 3
r—> 0 T(r,f) ~ r-+@ T(r,£) =~ 2 '

which gives the desired result
lim T(r,£"')
r v». OWT(c,£)
(41) since @(a;,£)=% for finite a;ji= 1,2,3.4

we have @ (00,£) = O and so from (2.8) for X = 1 we obtain

as above

r '9 0 T{'%%T)_ =2
and hence we get (2,12).
Remark. Let us note that there do exist meromorphic
functions satisfying the hypothesis Jf corollary 2(i).
For example the Welerstrass's elliptic function p(z)
is one such example, Also if f satisfies (ii) of the
above corollary then by Corollary 3 of [:28‘_(_ it follows
that~ 0 which is clearly not e,v.N cannot be e,v.V also.

Corollary 3. If £ is entire function of a finite ordet
such that @(a,,f) = foxL finite a;# 1,2 then

T(r,£') ~ T(r,£)

Proof. Since £ is an entire function,; we have &(M®,f)=1
and so as earlier by putting k = 1 and ¢ = 2 we get

lim T(r, £ L) = 1 .
r —>® T(r,f

and hence

T(rlf‘) NT(I‘,f).
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Remark. Once again we observe that thére do exist entire
functions satisfying the hypothesis of the above corollary.
‘For example for £{z) = sin &, it is known that

Bl) =@ 1) = %-, see C13.45] .

We end.this chapter by provifg some relations
dealing with the usual defects and j}';éllative defects of
meromorphic functions, Milloux introduced the concept
of absolute defect viz. S(a,£'). This definition was
later taken up by Xiong-Lai [34] , who defined the

term

‘1"\‘
g;(-k) (a,£) =1 - limstp RQ':' f.(E_) cc:)

r-—> O T(r;
and called it the relative defect of a with respect to
£, and in cdontrast the usuall defect g (a,f(k)) was

denoted byg(:)(a,f), amd he found various relations
between gi_k) (a,£) and ga(k) (a,f): Later A.P,Singh
[24] defined the relative defect corresponding to thé

distinct zeros and distinct poles viz.

%) N:{r 1 )
@r_ (a,f) = 1 « limsup ,3&52&‘ o
r—% ® T(c,f)

and he found various reldtions between @ur{) (e, f) and

S(oo 1£). . (o, £) etc.
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Here we shall £ind a relation between @(};) (a,f) and

%

(k) (r-t(—y—‘)
C) (a,f) = 1 = limsup : -

Y= o0 Tlr, £ (k))

®(];) (o, £) where

Thus we shall prove the following

Theorem 4 Let £(z) be a meromorphic function. Then

for each positive integer k

e + 1) @) ¢ k + @k’ (0, £) <
a

"Proof. Using Lemma 2, we have
(k) X
T(I’of ) £ k + 1) T(r;f) + S(r,f).

And so,

(k)
limsup F(r,f <k +1.

r—> 0 n f)

Our conclusion now follows from

k . N ~}%—-' -
®(x) (¢,£) =1 = l‘imsupN(r % c.)

r—> 00 T{(xr,£)

11’.‘—;%’0—
- -1imsup’( —94) T (£ )

r—> @ T(r,£ ) T (x,£)

N _?%TF
> 1 ~. limsup ( - O limsup T(r,f(k)

r—> @ T(r,£%)) r—> 0 T(r,f)




14 v (o o)
21 - limsup 7 £ Ak + 1)
r—> ® T(r,£K)

k + 1) {1— limsup N(r,—j—)—— ) %- k

r 3> 0

k + 1) Ok’ (@,£) - k.

The above concept of relative defects c¢orresponding to
distinct poles was also takeh up by A;P. Singh [25]
for two meromorphic functions fl and fZ;' and he defined

®

1, (03) =1 - limsup 1 Z(r'm)

r—> T(r}f ) + T(r,f )¢

@%(CO ) =1 - limsup I'Hr'“”
r—> 0 T(£;£,) + T(r,£,)

where

Ne (r,00) = gndt, ®) - flﬂe(O,m) at,
0 t

where ﬁb (r, ) denotes the number of coéniron poles of
£, and fz in \z\ ¢ r , the poles being counted without
their multipilicity and Ny ,(r,®) & N(r,®,£))+

+ ﬁ(r’m;fz) et 2 ﬁo(r;m)o

He proved

Therem.5 Let £, and £ 5 be two meromorphic functions of
finite order, and let

T(r, fJ’.) ,--r'a T(rgfi)




<

3
where a 21 and i = 1,2. Then

@J"z(m)+2@%(m)s4-’ao

As an immediate consequences of the above theorem and using

corollaries 1 to 3 of Theorem 3 we have the following

corollaries,

Corollary 1%
If £, and £, are two meromorphic functions of finite

order such that

@ e, £5) =1 and @ 0, £) =1,
for « £ 00 and j = 1,2, then

®,, (0 +28(0) ¢3,

Corollary 2°.

Let fl' f, be two meromorphic functions of finite

order,
(i) If @( ai, fj) =% A
®( mo fJ) = %

for i = 1,2,3 ( a;# 00) and j = 1,2, then

®, , (0 +2@(0) ¢5
‘ >

(i) And if £4, f, be two meromorphic functions of finite

order and if

, T A Y 1Y
GHIVAL Ukivwauail Y. SulBafids
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@( aii fj ) %-_

for i =1,2,3,4, j=1,2, and

where a; are finite, distinct then -

@1, (0) +2E3 0 ) g 2.

Corollarvy 3':

If f£q, £5 are entire functions of finite order such
that

) ay,£5) = ifori=1,2, j=1,

then

@12<oo>+z@o(oo)g 3.



