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CHAPTER III

oy

NEVANLINNA CHARACTERISTIC OF _I-iO-MOGENEOUS

DIFFERENTIAL POLYNOMIALS- AND

THEIR . DEFICIENT VALUES _

Let £(z) be a non-constant meromorphic function
in the complex plane,and let m(r, &,f), N{r,e,£)=N(r, 1 )
N(c;0,£) ,N(r,£), T(c,£) etc., have the usual meaning as

-

explained in Chapter I.:®Similiarly for deficient values

é?a.f),ﬁﬁ(aa,f), Aa,f) see pagg-lo in Chapter I,

By a homogenous differentiél polynomial of degree

n we shall mean a finite sum of the form
l -
1 k
alz) (€N Ev @), % (@) (3.1)

+

where lo+ll+...+1k= n and a(z) is any meromorphic function

satisfying T(r,a(z)} = S(r,f),where S(r,f) = o(T(r,£))

as r—> 00,

A monomial of degree n is a homogeneous differential

polynomial having just one team. Throughout this chapter
it is assumed that £(z) is a transcén@ental function of
finite order and by P (£) we shall mean a homogeneous
differential polynomial of degree n which does not contain
£f. Thus P(f) in this,K chapter will be a finite sum of

the form

.
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1 1
az) (€' (2N ... %) @)k (3.2)

where 11+ eset lk = g.

We shall first prove some relations between
Nevanlinna characteristic of £ and p’and later we shall
use these to find various relations between deficient

values of homogenous differential polynomials,

Theorem 1. Let f be a meromorphic function and p(f)
be a homogeneous differential polynomial in £ of degree

n as explained in (3.2). If
; Cla.£) 31-9; g(oo,f) '>, 1-% (0 gYg 1)
a # 00

then

n(l =¥m) ¢ liminf _T(r,p) ¢ limsuwp T (r,p) :
S ror 00 T S res 00 “F{eEy €

<n (1 + VYm) (3.3)

~

(m)

is the highest derivative occurring in p.

where £

For the proof we shall need the following lemma :

Lemma 1, If p(f) is as in (3,2) and al,...,aq(q > 2)
are distinct finite complex numbers, then

qd
n X mir,o,£) + N(r,%) + S(r,£) ¢ T(r,p)
=]

§ nT(r,£f) + mnh?r‘(r,f) + S(x,£) (3.4)
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~

where f(m) is the highest derivative occurring in p.

The first inequality of (3.4) is Lemma 2 of [11]
)
and also the second inequality follows easily using (10)
and (11) of the same paper. However; we give its proof

as we shall be using this inequality-ffequently.

Since the poles of p occur only Et the poles of
f or at the poles of the coefficients &(z) of p, and
since (T(r,a(z)) = S(r,f), we ignore the poles of a(z)s‘
At a pole of £ of order k it is easily seen that p has

a pole of order at most nk + mn.
So,

N(r,p) ¢ n N(r,f) + maN(z,f) + S(r,£) (3.5)
Also clearly (see Lemma 1 of [ 11] )

m(r,p) & m(E,£°) +mlc, ?n)

< nm(r,f) + sS(r,f).

Adding with (3.5) we have
T(r,p) & nT(r,f) + mnN(r,£) + S(r,f) (3.6)

as desired.

Let us note that the above lemma ihcludes a result

of Kamthan t14,63 .




Proof of Theorem 1. From the second inequality in

(3.4), we get

A

ii‘_x:solép ——g%:-%— n + mn((l— @m,f)) T

<¢n +m((1 -cg\(m,f))

n + mn)y

N

And considergéng the first part of inequality in (3,40,

13

we have for any o4

g
T(r,p) znz m(r,di,f) +N(r,-fj;-) + S(r,£f)
i=1

which easily yields

liminf T(r Z 1iming B (f.e,,£)
r—s 00 T T, f) r—> 0 T(E.E

Now making g-—» 00 and using the hypothesis it follows

that

liminf T(xr,p)
r___;mm-:-%r—'—} n(l =y )

>n (- ¥ m) sincem 3 1.

This along with (3.7) completes the proof of the theorem.

An immediate consequence of the above theorem is

the following



Corollary If £ is a meromorphic function of finite order

such thai:.g(d), £) = 1 and gmgc(c(,f) = 1 and if p is
a homogeneous differential polynomial of degree n
satisfying (3.2), then

T(r,p) ~~/ nT(r,£)

The proof follows easily as our hypothesis imply

that W= 0.

Theorem 2. If p is a homogeneous differential polynomial
of degree mh in a meromorphic function £ of finite order
and satisfying

N(r,£) + N(r,%) = S(z,£) (3.8)

Then
, _ 1
nT(r,£) ~ T(r,p) N(r;—ﬁ-‘-_.;—b-) for all b except

possibly O and 03,

Proof. With the same hypothesis (3.8) it is already
proved in Theorem 2 of C 11] that

T(x,p) ~N(r,555-)

Our aim will be to prove the remaining part of the
asymptotic relation, ‘' However for sake of completness

we shall outline some of the steps of Theorem 2 of Ell].

1

- 39086
A
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How

1 1
nm(r,=) = m(r,._._.)
‘£ &N

< m(r,%} + m(r,;?l-—)
= m(r,%) + S{(r,f) by Lemma 1 of{}ﬂ],
Adding nN (r,%—) to both sides and 'using (3.8) one has

hT(I“,%) < m(r,%) + s(r,f)

< T(r,%) + S(xr,f),

So,
nT(r,£f) ¢ T(r,p) + S(r,f) . (3.9)
from which it follows that

S(r,£) = s(r,p) (3.10;

since the poles of p can occur only at the poles of £
or at the poles of the coefficients a(z) of p and
T( r, a(z)= S(r,f) we have

N(r,p) g N(z,£) + S(x,£)
so, by (3.8) and (3,9),
N(c,p) = s(x,p) (3.11)
By (3.5),
N(r,p) & n(m+1)N(r,£) + S(r,£)
where n is the degree of p and £ (m) is the highest

derivative of £ occurring in p.

Hence by (3.8) and (3.10)}, we get

N(r,p) = s(r,p) (3.12)



=, 1 £
N(r,%) < N(r,gn) + ﬁ.(r'i;)

n
4 f’f(r,-%-) + T(r(if)-)

Nr,3) + Tir,2) + o) |

= N(r,g) + N(r,§n> + s(c,£)

”

i

We, ) +N0p) + WL + s(n)

N

(n + 1) N(£,3) + S(e,p), by ( 3.10)° -
and ( 3.12)" -

= S(r,p) by (3.8) and (3,10).

Thus N(r,%) S(r,p) . (3.13)

.

If b&C and b # o then by Nevanlinna's second fundamental

theorem £13 ’y Theorem 2.5] .

we have

T(r,p) € N(r,p) + ﬁ(r,%) + N(r,%—_—_-b) + S(r,£)

= N(r.f,—l_-g) + S(r,p), by (3.11) and (3.13),
Therefore from (3,9) we get

nT(c,£) g Nlr,=p)+ s(c,f) (3.14)

1

(since s(r,p) = S(r,f) always) .

[t

Now by first fundamental theorem of Nevanlinna, we have

T(r,p) .5 Nr,gp) +0() (3.15)
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So,from (3,14) a»i (3.15) we have

1
lininf _T(r,p) liming §'Cr535)
r—>0 T(r,f) 2 r-»> 0 T(r,f) > n (3.16)

Again, from (3,6) we have
T(r,p) £ nT(r,£) + moN(r,£) + S(r,£)

g[n + 0(1)] T(r,f) as r—> 0 (3.17)

b

Hence from (3,.,15) and (3,17) one has

liminf Eff_'_E__ ' liminf T(r,p) £n (3.18)
r~ 0 T(r,£f) r—% O Tzt )

and hence the theorem follows from (3,16) and (3.18),'

We now prove that if p(z) is a monomial
of degree n containing £ with the exponént of highest

derivative as 1k then under certain conditions

T(r,p) r—~ (n +klk) T(r,.£f)

More precisely we have the following theorem :

Theorem 3. Let f(z) be a meromorphic function of

finite order and let alaf @, be two finite complex numbers.

Let
. N(r,a,)
limsup W A -
r—> 0 T(r,f 0, (1= 1,2)
Then

T(r,p) o~ (m + k1) T(x,£f)
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where p(z) = (f}o(f'}l...(f(k}k)is a monomial of

-

degree m satisfying -

N(r,p) ¢ (m +k1,) N(r,f)

Proof. The poles of p occur at the ples of £, and

if £ has a pole of order n then

number of poles of p(z)

1gn +1; (0 + D+..ely (n +7k)

L]

(Lg+eeotly) n +(g+ 21 4.0kl )

2 mn + klk

Z-m + klk

Hence N(r,p) % (m + k1;) N(r,£).

Now from Nevanlinna's second fundamental thearem we have

T(r,f) & N(r,f ) + N(r,f = ) + Bz, £f) + 8(r,f).

since N(r,f) g T(r,£), it follows on using the hypothesis

that
N(r'f) ~ T(I’,f)'
So,
T(r,p) 2 N(r,p) 2 (m + k1) T(r,f)
which gives,
limin€ T(r iminf [T (r,p) N(r,f)
I~ OOT r, %‘ (r f) T(r,f)}

m o+ ki
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Thus 0
liminf T(r,p)
T —> oom'f%)' 7 okl (3.19)
Next '
T(r,p) = m(r,p} + N(r,p)
< m(r, £ + m(r,4§ﬁ) + N(r,p)

= m.m(r,£) + N(r,p) + S(r,£)

And so using the hypothesis we have '

T(r,p) & mom(r,£) + (m + k1) N(r,£) + s(r,£)

mT{(r,f) + klkN(r,:E) + S{r,f£)

A

So,

limswp T(r,p) £ (m + ki) ' (3,20)
r—> ® T(r,£)

From (3,19) and (3.20) we have

lim T(r,p)  _
r—>® T(r,£) - ™tk

and hence the desired result.

Note, There do exist monomials satisfying the condition

N(r,p) £ (m + klk) N(r,f). For example p(z)=f(k)is

one of them. In this case the above theorem yields
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T, £ 8N 0 (x + 1) T(c,£)

which is the result of kamthan [14,8] .

We now prove .

Theorem 4, For p(f) as defined in Theorem 1,
(1) limsup N(r,p) (m 4+ 1)
r—> 0 T(r.p) < 1 =ym

1
(ii) limsup NIT’§) 2 ¥Ym

<
r—> 0 T(r,_pT = 1 HYm

Proof, From (3.5) we obtain

S

N(r,p) . T(e,£}. N(c, £) N(r,f) (£, £)
T(r,p) $ T(r,p) nT(r,:ﬂ + mn T(r,f) + ‘I‘Zr,f]’ .

Using the first part of incquality (3.3) we obtain.

limsup N(r,p) 1 -rS\CO £) + - o, £
r—> 0 T(r,p) < n(l—\Jm)in(l (®@.£) 4o (1= o0, )}

L ,
$ BESS ! (ny + mny )]
and hence (i) follows.

To prove (ii) we consider the first part .of inequality
(3.,4).Dividing by T(r«p) and gaking superior limit as

r —> 00 we obtain on simplifying

N(r,Z ) i

limsup P _(liminf _T(x,f)
r—>00" T(r,pr $1 r—» 00 T(r,p) ) X
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g
x (n Z liminf m(r, 9 £}
i=1 r—— 00 T,

q
1 "m—?_-?n‘g-) ;Z cg.(ai, £)
=1

Sl_,(l- Vm)
1+ yYm

_ 2 )!m :
= 7 Tym as desired,

Theorem 5.  Let [og) < ® (i =1,2,...q).If P is
a homogeneous differentiak polynomial of order n

" satisfying (3,2), then

q
.[1 -g(o,p) + },(O,pﬁ zzg‘(qi,f) 6[1 +m (1 - (00, p)
i=1 .

(3,21}

(m)

where £ is the highest derivatice of £ occurring

inp (m 3 0)

Proof. Let lim sup Tlr,p) . A
r~—>» inf T(r,f B

q

Adding n 5- N(r,a;.f ) to both sides of first inequality
i=1

of (3.4),we obtain

d
ngT(r,£) + N(r,-:;) + S(r,£) § T(r,p) +n z N(r,ai,f)
i=1
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S0,
N(r,a lf)
N(rP ) T(r S(r,£) T (r,p)
-y ,ﬂ-g-‘l;- r,)\?e‘(z—‘,‘ET“nZTr-,—r
....(3.22)
Hence
liminf N(r'%) liminf T(r,p) . liminf T(r,p) .
ng + r—~> O T(r,p) r-s O Tt Sr-—-—) T, £
a ’ o ’
+n limsup N(r,a;.

_-in-'l'-"""“> 0 T(r,£f)

or we have
g
ng + (1 -A(0,p))BEB +n Z (1 - g(ai,f))
i= 1

which reduces on simpiifying to

q
n S>&(a;,£) < B AO,p) (3.23)

Again from (3.22) we have

1
ng + limsup N{r,p) 1liminf T(r,p) limsup (r,p_)
r—> o T(r,p r-—> o T(r,f < r—> ® T(r,f)

a
+n Z limsup N(r‘.d‘i'f)
i=1 T O m(r,£)

. . q
nqg + (1 - S(O,p)) BLA +n Z'(l - S(aief)):
i=1



therefore on rearranging,

q
(1 - $0,£)) B g A -n > @ -@fag.E))y

i= 1

and. as lf-éRO,p) >0, we find on multiplying this

with the corresponding inequalities of (3.23)

q q
a1 - (0,00 Zg(ai,f) £ @a- nz&ai,f))x(o.p) (3.24)
. i=1 ¢ i=1 )

But from Lemma 1,we have

T(r,p) N(z, £) sSlr,£)
—EeP! ¢ n ¢ mn Rk

T(r,f) ~ T(r,t) T(r,f)
rand so
A = ‘
Umswp HEBL ¢n+m (1 -@@,£) ... (3.25)
’

Therefore from (3.24) and (3.25) we get
q
(1 - &o,p)) i% &ai,f) £ [1 +m (1- ®(w0,£)) -

g
- g(ai,fﬂ A (0,p)

i=1

which on rearranging its terms gives the inquality

&

(3.21), and this complet@s the proof,

Theorem 6, Let f be a meromorphic function of finite

order and let p (z) be a homogeneous differential
polynomial of degree n as defined in (3.2). Further let

s{r.f) = s (r,p), then



()|
P

then
.« 1
S(O;p) > mara] Z_ (a,£) (3.26)
a # W
where f(m) is the highest derivative occupying in pe.

Further if £ is entire then

4

S(O,p) z > & a,f) (3.27)

a £

Proof., Let al,az,...aq be distinct finite' complex

numbers and let
g

Flz) = S I

Then it follows from lemma 1 that

g
n Z m(r,al,f) < m(r,%——) + S(r,f).
i=1
So, dividing by T(r,p) on both sides and using .

S(r.f) = s(r,p)

we deduce that

q

n 1iming M(F, %y E)
vy r—> M —TTE:§T- S_SROJP) (3.28)

But from (3.6) we obtain

T(r,p) £ (m +1) nT(r,£) + S(r,£f)



and using this in (3.,28), one has

q
éRO:P) > liminf m(r,ai,f)
i—1 r—> O m +1) T(,£)

which yields

q
$©.m 3 S > S oy
i=1

On making g—> 0, we obtain (3.26).

Next if f is entire function of finite order,then

T{r,p) = m(r,p)

m(r,EE) + m(x, £7)
¥

= nm(r,£f) + S(r,£)

£ nT(r,£) + s(r,£)

and hence from (3.28) we have
g

. f)
liminf m(r,a i’ g
s T — < 0P

i=1

On making gq—> M, we obtain (3.27).

Let us note that if p(f) is a monomial then the

condition 8(r,f)= S(r,p) is automatically satisfied,

since if
1, .15 (x)ix

p(E)=(£")"(£") ... (£7)" when 1,4l +...+H =D

then clearly T(r,p) g AT(r,£f) + S(r,f) for some

constant A, Also



v 1 n 1 (k)1

and so

nT(r,f) g T(r,p) + 11T(r,-§-.) + ...+lkT(r.£T];))
£

= T(r,p) +11T(r,§~) + "'+lkT(r'f- )+

+ s(c,f).

Thus using Milloux's theorem (hemma 2 of chapter II)

£ £ (k)
nT(r,£) g T(r,p) + 11N(r'f_) * vae + 1kN(r, )

£
£ (4)

But N(r;'f—- ) = i{:ﬁ(r,%) + ﬁ(r‘f)] for i = 1, oo‘}é

1
<i EN(r,-I-)-) + N(r,p)]
sif{z@p +T@p)] +sp)
< 2iT(r,p) + S(r,£f)

Thus nT(r,f) g BT(r,p) S(r,f), for some constant B,

Combining this above it follows that S(r,f) = S(r,p).

Also since A(O,él)) Q»S%O,f(l)), Theorem 3 of
Kamthanillé]bécome a particular case of our theorem,

We now use the above theorem to find an upper bound

for (g}OO, P.

Theorem 7. Let £ be a meromorphic function of order
gf < 1, If p is a homogeneous differential polynomial

in £ satisfying (3.2)



and if S(r,f) = s(r,p) then

§@ ) <2 Q) - L.

S ﬁalf) REX (3029)
1 o #

where Q? denote order of p and K (Qp) 21 - QP’

Proof. Since Qfg;g max [Q.f'Qg)'gf«js makx (Qe .Qg)

and Q= Qg+ , 1t follows that Qp € Qe £ 1.
Therefore, using a fesult of Hayman [_13,101] + we have

1
1imsup N(r,P) + N(r,}—)-)
r—> O T(r,p)

> K(Qp) wher@ K(Qp) 31 -0,
This easily yields

2 ,-g(oo sP) - S(O,p) P K(Qp)

Thus
g(o,p) €2 - KQ) - g(oo «p) (3.30)

The proof now follows using the previous theorem,

Remark (i) If £ is entire function and the -

coefficients a(z) in p are entire functions then clearly
p is entire and hence &Oo,p) = 1. Hence from (3.30)
we have

g(o,p) €1 -K@Qy)

which with (3,27) gives
1-%x0) > = S
v rE.
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(11) Let us also note that if f£(z) is a meromozphic
function of non-integral order and p is & non-zero
homogeneous differential polynomial such that each of
the terms of p contain £, then A,P,Sihgh in[:26j proved
that inequality (3.30) holds. Our theorém proveés the
case when none of tlie terms of p contain £. However,

in these cases we have been able to prove the result
only for the case when order of f is less than one:

It looks like the result may be true for any meromorphic
function of non-integral order. However we have been

unable to prove it.

Out next theorem also deals with finding certain

different types of estimation for S(O,p) and A(0,p)s

Theorem 8, Let £ and p be defined as in (3.2): Let
{ai} L =1; .cc,8)ss > 2 fa,)< ® and {bjg’(j =1,..1k),

t> 2,0'dbj(< M@ be two sets of complex numbers. Let

lim sup T(r, - A
r—> @ inf TI(eF r;f%‘ = g ¢ then

t § .
B(t-1) 5(O,p) - A 23. 5(bj,p) 2 ntzlg(ai,f) +
J= i=

+ (6w ,£) + B(g-1) - Ag -1 (3.31)

and € s
Bt-1) A(0,p) = B @b, 358 T §lay.) +
5= =




w—

¢l
op)

H=X®,£) -(B + 1) (3.32)
Corollary. For above £ and p,

5
B§(0,p) 3 n Zg(ai,f) + B-A
. i=1

B A(O,p) ;ni&ai,f)
i=1

The proof of the corollary follows by dividing
with ¢ and then making ¢ —> @, in (3.31) and (3.32)
and using the fact that Zm g (bj «p) is .a bounded
quantity. =

For the proof of the theorem we shall need the following:

Lemma’ 2. For the hypothesgis of Theorem 8,
4 8 4
nes T(o£f) g nt; N(r,aj,f) +Z ﬁ(r,quP) +
=1 _ j=1

+ R(r,£) - (e~1) N(rf%) + 8(r,£).

Proof of Lemma 2. From the first par#cof inequality

(3.4) we have

s
1
n} m(r,a;,£) & T(r,p) - N(r,5) + s(r,£).
i=1
)
Adding nz N(r,ai,f) and then multiplying by <¢.on

both siéesigllle obtains



]

<

5
. . 1
nst™(r,f) g tT(r,p) + nt _5_ N(r,a;.f) - tN(r'E) +
i=1
+ S(r,f) sow (3:33)

But by second fundamental theorem of Nevanlinna when
applied to p; and since S(r.p) = s(r,£), one gets

#

£T(r,p) § § Ngp) - Negr) + Fp) +s(c,f)
=0 J

where bj's are finite distinct (&+1) numbers and where

bo is chosen to be 0.

Also since the coefficierits a(z) of p satisfy

T(r,a(z)) = 8(r,£f),we get

N(t,p) < N(r,£) + s(r,f)

Thus
y o
1
T (r,p) & > Moy J) ~ N(r,55-) + N, £) + s(r,8).
j=0

Thus we have

&1 (x,p) <2 N(e, o) = Nolowgr) + Nir,8) +
j=1 3

+ N(r,%) + S(r,£) (3:34)

where NJ (r, ) is formed with the zeros of p'! which

are not the zeros of p-bj (3= 1saaist). ?



- The lemma now follows from (3.335~ and (3,34).

L

Proof of Theorem 8. By hemma 2, we have

ﬁ }

N(r,a; £) ) T(r 5, N(r,by.p)
ngt nt}__ T T Tf) Z ._.T_.(.r.;p,ﬂ) +
jzl '

\ (r
T(r,f) (&-1) T(r,g (r,pS T(r,’f)

ans so
s N ( )
r,ay £
nst £ ot limsup i llmsup T(:’,p)
izl (r, 5 r—> © T(r,f

¥(r;, £)

N(r,b )
11msup b limsup
( CZ:‘ T (x,p) r—» (r;fs

L
+ liminf l: (=1) T(tr,p) N (r'P)
tr—e o T(£,£) T(x,b)

and hence we get

nst < n {1 - g(ai,f + A ;'_{ -@(b :p)}

+1- N0 ,E) - (£- 1) 3(1 -S(o,;:))

which on rearrangement gives (3.31). .

Also from Lemma 2 we get



<l
de

N(rl lf) T(rlp)
T(I’,f) “_(rpT

liminf (ngd)  liminf Jmt Z
r—> @ r—> @©

N(r,b ,p) N(r,£) .oy Tr,P) N(r,—)
z T(r,p) T(r,£) (t-l)‘T(J::,f) T(r.p)+

. S(r,£)
T(xr,£)

and so
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and this results in (3.32).
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