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CHAPTER III

NEVANLINNA CHARACTERISTIC O-F -HOMOGENEOUS

DIFg-EREH-TIAL POLYNOMIALS- AND

Their /'deficient values
Let f(z) be a non-constant meromoiphic function

in the complex plane, and let m(r, a ,f)i N«r.,a,f) =N(r. 1 1
- f-aN teja,f) /N(r/f)1 T (r, f) etcy have the usual meaning as

explained in Chapter I.*Similiarly for deficient values 
X(a/f)# ®(00 ,f), A(a,f) see page-10 in Chapter I.

f

By a homogenous differential polynomial of degree 
n we shall mean a finite Siam of the form

1 he
ate) (f (z))l0,(f ‘ (z))1... (f te) (3.1)

where 1Q+11+...+1^= n and ate) is any meromorphic function 
satisfying T(r,a(z))ss S(r/f)/Where s(r,f) = o(T(r,f))

as r—> 00,

A monomial of degree n is a homogeneous differential 

polynomial having just one term. Throughout this chapter 
it is assumed that f(z) is a transcendental function of 
finite order and by p(f) we shall mean a homogeneous 
differential polynomial of degree n which does not contain 
f. Thus P(f) in this,chapter will be a finite sum of 
the form

mtv&ji Ubivut^jY.
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a(z) (f» (a))1... (f(k>(z)}k (3.2)

where 1^+ ...+ 1^ = n.

We shall first prove some relations between 

Nevanlinna characteristic of f and p and later we shall
3

use these to find various relations between deficient 

values of homogenous differential polynomials.

Theorem 1. Let f be a meromorphic function and p(f) 

be a homogeneous differential polynomial in f of degree 

n as explained in (3.2). If
5 Z (a,f) £ 1-\J ? ^(00,f) >, 1-^ (0 4^4 1) 

a 5*oo

then

n (1 -^m) < liminf T(r,p) < limsup T(r,p) ^ 
r-*i GO - T(r'f) r-K 00 TT^fT * '

^ n (1 + \)m) (3.3)

(m) 1wh03TC f is the highest derivative occurring in p.

For the proof we shall need the following lemma s

Lemma 1. If p(f) is as in (3.2) and a.,..,,a (q >2)j. q
are distinct finite complex numbers, then

q
n y* m(r#0£,f) + N(r,“b + S(r,f) ^ T(r#p)

Jri=l

^ nT(r,f) + mnN (r,f) + S(r,f) (3.4)
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where fs ' is the highest derivative occurring in p.

The first inequality of (3.4) is lemma 2 of £ll][
)

and also the second inequality follows easily using (io) 

and (11) of the same paper. However/ We give its proof 
as we shall be using this inequality■frequently.

i

*

Since the poles of p occur only at the poles of 
f or at the poles of the coefficients h(z) of p, and 
since (T(r#a(z)) = S(r#f)# we ignore the poles of a(z)*
At a pole of f of order k it is easily seen that p has 
a pole of order at most nk + mn.

So#

N(r,p) £ n N(r,f) + mnN(r,f) + S(r,f) (3.5)
Also clearly (see Lemma 1 of £ll] )

m(r,p) ^ mdr/f11) + m(r, &n)
f

^ nm(r#f) + S(r,f) *
• \

Adding With (3.5) we have
T(r#p) £ nT(r#f) + mnN(r,f) + S(r#f) (3.6)

as desired.

Let us note that the above lemma includes a result
t

of Kamthan Ql4*6^ *
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Proof of Theorem 1. Prom the second inequality in 
(3.4), we get

-ffeif- *n + ™((1-®°°'f})
$ n + mn((l - <T(00 ,f))

^ n + mnV

— n (1 + m\)) (3.7)

And considering the first part of inequality in (3,4!)/ 
we have for any a£

q
T(r,p) ^.njT m(r/0r;/f) + N(r.~ ) + S(r,f) 

i=l

which easily yields
q

liminf T(r,p) 'S liminf 111 
r—» 00 T(r,f) 4 r-~—> 00 T(r/f)

i=l

Now making q—> 00 and using the hypothesis it follows 
that

r—> 00 T&fr~ * n(1 )

n (1- m) since m £ 1.

This along with (3.7) completes the proof of the theorem. 

An immediate consequence of the above theorem is
the following



J
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Corollary If f is a meromorphic function of finite order

such that. ^(00/ f) = 1 and ^L. (a,f) = 1 and if p is
a/ 00-

a homogeneous differential polynomial of degree n 
satisfying (3.2), then

T(r,p) nT(r,f)

The proof follows easily as our hypothesis imply 
that V= o.

Theorem 2. If p is a homogeneous differential pglynomial 
of degree A in a meromorphic function f of finite order 
and satisfying

N(r#f) + N(r,j) = S(r,f) (3.8)

Then
- _ 1 , nT(r,f)e—^ T(r,p),«^ N(r>‘-^-^) fot all b except

possibly 0 and CQ.

Proof. With the same hypothesis (3*8) it is already 
proved in Theorem 2 of £ 11^ that 

T(r,p) '"■'N(r,~-B-)

Our aim will be to prove the remaining part of the 
asymptotic relation. • However for sake of completness 
we shall outline some of the steps of Theorem 2 of ^ll^-

1

3906A
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= m(r,i) + S(r,f) by Lemma 1 offllTJ,
P

Adding nN(r,jr) to both sides anu'using (3.8) one has

pT(r,|-) ^ m(r,-0 + S(r,f)

$ T(r,|) + S (r,f) .

so, ;
nT(r,f) $ T(r,p) + S(r,f) ■ (3.9)

from which it follows that
S(r,f) = S(r,p).- (3.10)

Since the poles of p can occur only at the poles of f 
or at the poles of the coefficients a(z) of p and 
T( r, a(z))"** S(r,£) we Tiavd

N(r,p) ^ N(r,f) + S(r,f) 
so, by (3.8) and (3.9),

f? (r,p) = S(r,p) (3.11)
By (3.5),

N(r,p) <; n(m+l)N(r,f) + S(r,f) 
where n is the degree of p and f ^ is the highest 

derivative of f occurring in p.

Hence by (3.8) and (3.10), we get
N(r,p) * S(r,p) (3.12)
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Again,
1-1N (r,~) $ N(r,pi) + ??(r,~)

< N(r,|-> + *<r,|?

= N(r,|-) + T(r,En) +0(1)
f1

= N(r,|p + N(^/^n) + S(r,f)

4 N(r,|-) + N(r,p) + N(r,in) + S(r,f)
f

- (n + 1) N(r,|-) + S(r,p), by ( 3.10)- .*
and ( 3.12) '

= S(r,p) by (3.8) and (3.1-0).

Thus ff(r,i) = S(r,p) . (3.13)
*• t

If b fee and b -4 o then by Nevanlinna's second fundamental 
theorem £l3^ Theorem 2.5^ ,

we have
T(r,p) ^ N(r,p) + N(r,~) + ^(r,-^) + S(r,f)

= + S(r,p), by (3.11) and (3.13).

Therefore from (3,9) we get

nT(r,f) § S(r,-~)+ S(r,f) (3.14)
Jr****' i

(since S(r,p) = S(r,f) always)#

Now by first fundamental theorem of Nevanlinna, we have 

T(r,p) >, N(r,~^) +0(1) (3,15)
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So,from (3.14) and (3.15) we have

lininf T(r,p) ^ liminf S'* #p-b) ^ r -> CO T'(r'f)' ^ ir-» C0"TC7f) * n <3-16)

Again, from (3,6) we have

T(r,p) 4 nT(r,f) + mn55(r,f) + S(r,f) 

^[n + 0(1)] T(r,f) as r 00

Hence from (3.15) and (3.17) one has 

N (r,-—~) _ .liminf ___
r 00 T(r,f)

P.-b < liminf T(r,p) ^ ^ . ** m-^ritrrsT 4 n

(3.17)

r—a> 00 T(r,f) 

and hence the theorem follows from (3.16) and (3.18)

(3.18)

We. now prove that if p(z) is a monomial 

of degree n containing f with the exponent of highest 

'derivative as 1^ then under certain conditions

T(r,p) x—* (n + kl^) T(r,f)

More precisely we have the following theorem s

Theorem 3. Let f (z) be a meromorphic function of
finite order and let a^4 a2 be two finite complex numbers.

Let
limsup N ai ^ _
r —> CD T(r,f) (1= 1,2)

Then
T(r,p) (m + klk) T(r,f)

/
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where p(z) = (f^O(f« is a monomial of

degree m satisfying

N(r,p) £ (m + klk) N(r,f)

Proof. The poles of p occur at the pies of f, and 
if f has a pole of order n then

number of poles of p(z) = lQn + 11 (n + l)+.«.lk(n +.'"k)
(l^t. «• +1^,) n +(l^+ 2l2t»«^lj^)

^ mn + kl^

>^m + kl^

Hence N(r,p) % (m + kl^) N(ryf).

Now from Nevanlinna1s second fundamental theorem Wo have 

T(r,f) ^ ROr,?—- ) + N(r/r-~—) + iiOr/f) + S(r,f).
X "• Cu^ X —0,2

Since N(r#f) ^ T(rf£), it follows on using the hypothesis 
that'

SI (r, f) r—-' T (r, f) ■

So,
T(r,p) ^N^p) >, (m + kl^) T(r,f)

which gives

liminf T (r,p) _ liminf T (r,p)00T (r, f) (r,f)

£ m + kl.

fi(r.f)
T(r,f) 

-J
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Thus •

iiminf T(r^g) >, m + kl 
r 00 T (r/f) ' k

Next

T(rvp) = m(r,p) + N(r,p)

k mCr/f10) + m(r,-^=r) + N(r,p)
fm

(3.19)

= m.mtrjf) + N(r^p) + S(r,f)

And so using the hypothesis we have

T(r,p) ^ m.m(r,f) + (m 4- kl-^.) N(r,f) + S(r#f)

= mT(r,f) + kl^N (r,f) + S(r,£)

^ (m + kl^.) T (r#f) + S (r,f) .

So,

limsup T(r,p) 4; (m + kl>) (3,20)
r —» Op T (r,f)

Prom (3,19) and (3.20) we have

lim T(r,p) . , ,r-»tP' T Cr.'f') “ m + klk

and hence the desired result.

Note. There do exist monomials satisfying the condition

(k)N(r,p) 4 (m + kl^) N(r,£). For example p(z)=£ is 

one of them. In this case the above theorem yields
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T(r,f <k>) (k + 1) T(r,£)

which is the result of kamthan Ll4,8] . 

We now prove

Theorem 4. For p(£) as defined in Theorem 1,

(i)

(ii)

limsup N (r,p) .
r—> CD T(r,p) *

(m .+ 1) V
1 -i'Um

i

limsup . 2_Vmr —> 00 T(r,pT *■ 1 +Vm

Proof. From (3.5) we obtain

N (g/P) T(t,ff N(r, 
T(r/p) ' T(r,p)|_ T(r7f)fT T(r,f)

Using the first part of inequality (3.3)

S(r,f rT (r,f) •
J

we obtain.

limsup jlferfP.j, < —1— ln(l - <T(00 ,£) +mn(l- (b)CC0, f)
r —^ CO T(r/P) " n(l-Vm)| f .

^ irrrr^ [_(nV+mny )]

and hence ('£) follows.

To prove (ii) we consider the first part .of inequality 
(3.4) ..Dividing by T (r,.f») and yaking superior limit as 
r *—> ’■ 00 we obtain on simplifying

limsup N^r'p ) /liminf T(r,£) % Y
r —i> 00 ' T (r/p) ^ “* 'r —> 00 T (r;p) * A
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X (n liminf m (r, ^ ^
r 00 ”fTr,fr

q
£ 1 AM ^v “ n(l + mST)

^ i -(j
1 + ^)m)

JE £(cl±* f)
i=l

2 ^|m
1 + Vm as desired.

Theorem 5. Let j cc^| < CD ( i = l/2#,..q),If p is 
a homogeneous differential: polynomial of order n 
s atisfying (3.2), thenq

• £l -fc,p) + >s(0,pjj Xfojyf) 4|1 + m (l -®(00^[l(o,p)

1=1 ... 0.21)
(m)where f is the highest derivatice of f occurring 

in p (m & o)

Proof. Let lim sup tTXr,p) _ A r—> oo inf T(r’f) B

Adding n N(r/O^/f)
i=sl

to both sides of first inequality

of (3.4)/we obtain
q

nqT(r/f) + N(r,“) + S(r/f) ^ T(r,p) + n NCr/Ct^f)
i*l
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so,

nq $
1

N(r,P )
T(r,p)

T(r,p)
T (r,f) + S(r,f)

T (r,f) 4 T (r,f)

q
nX
i=l

N (r#a^,'f) 
T (r, f 7

....(3.22)

Hence

n_ , liminf N(r'P* 
q r>^ CD flrTpF liminf 

r~~» 00
T(r,p) ^ liminf T(r,p) . 
T(r,f) 46 r-~* 0DT(r,f)

q
+ n T limsup

—*> 00 T (r, f)

or we have

nq + (1 ~\(0,p))B ^ B + n 5JT (l - ^(cr^f))

i= 1

which reduces on simplifying to

q
(a±,f) ^ B \(0,p)

i=l
(3.23)

Again from (3.22) we have

1
nq + limsup N (r,P ) liminf T(r,p) < limsup T(r,p) .

r —> oo Tn(r,p")  r —> oo T(r,f) ^ r-—> od T(r,f)'*’

q
+ n S limsup N(r'ci'f) 

i=l ~ * ® '?(r,f)

and SO#

nq + (1 (0,p)) B ^ A
q ^

+ n ^T/(l - 
i=l
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therefore on rearranging,

q
(1 - S(0») B ^ A -n (1 -<gKa±,f)b

i= 1

and - as 1 — 6(0,p) ^,0, we find on multiplying this 
with the corresponding inequalities of (3.23)

i-1 ^ I** 1

But from Lemma l,we have

T<r,p)
T(r,f) ^ n + mn N(r,f? 

T (r,f)
S(r,f) 
T(r,f)

rand so

A §&#*>» + » (1 -®<C0.f)> ... (3.25)

Therefore from (3.24) and (3.25) we get
,f) ^ Q. + m (1- ®(00,f)) -

-51 <£"(<*, ,f)l X(0,p)
i=l

which on rearranging its terms gives the inquality 
(3.21), and this completes the proof.

(1 - £(o,p)) 51
i=l

Theorem 6, Let f be a meromorphic function of finite 
order and let p (z) be a homogeneous differential 
polynomial of degree n as defined in (3.2). Further let

S(r,f) = S (r,p), then
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then
<T(o,p) ^>m1+ 1 lit. ,f) (3.26)

a ^ CO

where f ^ is the highest derivative occupying in p. 

Further if f is entire then

<£(°,p) & 21 «,f> 0.27)
a / 00

Proof. Let a^a^, .. be distinct finite'complex 
numbers and let

(z) = 4 „ (f (e)- a.)ft
1=1 1

Then it follows from lemma 1 that

q
n JJT mfoa^f) <: m(r,|-) + S(r,f). 

i=l

So, dividing by T(r,p) on both sides and using . 
S(r,f) = S (r,p)

we deduce that

n liminf 
r—> 0D

m (r, a., f)aLT (r,p)

But from (3.-6) we obtain
T(r,p) ^ (m +1) nT(r,f) + S(r,f)

(3.28)



and using this in (3.28), one has
£o,p) X 2" liminf mir/ai'£^

i=l r —» CD On +1 ) T(r,f)

which yields

W> * ;r+r £ £(ai-£>
i=l

On making q-—> CD, we obtain (3.26).

Next if f is entire function of finite order,then 
a?tr,p) = m(r,p)

=s m(r,^—) + m(r,fn) 
f

= nm(r,f) + S(r,f) 

^ nT (r, f) + S (r,f)

and hence from (3.28) we have

£
■i = 1

liminf
r—> 00 T (r, f) A

i

On making q —> 00 , we obtain (3.27).

Let us note that if p(f) is a monomial then the 
condition S(r,f)= S(r,p) is automatically satisfied,

N

since if
p (f )= (f1)1 ff1")2... (f ^ )k when 11+12+... +lk= n

then clearly T(r,p) ^ AT(r,f) + S(r,f) for some 
constant A. Also



P(f> =fn(-|^-)1(^)2...(4^)lk

and so

nT (r,f) ^ T(r,p) + l^Gr,-,) + .. ,+l^T )
f

■C | JT (k )« T(r,p) +l1T(r,|-) + ...+lkT(r#|- ) +

+ S(r,f).

Thus using Milloux1s theorem (Lemma 2 of chapter II)
•f «• 4= & ^

nT(r,£) ^ T(r,p) + l^Cr,!-) + ... + lkN(r,|— )
But NCr^ji1) - i^N(r,|) + N(r,f)3 for i = 1, ...fc*

£ i [N(r,|) + N(r,p3

<: i [T(r#p) + T(r,p)3 + s(r,£)

^ 2iT(r,p) + S (r,f)

Thus nT(r,f) £ BT(r#p) S(r,f), for some constant B. 
Combining this above it follows that S(r*f) = S(r,p),

Also since ^S'tOjf^), Theorem 3 of

Kamthan j[l0become a particular case of our theorem. 

We now use the above theorem to find an upper bound 
for <f(oo , p).

Theorem 7. Let f be a meromorphic function of order 
3* < U “ P ±S 3 h0!"°9eneous agential polynomial
in f satisfying (3.2)
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and if S(r, f) = S(r,p) then

S(co /P) < 2 -K^p)------Vi .•••
* m t _ /m + 1 a ^ 03 (3.29)

where {^denote order of p and K 1 -

Proof. Since 9fgS ™“ W-’W 

and , it follows that ^)p ^ ^ 1.

Therefore, using a result of Hayman £13,101] , we have

limsup 
r—> CD

N (r,P) + N(r,^)
~ p):---E » K%) wher« K%> * 1 “ Qp

This easily yields
2 ^(CD ,p) - £(0,p) £ K($p)

Thus
5*(0,p) $ 2 - K (Qp) - £<00 ,p) (3.30)

The proof now follows using the previous theorem.

Remark (i) If f is entire function and the .i. 

coefficients a(z) in p are entire functions then clearly 
p is entire and hence ^(00,p) = 1. Hence from (3.30) 

we have
<f(0,p) ^ 1 -K(Qp)

which with (3.27) gives
1 - K (Q ) > 1§L S'(ot,f)

w a *£ 00



(ii) Let us also note that if f (z) is a'meromorphie 
function of non-integral order and p is a non-zero 
homogeneous differential polynomial such that each of 
the terms of p contain f, then A.P.sihgh in £263 proved 
that inequality (3.30) holds. Our theorem proves the 
case when none of the terms of p contain f. However# 
in these cases we have been able to prove the result 
only for the case when order of f is less than onet 
It looks like the result may be true for any meromorphic 
function of non-integral order. However we have been 
unable to prove it,

i Out next theorem also deals with finding certain 
different types of estimation for <£(0#p) and X(0#p)i

Theorem 8. Let f and p be defined a^ in (3.2); Let 
^a.^ (i = 1# .../s) # s > 2 ja^< 00 and

t > 2/0<lbj|< CD be two sets of complex numbers. Let

lim sup T(r>») 
r—> CD inf T(r>f ) “

B(t-l) S(0,p) - A <§03,,p) £
j=l

+ ©(C0,f) + B(t-l) - A.£ -1 (3.31)

and
B(*-l) \(0,p)

f 6
B 5T0(b.#p) nt O +

3=1 i=l
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-iGJXa^f) -(b + i) (3.32)

Corollary. For above f and p, 
s

B £(0,p) £ n + B
i=l

- A

B X(0#p) n
i= 1

f)

The proof of the corollary follows by dividingi
with t and then making ff.—> 00, in (3.31) and (3.32)

GO p
and using the fact that 21 O (b.j/P) is -a bounded

j=l J
quantity.
For the proof of the theorem we shall need the followings

Lemma1' 2.

i
fist. T(r»f)

For the hypothesis

.A
$ nt N(r#aj>f) 

i=l

of Theorem 8,
t

+JT N (r,bj^p)
J*1

+

+ N(r,f) - (t-1) N(r#~) +S(r,f).

Proof of Lemma 2. From the first par£c0f inequality 

(3.4) we have

s
n & T(r/p) - N(r^~) +S(r,f).

i=l
3

Adding n N(r,ai#f) and then multiplying by t. on 
i=lboth sides one obtains
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s
nst'T(r/f) ^ tT(r,p) + nfc ^ NCr/a^f) - tN (r/~) +

±=1
+ S(r,f) (3*33)

But by second fundamental theorem of Nevanlinna when 
applied to p> and since S(r,p) = S(r,f), one gets

>
-bT(r,p) ^ JjT N(r,g-j%--) “ N(r^p,- ) + N(r,p) + S(r,f)

j-0 J

where bj's are finite distinct (t+l) numbers and where
b is chosen to be 0. • o

Also since the coefficierits a(z) of p satisfy
T(r,a(z)) = Sfrj-fJ/We get <

N(t^p) ^ N(r*f) + S(r#f)

Thus

tT(r#p) - n(*,£T-) + N(r#f) + S(r,f).
j=0 J

Thus we have

feT(r/p) “NCr,^.) - N0(xt|t) + R(r,f) +
j=l J

+ M(r#“) + S(r,f) (3*34)
Jr

1where N^(r,~,) is formed with the zeros of p1 which 
are not the zeros of p«bj (j*= li «• • 1
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The lemma now follows from (3.33) and (3.34)*

Proof of Theorem 8. By Lemma 2, we have

ti

we 4 oty + I?21#- 5" +“ ^ ,2— T(r,f) T(r,f) ill T(r,p)
j=l ■i=l

+ Rlrjfl). .(4>i) Kr.fi)' N(r>P + S(r,f)
T(r;f) T(r,f) T(r, p) T(r;f)

ans so

0
nst 4 net T limsup N(r#ai*f) . (limsup T(r,p)\ 

£■»—» CD T(r,f) {r—> 00 T(r,f) y

‘•"t
y limsup S(r'b-|'p>),
TZ r—» 0 T (r#p) 2 j—l

limsup ?T(r'£) 
r —> 00 T(r>f )

liminf f_ . . Tfap) ^'p1—*■ ®L - ' Kr.f) i(r,p) J

and hence we get

»s* £ nt
-s* -i t
X^1 - S(ai'f^j + * 5L*[l -©&yP>^ +

+ l-©(®if) - (t- l ) b£i - S’(o/p)') 

which on rearrangement gives (3.31).

Also from Lemma 2 we get

i
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liminf CbS*) < liminf Lt r N(r,'ai'f) jV
r—» CD J ^ T (rjf) lT(r,f) /'

^ S(r'bi*p)) t N(r,f) 
jZJ" T(r#p) y T(rjf)

N(r,
T(r,f) T(r#Ctrl)

+ s(r,f) 
T (r*f)

and so
9

ris-e £nt V limsup Nfe>aj*£) , /liminf T(r,p)\_.
r—> CD T (r,f) ( r—> GO T(r,f)J

limsup S(r#b1jpl ^ iimsup S(rjf)
v «m i / u _.v /|Y^ m £ ij=l r—> 00 T (r,p) J r 00 Tlxjf)

- Ofe-1) liminf T(r#p) liminf
r—> GO T(r>f) r—^ 00 T (r,p)

which gives

ns't’ ^ at • Cl - 5
i=l

(ai#f)) + B j>T^ (l -@(bj/p)) + 
j=l

+ i -<2£oo,f) - (t - 1) B ( 1 - \(0,p))
/

and this results in (3.32).
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