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1. BRIEF SURVEY OF NEVANLINNA'S WORK

From 1919 until the ea?Ii’SO's Rolf Nevanlinna's
mathematical papers fal;;ﬁﬁaér the heading "Complex Analysis®.
After that, it is difficult to give one single title. It
could perhaps be "Differential Geometry and Applications”.
More accurately, we say the titles may be “Lineaf spaces,
Absolute Analysis and topics of Mathematical Physics". The
first function~ theoretic papers dea;ﬁ with the interpolation
of bounded analytic functions, schlict functions and the
moment problem. In 1922, Nevanlinna focussed his reseafch on
the value distribution properties of meromorphic functions.
The following decade, during which his subject dominated his
research, was undoubtedly his most important mathematical
period. Very significant was his work also inbthe thirties,
still connected with the wvalue distribution theory but perhaps
more appropriately entitled "Harmonic measure and Applications".
The war, coupled with the fact that in 1941-45 Nevanlinna was
Rector of the University of Helsinki, caused a break in his
research. But immediately after the war, he resumed his
studies concentrating on the general theory of Riemann surfaces.
From the last twenties on, Nevanlinna had been dealing with
Riemann Surfaces in connection with his studies on the
deficient values of meromorphic functions. He seems to have

shifted his interest to the general theory just before the



outbreak of the war.

Nevanlinna surveyed his function~theoretic work in
_three monographs. "Le theoreme de Picard - Borel et la
theorie des fonctions meromorphes®. Gauthier-villars 1929,
describes the new Nevanlinna theory for meromorphic functions.
The monumental "Eindeutige analytische funktionen", Springer-
Verlag 1936, deals with the harmonic measure and its applica-
tions and presents the value distribution theory of meromor-’
phic functions, with regard to the topological features of
the theory introduced in the eariy thirties, "The monograph

Uniformisierung”, Springer-Verlag 1953, is on Riemann Surfaces.

We shall now give an idea of his main work on the
value distribution theory of meromorphic functions, which

cultimates in Nevanlinna's First and Second Main Theorems.

The basic problem of the ﬁheory is to study the roots
,;vof the equation f£(z) = a, where £ is meromorphic function in
the complex plane and a given complex number or 0 , If f is
a polynomiél of degree n, the theory is very simple and
symmetric. For every complex a, the equation has precisely

n - roots, with due regard to multiplicity. Also, the grdwth
of £ near infinity is determined by n; as 2 «»».% we have

the asymptotic equation
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By the turn of the century, the results on poly-
nomials had been largely generalised to entire functions.
The starting points were the Weierstrass product formula
‘from 1876 for an entire function with prescribed zeros and
Picard's theorem from 1880 that a non-constant entire

- function takes all complex values upto one possible exception.

2. NEVANLINNA'S THEORY OF MEROMORPHIC FUNCTIONS :

We know that, if P (z) is a polynomial of degree n,
then the equation P(z) = a has n-roots for all values qf‘aﬂ
Keeping in mind this analogy coﬁsider a traﬁscendental entire
function as a polynomial of degree infinite. Then for every
transcendental entire function £(z), £(z) = a should have
infinity of solutions for all values of ‘s, But in reality

this is not true; for instance, the equation e = 0 has no

solution. As Picard proved that for the transcendental entire
function £(z), if we leave the possibility of one value of ‘a’
then the equation £(z) = a has infinity of solutions. This
theorem known as Picard's theorem is an improvement of the
theorem of Weierstrass which states that 1if £(z) is analytic
having an isolated essential singularity at‘a’ then the image

by £ for every deleted neighbourhood of‘a’ is dense in the

finite complex plane.



We shall define as usual the order g of an entire

function by %

log log M(r, £)

where
Max %f(z) .

M(r,f)'-: izi=r

Also, by ?>(a). we mean the exponent of convergence of the

a - points of £(z) and is defined as

where n(r, a) denotes the zeros of £(z) - a in 1z§q§ r, and

where loékx x denotes log x if x > 1 and is zero if «;611.

It is well known that

i

(ia) < Q for all a.
See for e.g. i, 1.

If n{r,a) = 0, ‘a’is said to be exceptional value in the sense
of Picard (e.v.P.). If %d (3)41 §»‘a'is said toAbe exceptional
value in the sense of Borel (e.V.B.). Borel's theorem for
entire functidns of finite order states that there can be at
most one e.V.B, If Q’ is infinite the classical theorem

of Borel gives no information. We shall presently develop-



‘Ahe Newvanlinna theory of meromorphic functions which extends

the theorem of Picard and Borel.

Let £(z) be a function meromorphic (i.e. regular
axcept for poles) and not constant in the complex plane.

For any‘a’in the extended complex plane { we denote by

n (r,a) = n(r,a,£f) = n (r, }-ég ).

the number of roots of f£(z) = a with due count of multiplicity

in {z{ L r, For a =09,

n(z,a) = n(r, 07 ) = n (5, £),

stands as usual for the number of poles of £{(z) in {z{<r.

We set
5 ., tnlga) - Aal,a)
N (roa) = N (r, ———————) = < —————————— we——— gt
f - a o t
+ n(0,a) log r;
,- . ‘n(t, ) - n(0,0 )
N (r, @ ) = N(x,f) = | =-ccmomcmmcmmeeean dt+
o t
+ n(o, 00 ) log r;
1 1 2n; 3 1
m(r; a) = m(r, ————— ) = - - - f log+ o o S s do;

£f - a 2n o 1 i@



- 1 27 . .
m(r,00') = m(r, £) = -— [ log * | £(xd® )| a0
.271 o '
where
log+tl x( = Max é—log § x1 . 0£ .
C L j
The functions R
1 1 1
T(r,a) = T(r, --==) = m(r, === ) + N (r, ===,
, f-a f-a r-a
and
T(r, 50 ) = T(r,f) =m (r,£f) + N (r,f) . eee (1.1)

The terms of (l.1) are derived from the famous Poisson-
Jensen formula E;Z, i};which states that, ifjf(z) is mero-
morphic in {z! £ R, (0 < R<%0) and if ay = 1,2, ...M)
are the zeros and b, ( V= 1 to N) are poles of £(2) in

t 2!<R, then if z = re’® (0« r < R) and if £lz2) # 0,

we have )
N S TNT Y rR? .22
log }£ (2)) = == | log [£(®¥)| -pesemcmmame--ag
2m 0 ! ¥ R°+r4~2Rr Cos{8-f)
M R(z - a,)
+ > log -§~—-:+E“§ -
p=1 R® = apz
N R(z =~ b, )
- > log ~§"1:*g;° .
¥ =1 : R = by 2

The temm T(r,£f) is called the Nevanlinna characteristic

functions of £(2) and play a fundamental role in the theory



of meromorphic functions. This shares many properties of
log M(r,f) with which we m=2asure the growth of an entire
function where
M (r,f) = Max {E(2)] .
Z='r
Therefore it is natural that Nevanlinna characteristic
function is used for measuring the growth of a meromorphic

function.

For m(r,a) we shall use the term proximity function.
Equation (1.1) shows that T(r,f) is the sum of two terms,
the proximity function m(r, f) which measures the proximity
of £(2) to «w on the circle |z| = r and the enumerative function
N (r,f) which gives a weighted average of the number of

infinitudes in the disk {z{{r .

If £(z) is an entire function, N(r,f) vanishes and

we have
T (r,f) = m (r, £} £ log M(r, £f).

on the same lines the proximity of £(z) to the value
w= aon {z] = r 1is measured by m(r,a) and the weighted
average of the number of a -values in the disk |z| £ r is

given by N(r,f).

In order to estimate the proximity function, we need

two properties of the function



log ¥ p = max (log p, o ), P > O.

They are stated as follows

log* (o; p, +eop_ ) & T logt )
1 52 m Sy - Px )
) ;
) ee. (le2)
*(‘;t ) £ S 1ogt 1 ;
log og + logm
© kalpk ~ kz:-'-:l Pk )

The second of these relations gives
m(r,f-a),g m (r,£f) + log + jal + log 2.

It is a surprising fact that for an entire functior
f(z), the Nevanlinna characteristic function T(r,f) is

connected to log M(r, f) by the following inequality :

T(r,£f) £ log M(r,f)_é ———— T (R,£)
» R -

where

OLr<R.

With the use of above inequality it is very easy to show

that for an entire function £,

This motivates the following :

Definition

The order o of a meromorphic function £(z). is



defined by,

Then the following properties on order are well. known.

1) (B) =g (£,
ii) c% (f + g) & Max .'Lg (£), % (g)}
iii) % (f.q) é Max {~Q)(f)o'Q$(gi} .

See for example [30] , [7, 45} .

The Nevanlinna's theory of meromorphic function is

based on two fundamental theorems, known as the first and

second fundamental Theorems of Nevanlinna respectively. We

now state his first Fundamental Theorem,

I ﬁevanlinna's First Fundamental Theorem :

For every complex number ‘a/

1 1
m (r, === ) + N (r, === ) =T (r,f) - log
f-a f-a

+ & (a,r)

where

lé(a; r)i é? log +( al + log 2.

| £(o)=a] -

If we allow r to vary, then the above theéorem can be simply

written as

m(r,a) + ¥ (r,a) = T{(,£) + 0 (1). R

. (1.3)
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for every‘a’finite or infinite.
Thus the enumerative function
m (rla) <+ N(rla)

is independent of ‘al

It is easy to see that if f£(z) is meromorphic in
the finite plane and if its characteristic function is bounded
then £(z) is necessarily a constant. More generally, if

T(r,f) = 0 (log r) then £ (z) is a rational function.

J

See for e.g. [}5, 213; .

From the définitions and the relations (1.2) we note

the following inequalities :

m

m(r, £f3 £, «.. £ )é > m (r, £);
k=1 ,
_‘_111

N (r, £7 £5 ... £) <& 2__1 N(r, £):
k=

and as a consequence we have

m
T (r, fl f2 es e fm)é Z T(rl fk)l
k=1
and
m
T(r, £, 04 £5 + oo ¥ fm)ﬁé E;i T(r,fk) + log m.
Further, if kX is any constant k # 0, then

T(r, k£) - (50| L [log Ik |,

Similarly as we saw above,



11

T{(r,f=a) - T(xr, £) f; log +§a{ + log 2.

If we combine the last two relations with one more relation,
vize

T (x, %):z* (r, £) - log {£ (o)} ;

We see that replacing f(z) by a linear fractional transform

————————— ab - BV #£ 0;

changes the characteristic function by a bounded function

of r. Also, it can be shown as in {15, 213] that N(r, ;I-)
is a momotone increasing function of r and a convex function
of log r. The function m(r, f-a) is rathet irreguiar. So it
is. somewhat surprising that like log M(r, £), T(f,f) which is
m (r,£f) + N (r,f) is also convex function of log r and an
increasing function of r. Also, T (r,f) is differentiable

and r7*(x, £) is non-decreasing. See {26, 2] .

The base of above facts about T(r,f) is due to

Henri Cartan [3] who proved :

If £(z) is meromorphic in |zJ{R Koo and if £(o) #¥
then
1 2r :
i i@
T(r,£) = log ¥ | £ (0)| + === [N(r, & ) d0 .
2n o

The first fundamental theorem fails to tell us which of the
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two terms m(r,a) or N{(r,a) of (1.3) is normally the more
important one. But it becomes clear from the second
fundamental theorem, which is stated below, that in general,

it is N(r,a) which dominates.

11 Nevanlinna's Second Fundamental Theorem :

Let £(z) be a transcendental meromorphic function

of order Q . Let ay, ap, ... a4 (g > 3) be distinct numbers

2
(firite or infine), then

(g=2) T(r,£) < N(r,a;) -~ Nyj(r) + ¢ (r,f),

i=1

where

Nj (r) = N(z, ;1; ) + 2N (r,£) - N(r,£'),
and

S(r,£) = 0 (log r) iz Q < o

s(r,£f) =0 {log r + log T (r,fi} for 211 r; except

possibly for a set of r of linear measure finite if % =00 »

Using the first Fundamental Theorem and second
Fundamental Treorem of Nevanlinna it is easy to prove the

following classical theorems :

Picard's Theorem 3

If £(z) is a transcendental meromorphic function,
then £(z) - a has infinity of zeros for all’a ¢ C

except possibly two values of ‘al In case a = (XJ , we as usual
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vnderstand by a zero of f(z)-a, a pole of f(z).

The above theorem is best possible in the sense
. . . z .
that two exceptions may exist, for instance, e omits 0O,

and tan z omits + i.

Borelts Theorem :

If £(z) is a transcendental meromorphic function of
order % (og % < ), then gl(a) = g for all values of

a’except possibly two values of ‘al.

If we consider the only distinct zeros of f£(z)-ay,
chern the Nevanlinna's second Fundamental Theorem can be put

in the form :

Let £(z) be a meromorphic function of order e and

let a1, aps «... a_ & C be distinct and let g > 3. Then,

q

} _ o
(g-2) T(r,f)« ¥ N (r, aj) + s, ),
V i=1 :

where ‘
— r n{t,a) - n(o,a) -
N (r,a) =é -------------- dt + n(o,a) log r;

where n(r,a) denotes the number of distinct roots of f(z)=a

in }z}<£r and where S(r,f) has the same meaning as earlier.

Another interesting theorem due to Nevanlinna is
his uniqueness theorem [22] which states that if the

meromorphic functions £ and g share five values ignoring
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‘multiplicity, then either £ = g or £ and g are both constants
and ‘where £ and g sharing the value ¢ means f(2z)-c and

g(z) -c-have the same zeros.

- For quite some time, no work was done on shared
values, until recently when Rubel and Yang {25} proved the

following result :

If a non-constant entire function £ and its derivative f!
share two finite values counting multiplicities {CM), then
£= £' .
The same theorem has been proved by Gray G.Gundersen

[10] , for non-constant meromorphic function. An immediate
consequence of it is the result which states that if a and b
are two distinct complex constants and 1w is a non-constant
entire function then the algebraic differential equation

(a-be” )£ + ab (&'~ 1)

f!' &= cocma—rec e e ——————
(1 - eﬁ ) + aeu’- b
does not possesks a non-constant meromorphic solution f.
~ Another interesting consequence is obtained by combining
the above theorem and the theorem [83 stating that the
meromorphic functions £ and £' share the value a # 0,
ignoring multiplicities (IM) if and. only if there is a non-

constant entire function h such that

h
f=a(1+ —-);
hl
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where h has only simple zeros and h"(z) = 0 implies either
h'(z) = 0 or h(z) = 0; the consequence being if h and g

are non-constant entire functions such that

i) h', g' share 0 CM,
ii) n", g" share 0 CM,

and iii) a (1 + h/h') =b (1 + g/g").

for distinct non-zero numbers a and b, then

n' (z) =c &% ;
and -z
g' (z) =K e ;

for non-zero constants C and K.
R. Nevanlinna also found results on the two meromorphic
functions £, g that share four wvalues CM and all pairs f,g

that share three values CM. He proved the following theorems:

I. If two distinct non-constant meromorphic functions £

and g share four values ay } 4 CM, then £ is a

i=1
Mobius transformation of g, two of the shared values, say
az and a, must be Picard values, and the cross ratio
(a1, 3y, ay, 34) = - L.
For example, if h is a non-constant entire function then
eh, s share o, 00, + 1 CM.
Recently Gray G. Gundersen [11] has shown that the hypothesis

of theorem I can be relaxed somewhat by proving the following
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theorem

IZI. Tf two non-constant mercmorphic functions £ and g share
three wvaluces CM and share a fourth value IM, then £ and g
—~ ’

share all four values CM ‘hence if £ 7 g, the conclusion of

above thecrem hold).

On the aother hand, the following example shows that
we cannot simply replace *CM* by "IMY in I,  for, let h. be a

non-conagtant entire function and b be a non-zero constant

thrhen
e + b
£f = cmmmma 3
(P - p)?
and
(eh + b)
g = _._.2........._::...__-»
8b” (e - b)

whare 0, & , 1/b and ~ 1,78 by different multiplicities
(DM) at every pcocint. In contrast %o theorem I, £ is not a
Mobius transformation of g, none of the chared values are
Dicard wvalues., and the cross ratio of cny permutation of
the standard values does not cquz® - l. In the same paper
[11} Guncersen has tried to "close the gap" between above

example and theorem II by proving the following theorems

III. If two non-constant meromorphic functions £ and g

4
share four values a; !
i=1

2y both IM, then £ and ¢ share all four values CM.

a; and a, both CM and aj and
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In the abOQé we havercoﬁSidefedbmeromdrphic functions
f and g that share 3, 4 or 5 vaiues.'#drk on meromorphic
functions, that share two values only,  has also been considered.
However, in this case, the sharing of the values by the
corresponding derivatives of the functions has also to be
considered. In fact C.C.Yang in his paper [;73 has classified
all possible types of meromorphic functions £ and g that are
possible if £ and g and £', g' share the value 0 CM, and
further if the zeros of £ and g are simple; In fact, he

proved that :

Suppose two transcendental entire functions £ and g

satisfy the following three conditions;

a) £ and g share 0 CM, and all the zeros are simple,

b) f£' and g' share 0 CM,

4 log log M(r, £) log log M(r,g)
c) g' = Max { lim sUup —eececece——- wmme= 1IN SUD ==eemm—————n]
g r =500 log © r =300 log r
1 3
<.

Then £ and g satisfy exactly one of the following two

relations :

1) £(z) = c(g(=)ff
where C and K are constants;:

or
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ii) £(z)

]
0

g(z)

{
Q
w
Q
N
@
+
Q
s
<

where C,, C, and C3 are constantsand vV is entire

of order less than one.

Later G. Gundersen in his paper [97} gave all possible
classifications if £ and g and £' and g' share 0 CM (i.e.
ignoring whether the zeros are simple or not simple). Then

he showed

Iv. f and g are entire functions of finite order such
that £, g share O CM and f', g' share 0 CM if and only if

we have exactly one of the following four cases :

i) £(z) = C g(z) where C # 0 is a constant and £ is

entire with order (f) { 0O ;

| b
ii) f£(z) = g(z) , g(z) = a ép(Z) :

where a # 0, and b # 0, 1 are constants and p is =

non-constant polynomial;

111) £(z) = a ( B® _ qyn g(z) = b1 - P37,

where a, b are non-zero constants, n is a positive

integer, and p is a non-constant polynomial;
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2N ip'(2) (p(z))P

iv) £(z) = exp 25:0 an(2ni)“n -'“-]-.-:-é;'(-;y- dz .
L -
[ o2x - "pi(z) (p(z)
glz) = exp| > a, (27i) e A2 .
.} n=0 . g(z) 1
. 42/ |

where N is a positive integer, p is a non-constant polynomia.

N
and aj x are rational numbers (aiN > 0) such that
n=0
2N ,
E; ankn is a non-negative integer where k is an integer.
n=0 ‘ '

Ve Let £ and g be entire functions such that £,g share
O CM and £', g' share O CM then we have one of the followinr:

four cases
i) f(Z) = (, g(z)c

where C is a non-zero constant,

h
ii) f(z2) = a ( e(Z) - 17, g(z) = b(1l - éh(z))n;

where a, b ate non-zero constants, n is a positive
integer, and h. is a non-constant entire function.
iii) the multiplicities of the zeros of . £, g are boundecd.
and as r --- 0o,
N(r,0,f) = N(r,0,9) = 0(log T(r, £}40(log T(r,qy |
n.e. and ‘

N(r,o0,£*) = N(r,0,9") = 0(log T(r,£'))+0 (log T(r,g")) =.
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or
iv) the multiplicities of the zeros of £, g are unbounded,

and lim e —————me—me— = ) N,EC.,
r -3¢0 T(r,£) + T(xrqg)

énd ﬁ (r,o,£")
lim mmmmmmmmbee—eeeee = 0 D.e.,
r —~>00 T(r,£"Y + T(x,g")

where n.e. stands for nearly everywhere, and is to mean the

interval 0 { r < o0 minus a set of finite linear measure.
For any a & { , the quantity

6 (a)f) = lim inf  ece—--
r —=- 0 T(r; f) .
is called the Nevanlinna deficiency of the value ‘a’ with
respect to the function f(z) where £ is meromorphic. It is

clear, by the first fundamental theorem of Nevanlinna, that

m(r, a) N{r,a)
§(a,f) = lim inf ececeee =1 - lim sup ==———w- ’
r -=so0 T(r,£) r -3y T(r,£)

If we change N to N in the above relation, the quantity on

R.H.S. becomes

ﬁ(r, a)
1l =« 1lim sup  —swe= ,
r -0 T(xr, £)

which is denoted by @ (a,f).
If all the roots of the equation
1

f(z) = a ( === =0 if a =& )
£f(z)
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are multiple roots, then we call to the valuefa’ as the

t

completely ramified value with respect to f(2z2).

Aiso as usual we set
: : N(rp a)
Aa) = MAla,£) = 1 - Mm inf  emeee
’ r "")W T(rl f)
‘ : . N(rya) - N(r,a)
© (8) =0 (a,f) = 1im inf “ocommmmmcme etc.
: T(x, £)
The deficient values corresponding to zeros and pol~
being countéd only once have also been studied extensively.
One interesting theorem known as Nevanlinna's theorem on

deficient values states that if f£(z) is meromorphic functi :

then the set of values a, for which @ (a) > 0 is countev .-

"(" 2 .
and . (a) 2.
~- gl 2

From this since §(a) <@ (a), it is easily seen that

z & (a) >/ 2.
a

The total deficiency is said to be attained if Z&(a) = 2.
5.K.8ingh and H.S.Gopalkrishna, in 1-_32_} have shown by an
example, that a meromorphic function may be such that

Z 8§(a) = 1 whereas Z @ (a) = 2 . Since
teT
2 6 (a,f) £ 2, a question that arises is, what woul"

acy o , ,
be the value of Z&(a, £}, where o is a real nunber.
a
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A. Weierstrass [343 showed that a meromorphic function f(z’

.of finite lower order satisfies

26 (3.6)® ¢ g0 as long as o >

Wi
>

See for example, [23] ‘

In the above assertion we can not replace a by any positive

number less than 1/3. = Se¢e for example {}2, 98:—_} .

These facts naturally po.é,e the problem to determine the

upper bound A (a,p) of 26 (a, £)%.

Ooverall meromorphic functions £(z) of order

é p (/3 £« < 1) . T. Murai has thus show that for
1/3 < a0 £ 1,

Ry

1

BT s w o T 2D,

where C, 1is a constant depending only on a«. An immediate

consequence of the above result are

log é(aa ll)
lim - = (1 -¢) (/3L );
p-200 log p ' ‘

C (a. S)
and if we let 7\ B emecawe-—- , then

B

Zﬁ (a, £) £ ZS (a, £)° l-a £ C pl"a 1"05< -
6(';f)<) 6(c’f)<k >) ~ x h o )

Another interesting result proved by Nevanlinna

[zz, 531 is



23

Let f£(z) be a meromorphic function in| zl<®
and let

N(t,0) + N (t, (0 )
k(£f) = lim SUp w=mew—ccce———————— -

Ther. there is a constant ¢ q% ) such that for a non-

integral order Q of £,

k (£) > c(%) > 0.

At the same time he made the following conjecture :

K ( ) = 1 _ (}Sinﬂe‘ ‘
g = inf K (f) = ( ToTTTmmmEoee—- (q’égsq,-
¢ O §Sinn§;
-
( - L
(ISJ.nngi 1 \
------- (g+ =5« 1

where infimum is taken over all meromorphic functions of

order % .

To date; the above conjecture has not been solved.
However, for functions of order 6 g), Edrei and Fuchs

( see e.g. {6} ) have been able to prove that

1 0 -SQ, 4. 1/2

Hellerstein and Williamson !:18] have been able to prove th
the conjecture is true for entire functions of order %w..

only negative zeros. Recently, M. Ozawa ‘[23} proved under
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restrictive conditions, viz. let £(2) = —cmececceie————-

be a meromorphic function of order % (g < g< 1 + 1) and
to

let JT(t)"x'l dt --2e as « -0 decreasingly, leil
a _

1 ioe
21 E
where E is a measurable subset of E— n, 1‘!] and let L( Q )

be the constant defined by

-T ————— o o e e q<%<q+1/2

PN SN TN PN PN PN P

L, - q+ 1/2 g+ 1,
g+ 1 "é %<
then,
s(t, E)
L( %) lim inf  —==-= ~ & K (£),
+t>0 T (t,£)
for any measurable subset E of E':.n, n] . And if for any

positive & , there is a séquence .{rn ( E)% such that
any t in [rn (€) R, ( €)] witn '

R, ( €) = r, ( &) log 1/ € ,

T 8 LxT (r ( €) ) r, ( €)% (K : bounde

r(r, ( €)) r, (£)7STEC 1w £ R7E,
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énd

r, (€) =-->® as n -»@®, we have
; s(t, E)
L (gQ) liminf _._l.__ < K (),

t -0 T(t, f)

for any measurable subset E of {-m nj . Ina subéequent

paper [24] M. Ozawa also proved,

Let £(2z) be a meromorphic function of regular growth

of order g. ‘I‘hen

K(f)g,n(g)liminf ——m e .

and
Let f(z) be a meromorphic functinn defined by a
quotient of two canonical products oi c:zxnus g

f(2) = comcmec——————— .
“ IT E (Z/bnl (I)

Suppose that the order ) and the order . of f(2z) satisfies

Y

Let B be a number satisfying p< B< A . Then for any E,
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The term, N(r, ———— )
feq
1 « 1lim sup  ==eee————— ,
r "")m T(rlf)

as mentioned earlier is called a deficient value and is
denoted by & (o, f). If instead of considering £, the

derivative f£' is considered, then the properties of the term

1

N(r, 27_-7")

Gr (o, £') = 1 « 1im sup -__:_E__E---_
r ‘900 T(rlf)

were considered by H. Milloux (;9]_. Later K.L.Hiong (}T]

defined the relative defects of the value a with respect to

f(k) ViZe 1
N (rl ‘-z}:;“'""'- )
k £ - -
51(_, ) (@ £) = 1 = 1im Sup —mmmmmimmee TooL.. (1.4)
Y— 00 T(r,f)
and the :2sual defect viz.
1
N (r, —s-eceee—— )
’ f'(k) —{x
1l « lim sup i o o '
r -0 T (r, £99

(k)

he denoted by sa

(x, £). In his paper, he found various
relations between the two defects. An interesting result
regarding the relative defect was thaé, unlike the absolute
defect, the relative defect of f(k) could have negative
values with - X as its lower bound. In the case of K = 1,

Milloux [_1'7, 1631 gave a example to show that the lower bound

could be reached,

If in (l1.4) only distinct zeros are considered, then
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the ¢corresponding term

- 1
N r, N —
k
(x) , L £l y-—a
® (e, £) = 1 = 1lim SUp  —==meun ———————
i r -3 T (r, )

was defined by A.PLSiﬁgh [287] in which he obtained various
. PG .

relations between —;@r (0, £) and 8§( W0, ,f)’ﬁ (0, £) etc.,

for instance, he showed that if £(z) is a meromorphic

function, then for every non=negative integer k,

" wo g 2 - .‘ts (0.8) +@ (00, f)}

e

where o # 0, 0 .

And,
if fq(z) is an entire function and ay }P and
i=1
bj }q are finite complex numbers, distinct within
j=1 o
each set and such that bj # 0 for any j. and if Z 6(ai, f)=1,
i=1
then

2 & w0 1.
bj #x0 T
In a subsequent paper @9] A.P.Singh extended his results
for two meromorphic functions having common roots. In order
to do this new notations, dealing with common roots and
disjoint roots.would ‘be essential. Thus we shall first define

these new notations :
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Let *’31{2) and. fz.(z) be two functions, meromorphic '
and non-constant. Let n, (r,a) denote the number of common
roots in the disk |z | Lr of the two equations £y(2z) = a
and f‘2,(z) = a. Also, let Eé(r, a) denote the number of common
roots in the disk {z |{r of the two equations f;(z) = a
and f,(z) = a where the multiplicity is disregarded (i.e.
each root being counted only once). Set '

j n (t,a) =~ 2:10 (o, a)

0_(r,a) = =R - at + B_(o,a) log r;
O S £ : o

- - 1 - 1 -
Nl'2 (rla) = N (rl "f‘-""“ ) + N ‘(I.‘, E?-"'" ) - 2No(r,a).
1-8 | 278

- (k) -
Let n (r,a), N; 5 (r,a) etc. denote the corresponding
N ’ ’

(k) (x)

guantities with respect t, f, " and £, 7. Set

: . o ﬁl,.,2 (x,a)
@ ) (a) = 1 - 1lim SAP. e —m———————
! r -»¢) | T(r,£]) + T(r, £,)

k
@ y (a) = 1 = 1lim sup ~=ememiticccnecea—
1, r =300 T (r,fl) + T(r,fz)

! ' Y- 00 T(xr,£;) + Tr, £5)

@, (). @ ) (a) being similarly defined.
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With these notations, A,P.Singh proved several
theorems on deficient values. We shall just list a few of

these a‘

i) Let fl(z), f5(z) be two meromorphic functions such that

N(r, 1/fy) = s(r,£;) and

N (r, 1/£;) = S(r,£, ) .

Then, for any a # 0, 0 .

x X
@ h,, @+ 2®<(:}(a) 50 @,,, (0)+ 20,0

ii) Let £, (z) and f,(z) be two meromorphic functions,
which have 0 and 00 as exceptional value of defect 1.

Let ay be distinct non-zero complex numbers then,
S® g e
— 1,2 g 2

iii) Letrfl and f2 be two meromorphic functions of finite
order and let T(r, f% ) ~~ aT (r, £y ) where a > 1

and i = 1, 2. Then

@,,, () +2@), (®)YL ¢ -a.

Let us now mention some results on sum and produccs
dealing with meromorphic functions and its derivative, viz.
the monomials, differential polynomials and homogenous

differential polynomials. Here, by a differential polynomi =l
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in a meromorphic function £, we mean a finite sum of the form
1 1
a, (z) (£)°° (g0t ... V)

where lo" ll’. ceeys ll" are integers ,’3 0 ’ané.

\

T (r, a (z) ) = s(r,f)

A differential polynomial having just one term is
called a rrbn‘omial. Also, if 1, + 11 + ceee + 117 = n for
all the terms of the differential polynomial then that
differential polynomial is called honiogenous differential

polynomial of degree n,

Results on differential polynomials have also been
extensively studied, for example see BG__} p iZ} ’ D?j , and
[ 5 ] .« Also recentiy A.P.Singh [_30] ., found a relation
~1§:;gnnecting the order of a meromorphic function and its
homogenous differential polynomials; that, "if £(z) is
transcendental meromorphic function and # (2) is a non-zero
homogenous differential polynomial of degree n satisfying
that each of the exponents of f are integers 2 1, then

) g.(f) = 8) "

As a consequence of this is that if f(z) is a
meromorphic function of finite order Q and if 9 is not
an integer, and g is a non-zero homogenous differential

polynomial as defined in the above theorem then
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and
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8 (Oa f)+5 (%lf)éz‘K(g)

’K(g)zl-g i£0<q L1

(q,+l “’9)(9“‘:1

R Q) 2 em—meTee SN Sy S

2 g (8.+1)(2 + log (§+1)

if g>1and %=[%]

Another result on order of homogenous differential

~olynomial has been recently proved by H.S8.Gopalkrishna and

3.S.Bhoosnurmath 1}4].

Let £ be a meromorphic function satisfying

N (£, £) + N (r, 1/£) = 8 (r,f)

Tf P is a homogenous differential polynomial in £ which does

rot reduce to a constant, then order of P equals order of

I ard further

N(r.p) + N (r, 1/p) = S(r,P)

The proof of this theorem follows from another

interesting result of the same authors [iB;Lwhich states

*hat if £ is a meromorphic function of finite order and P

is a homogenous differential polynomial in f of degree n

which does not }educe to a constant, then
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n (1 - mg) £ 1im inf ==e——--
T r—=s00 T(rf)

< 1im sup ==——==
~ T =30 T(xr, £)

Sn(l+m¢x)

In the presert dissertation, we have extended the
definition of relative defect of meromorphic functions %o
include monomials and homogenous differential polynomials.

Thus, for instance, we have defined

1
N (rl “““““ e )
. P (£f) -a
8y (a, Pn(f) ) =1 - 1lim sup ——————————————
r -3® T (r,f)

so that 6§k) (a, £f) becomes a particular case which is
obtained by taking n = 1. With the help of this definition

we have obtained several results on relative defects.

The second chapter deals with homogenous differential

polynomials, where we have extended several results of A.P.
Singh (27}:Ihus, for instance, we have shown that (see
theporem 2,.,3) under certain cénditions on £, the felative
defect for homogenous differential polynomial, viz.

6. (a, Dy(£f) ) equals

1

M(r, —m—ememmm )

l - n+ lim inf  eccomesa=e- —————————
r -5(’0 T(I’,f)
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Towards the =2nd of the second chapter, we have found bounds
Zor 6y (® , D,(£f) ), where Dn(f) denotes a homogenous
cifferential polynomial in the derivatives of £, and which

d>es not contain £ as its factor. Thus, for instance, we

have shown

+nt s (R, £+

+ 0Ky + Ky + eoe Ky ) @ (00, £).

our third and the last chapter deals with the
relative defects of monomials and homogeneous differential
polynomials, where the zeros and poles are counted only onces

Thus we have defined

- 1l
N (r --z_---
P _(f) -«
@vr (ao Pn(f))= l] « 1lim sSUp ~e=wem——— I—lg—-—--
T(r, £)

and have thus shown, for instance that if P, is a monomial

of degree n, then

@, (wp) £2-@ (@, £) -8 (o, £),

from which we see that @Dr.(a, P,) is bounded by a quantity
which is independent of the degree of the monomial. Also
several other interesting results have been obtained. In
this chapter we have also found bounds for E)r (ay, Pp)

in terms of §, (o, Pq). Thus for instance, we have shown



that uncer certain hypothesis (See theorem 3.7), we obtain

P .
ig l(.‘@r (ail Pn) + @ r (inn) +® (C‘{-’l f) $ 2+p {6r(o’Pn) —
-né(o;f)} .

The method of proof of our work is the classical
Nevanlinna Theory, a good account of which can easily be
found in the book of W.K.Hayman entitled "Meromorphic

Functions", and also in Nevanlinna's books { 227} and [234 .

o0o



