CHAPTER.11

RELATIVE DEFECTS OF HOMOGENEOUS

DIFFERENTIAL POLYNOMIALS
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Tntroduction s

‘Let £(z) be a meromorphic function in the complex

piane. As stated in our introduction chapter the termm

1
o | | N (£, =—em—=)
6§ (0, £) = 1 = 1im sup . 2 2
r-»® T (r, £)

! s called the deficiency of the value‘@’ with respect to f.
Milloux {1§} introduced the concept of absolute defect of «
with respect to the derivative £'. This definition was later

" =xtended by Xiong Qing Lai [17] who introduced the term

I T
(x N(r, ——mme——- )
6. ) (e, £) = 1 - 1lim sup TG o
r ...500 - —— o~ U o ot T o0 e
T (r, f)

and called it the relative defect of o with respect tovf(k).

~n contrast the usual defect of ¢ with respect to f(k)

Jenoted by
1l
R
6(k) (0, £) = 1 = 1lim sup £
a r -»00 - ——m———— -
T (r,f(k))

‘was called the absolute defect of « with respect to £(k)
ceveral results regarding these relative defects, absolute

Jefects and relative defects corresponding to the roagts beinc
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counted once were found by Xiong~Qing Lai [1'ﬂ and -A.P.

Singh [2 7} .

In the present dissertation, we define the relative
defects corresponding to the homogeneous differential poly-
nomials and find several relations for thesé in terms of the

usual Nevanlinna deficient values,

f Notations, - Terminology :

Let £(z) be a non-constant meromorphié function. As

earlier, we define m(r,£f), N (r, Ei- ). N(r,£), T(r, f) etc. by

m (r,f')-"a'ﬁ' -i- z_nflog+ {f(ré @)1 4ae;
o (o]

27
1. n(t, a)
N (L) ==v) = [ commaea at
f-a o t

where n(t,«) denotes the number of zeros of f£(z) - o in

[z £ ¢

- where n(t, 08 ) denotes the number of poles of £(z) in {zlgt;
T (x,£f) = m(r, £) + N(r, £)

Let S(r,f) denote any quantity satisfying S(r,f) =
= o(T (r,f) ) if £ is of finite order and S(r,£f) = 0(T(r, £))



37

possibly outside an exceptional set of finite linear measure
if £ is of infinite order. Also by a homogéheous differential
polynomial D,{f) of degree n, we shall mean a finite sum of

the fomm
a () (£(z))Y0 £1(z) )L .. (£R) (z))

where 15 + 13 + «c.. + Zx = n and a(z) is a meromorphic
function :

T(r, a(z))= s(r,£)

A homogeneous cdifferential polynomial having one

term will be called a monomial of degree n. The term

D
D, (£) -«
8§, (o, Dy(£) ) =1 ~ lim sup ————————
r =5 A T(r, £)

will be called the relative defect of a with respect to the
homogencous differential polynomial Dy(f). With these nota-

tions we shall now prove the following theorems 3

Theorem 2.1

Let £(z) be a meromorphic function. Let D, (f) be a
homogeneous differential polynomial of degree n not containing
f and which does not reduce to zero. Furthermore, let

6§ (R,f) =1anda F_ & (aj, £)
(Xi#w

i
—
L d
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Then
T(x, Dy, (£))
—ememecammm= == N1 @S T ==3(0

For the proof we shall need the following lemma.
Lemma 2.1 -~

Let f(z) be a meromorphic function and P(f) be a
monomial of degree n not containing f£. Also, let

6§ (@ ,£) =1 and > & (ay, £) = 1.
ay #oo "

Then,
T(r, P(£) )
----------- —..% n as r --i m -

Before we start with the proof of lemma 2.1 we shall
mention Milloux's theorem which has been used in the proof
of our lemma and also quite frequently throughout the

Dissertation.

Milloux's Theorem EQ, 5{}:

Let 1 be a positive integer and

1 :
F(z) = 3 a, (2) £ (z) . Then

Y=o ¥
g(2)
m(r, === ) . = 8(r,f) and
f(z)

T, B) £ B+ 1) T(nE) +S (5.
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Proof of Lemma 2.1 :

By hypothesis, P(f) is of the fomm
1 1 v
p(£) = a (£ 1(e) 2 L. (£F))h

where 1; + 1, + ... + 1y = n and T(r, ay) = S(r,£).

Consider,

T(r,p(£))= m (r, p(f)) + N(x, P(£) )

p(£) '
= m(r, —-== . £ ) + N (r, p(£))
fn
p(£) o
¢ (z, T Jam (r, £7) + N (r, p(£f))

Now : 1
p(£) a (£") Legm 2 L. (g%
Mm(r, eew=)=m (r, —Cecccmem e
fn fﬂ
f t fll
£ m (r, ao) +m (r, ( == )11) + m(r, (—--)lZ}J
. £ £
f(k) N
t oeeee +m (r, ( —=== )7TK)
£
» fﬂ
L T (x, 3 ) + 1) m (r, £ /£) + 1, m(x, : Y+
f(k)

+ LI + lk m( rl --f.-- ) .

Hence, by Milloux's theorem it follows that

p(£) | ,,
m (r, -h" )=86 (r,£f) . GATE LA IR

L
£ e A

Hence,
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T(r, p(£)) & m(r,£%) + N (£, p(f)) + S(r,€) .
And so

T(r,p(£)) £nm (r, £) + N(r,p(f);) + S(r,f) ¢« eoa (2.2)

Now, we know that

Therefore, )
La oWyl

LA IR ]

N(r,p(£) ) =N (5, a, (£' 11 (£)
£N (5, ag) + 8 (r, (E9'1) + ... +*N'(5v(f(k))1k)
LT (r,ac) + l;N(r,f‘) +,- lzN(r,f") + caee +
+ L N(x, f(k)x):
since N(r, :)) ¢ (x + 1) N(r, £) it %ollows that

N (r, p(£)) £ T(r, ag) + 31y N(r, £) + 31 N(5, £) + ... +
+ (k+1) N{(r, £)
and so
N(r, p(£f)) £ T(z, ag) + AN (r,f)

where A is some constant. =~ ., '

since §( 00, £) = 1 it f£ollows +hat N(r.f) = S(r,f) and so

one gets from above =
N(r, p(f)) = s(xr,£f) . ees (2.3)

Thus (2.2) and (2.3) imply
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T (x, p(f) ) £ nm(rf) +5 (rf)

< nT (r,£f) + S (r,£)
Therefore,

lim sup

ees (2,4)
r -3 T(r, £) < 1

But

and hence

' (k)
p(£) £, £ 1, f
S LR, { o e i T
=1 (f-a)™ 7 1= f-a;  f-ay

.-I

5293
A
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f ] l f“

d
= (m(r, a) +m (2, (—omm ) L) 4 mlr(ean )72) 4
i=1 1 f--a_:L f-a
(x) :
£ 1
.t eset mM{r, ( ece—ew ) k )}
f—ai
q £
< qT(r,ag) + 1 > m(r, ——-==)+
i=1 f-ai
a g f(k)
+ 12 Y m(r, ——==) + ...+ l EE m (r, == ).
1=1 f-a; f-ay

Thus, using Milloux's theorem, we get

q p(f)
' S (r"f). oo (2.6)

3

H

-
i
I
!
t
]
1
i
|
]

Thus (2.5) reduces to

n f m(r, a, ) <m (r, ==-—= ) + 5 (r,f)
Ci=1 p(£f)
B 1

LT (r;, === ) + 8 (r,f).
p(f)

Thus by Nevanlinna's first fundamental theorem it follows that

n iz m (r, a4) € T(r, p(H))+ S(r,£). vee (2.7)

Dividing throughout by T(r,f) and then taking limit inferior

as r --3 @ of both the sides, it easily follows that
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g m(r, ay) | T(r,p(£f)) S(r,f)q
n 3 lim inf  ec—me-ia & lim inf | —eceeeee + mm———
A=l r© -3 T(r,£) > r -3 [ T (5f) T(r, £)
T(r,p(f)} S(rlf)
¢ lim inf «ewee-- + lim sup ~~=ee-

ST -y T(r, £) r -3¢0 T(r,£f)

Thus
a T(r, P(£f))
n 3 6(ay, £f) £ liminf —cemeeeee
i=1 D S T(r, £)
Making g =--3¢Q and using Z 6 (txio £) =1,
(Xi #w
we get
T(r, p(f))
n g lim inf = coeeee——— . ee. (2.8)
r ->00 T(xr, £)
From (2.4) and (2.8) we get
_ T(r, P(£f)) T(r, P(£))
n 5 lim inf ——————— lim sup e s e e n.
r -5 T (r,£f) ~ r --300 T (r,£f)
This immediately gives
T (r, p(£))
lim | e, =n
r >0 T(r,£)
which completes the proof.
Proof of Theorem 2.1.
Consider
T(r, D (£)) = m (r, Dy (£)) + N (r, D,(£) )
D_(f)
=m (r, me=ee . £2° 3 + N (r, D,(£) )
£N
D (f
=m (r, --Eﬁ’-i } +m (r‘fn) + N (r, Dp (£) ).
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Thus

T (r, Do(f) ) =nm (r,f) + m (r, —-me- ) + N (,D_(£) ).
oy oo . gD n ‘

" LN Y ) (2@9)

Now, Dn(f) is a finite sum of the form ;rPn(f) where P, (£)

are monomials of degree n.

Thus,
| D_(f) P_(£) P_ (f)
m (r, —oe===) =m ( T, -5-”:—-5-‘-—- ) S;r; (£ —mme—m ).
fn .fn Lo * fn

But by result (2.1) of lemma 2.1,

p_ (£)
m (r, ——pe—— = s(r,f).
£ .
Therefore,
D, (£)
m (]‘_‘, - e o = S (r' f) -
Negt,

N (£, Dp(f) | =N (r, 2P, (£))
2N (& py (D))
But again as in (2.3), n(r, P, (f) ) = S (r,f) and therefore,
N (r, Dy(£) ) = S (5, £). eer (2.10)
with (2.10) inequality\(2.9) gets converted into
T (x, D(f)) £ nm (r£) +§ (r,£)

£ nT@J)+S(Lf)

Dividing throughout by T(r,f) and then taking limit superior
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as r -=2>® oI both the sides, we get

\ T(r, D,(£))
lim sUp  —=m———tee- £ n. eee (2.11)

Next, we have

q q 1
n ¥ m(r ay ) £ m{(r, X~  emee===) + 0(1)
igi S =1 (£-a,)"
q Dnh(£) 1
=m (r, 3  ————— R TTomee Y + 0(1).
151 (£-a)". " DL(f)
Thus,
q 1 q D, (f)
n 2. m (rlai) S.m (r, ===—- ) + m{x, b3 —....E....._.) + 0(1).
i=1 ' Dn(f) =1 (f-ai)
vee (2.12)
Jut Z '
g D,(f) q ( P (£f) )
m (5, X —omm———- =) =m(r, & eeecmetem—-- ).
=1 (£ - 2" =] (£-ay)"
But once again by (2.6),
( q Pn(f) ) ( )
m (r, _ ———————} = 5 (r,f).
iég (f-ai)n ;
aAnd so (£)
D (f
n(r, o 2eem ) = S(0, ).

1=1  (£-ay)"

Making use of this, inequality (2.12) get converted into

n §‘_1_ m (r,a;) £ m(r, ~====) + 5(r,f)
bk



;’{ T(r, - . o o ) + S(rlf)

Using the first fundamental theorem it now follows that
q . ‘
n 2 m(r, a;) £ T(x, DL(£) ) + s(r, £). ... (2.13)
i=1
Tividing throughout by T(x, £) and then taking limit inferior

zs r -3 of both the sides we get

n ¥» lim inf  cee-ale (n lim inf = F  eemea=-
i=l © - T(r,£) N r -a@ =1 T (r,f)
. T(r,Dn(£)) + s(r, £)
£ lim inf ( eemecmnccn— ———————— )
™ T -300 T(r, f)
T(r,Dy(£)) s(x, £)
S lim inf —eeccoccea—- + lim sup --=w=
-3 K T(r, £) r -»0 T(r,f)
Thus
: T(r, D,(f) )
Q % 8 (e4.f) £ lim inf e R
i=1 r ->m T(r, £)
rking 7 --a»n0  and using Z 5 (ai--, f) = 1, we get
oy 177
T(r,D, (£)) '
n :S lim inf  e-mecemcee —- . res (2-14”
r -3¢0 T(r, £)

Combining (2.11) and (2.14) we obtain

T(z,Dp(£) ) | T(r,D, (£) )
n £ lim inf  ~esceccwee—e < 1im sup —— i £ o0
L -3 0 T(r, £) > 00 T(r, £)
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Thus,
T(r, D,(£f))
lim e —————— = 11,
r ~-30® T(r,£)

T(r, D, (£))
Equivalently, lim  ———— = 1,

r -340 nT(r, £)

This completes the proof of theorem 2.1.

‘Theorem 2.2 3

Let £(z) be a meromorphic function and D (f) be a -

homogeneous differential polyrnomial of degree n. Also iet

T(r,D,(£)}
lim - 2 - = Co
r =3¢ T(r, £)
1 .
Then m(r, -————eceeoe= )
- D, (f)~a
6, (a, D (£) ) = 1 - C + lim inf e —————— -
i r -3 T(r;f)

The proof of this theorem follows as in theorem 2.1 on

using the followingr lemma.
Lemma 2.2

Let £(z) be a meromorphic function and Pn(f) be a monomial

of degree n., Also let

T(r, P, (£))
1im  emeeeeo ——- = C.

Then,
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1
, m (r, —e—ee-- )
6p (@, PL(£)}= 1 - C + lim inf  —e—mme—cmmmeeae .
r -4 T(x, f)

Proof of lemma 2.2 :

By Nevanlinna s first fundamental theorem we have

1 1
m (r, =————e——— ) + N (r, ——===-=-) = T(r,P,(f) + 0(1).
P_(£f) ~-a p (f)-a
This gives, ’
1. 1
m{r, ——————) + N(r, ~—-e-- -
T(r, Py (£)) P_(£)-a Pp(f)-a
lim inf  —eececmmee = 1im inf ( cecmccmcccmcc e
r =360 T(r, £) r -3 T(xr, £)
1 ) 1
m{r, ——=—-=-=). N(r, -===—-- - )
P (f)=a = Pn(f)—a
< lim inf - -== + 1lim sup - 2 o e
r -0 T(r, £) . r =300 T(r,£f)
Similarly, 1
m (r, =————-—-
T(x, P,(£)) - P, (f)-a
lim sup mmmmm—meee 2 1lim Inf  emceemeeecc - +
r -3¢ T(r, £) r =300 T(r, £)
1
N(r, —=c—ece- )
P (f)=-a
+ lim sup =  eweeceeeeaaee——
r =<0 T(r, £)
T(r, P, (£))
But by hypothesis lim =  «ccccemccua-a exists

r -8 T(r, £)

and hence we get from above
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1
m(r, —=e——=-- )
T(r,P,(£)) P, (f)-a
lim  escem——- = lim inf  wa-== e o o +
r-30 T(r, £) r -3¢ T(r, £)
1
N(r, =e——eeee-- )
P (£) - a
+ 1lim sup T -
I =0 ) T(r: f)
Thus N(r, —ee )
v P, (f)-a T(r, Pn(f) )
- 1lim SUp =weeme—eca————— = - 1lim eseecsecn—e—- +
Y—>& T(r, £) r -300 T(x, £)
'H'\(r: ------ )
Pn(f)‘a
4+ 1im inf =  cccmcmeca————
r -3 T(r, £)
From this, it now follows that
. 1
m (rr ‘‘‘‘‘‘‘ )
Pn(f)~a
-8y (a; Po(f) ) =1 - C + lim inf  cemmem—cccmeeeeo
r -0 T (r,£f)

which is nothing but our lemma 2.2.

Theorem 2.3 :

Let £(z) be a meromorphic function with

Ei» '¢) (ai, f) =1 and § (0O ,f) = 1. Let Dn(f) be a
aif#oo

homogeneous differential polynomial of degree n. Then for
any 'a)

§,. (a, DR(f) Y = 1 = n + lim inf  —cccmcemarccccea- .

r -+® T(x, £)

r
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The proof can easily be filled in by the reader

after considering the following lemma.

Lemma 2.3 3

Let f(z) be a meromorphic function with ZE, 6(ai,f) = .
ay #00

and S(OO,f)=‘=l.

Let P,(f) be a monomial of degree n not containing f.

Then for any 'al we have

1
m (r' ----------
Pn(f) - a
8 (a, Pn(f),) = 1 -« n+ 1lim inf o e e e o
Proof of lemma 2.3 :
By lemma 2.1, we have
lim ———————————— = Na
r -3 T(r,f)
Also, lemma 2.2 gives
: 1
m (r, ——--=---
P, (f)-a .
ar(a, Pn(f)) =1 -« C 4+ 1linm inf  e—ccceceme= ————— Pees T T
T -a00 T(r, f)

T(r, P,(£f))
where C = lim - e e e e
~Thus, we see that
C = n.

Hence with C = n, equation (2.15) becomes
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1
m(r, —=———-- -—)
Pn(f) - a
§p(a,P (£))= 1 =~ n + 1im inf  —memommceeee e -

- T (r, f)
which we wanted to -show '

Remark 3

Putting n = 1 and considering a homogeneous differen-
tial polyromial consisting of one term, viz. monomial, we

get Theorem[}, 27} proved by A.P.3ingh.

Theorem 2.4 :

Let £(2) be a transcendental meromorphic function
and let
T(r, P, (f))
1im . —e——mmceen = C,
'~ where C is a constant and P,(f) is a monomial of degree n

not containing f£. Then

n %: 8(aye f)s 1 -C+ 68, (0, P (E) )

-
—

Proof -

Let aj, a3, -cees @ be distinct complcx numbers

d
and let

F(2) = %‘_ ----- i---- .

=T (£(z)-ay)"

Then by inequality (2.5) of {?1, 234 « we have

1
n { m(r, - ) < m (rp F) + 0 (l)
i=1 f-aj =
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~g 1 p_(f)
=m(r, = F  —mee— . - -= ) +0 (1)
=1 Pu(6) (f-ap)"
£ m(r, ———ee ) +m(r F emmmeee ) + 0 (1)
p (£ - 1=l (f-ai)n

But if we use the result (2,.6), we get

Therefore, we have

q 1 1
n 12: m (r, -———- ) £ m(r, ==-==) + 8(,£f) .
=1 f-a, P (£) A

Dividing throughout by T(r, £f) and then taking limit inferior

as r --3{0 , we get

1 - 1
m(r, ——--) m(r,---(---)-)-b-s(r,f)
. f-ay P. (£
n i lim inf —--—e—e- —m= < lim inf | -mee- D e
i=l r -3 (0 T(r, £) T r -3 T(r, £)
and so 1 1
m(rl - ) m(r, -"—-EE-;'-
f-a, P
n i lim inf PRSI . \< lim inf  «-ce-- e 4
i=l r =30 .. T(x,f) r -3 T(x, £)
s(r, £)
+ lim sup eemeee =

r -3 T(x, £)



1
m(r, ———=-- )
P, (f)
= 1lim inf eeccacmm—cec———. -
r -0 T(r, £)
This is nothing but
1
m(r, —=—--- )
q P, (£)
n X & (ai,f) £ lim inf  eeemccc—eea——a .
i=1 S r -300 T(r, £)

By lemma 2.2, it now follows that

g
2 s(a,f) € 1 -C+ &, (0, P(f) ).
& i * "

Thus we get the required theorem.

In our next two theorems we shall find lower bounds
for the relative defects of homogeneous differential poly-
nomials in terms of distinct poles of the function f. More

precisely we shall prove,

Theorem 2.5 3

Let f(z) be a transcendental meromorphic function
and let P (f) be a monomial of degree n not containing f.

Then foT &%y integer m 2> 1,
(1) 5r (& Po(€)) 21 -n-m+m(H (60, 6.

(ii) And if a = 0 then

6200, BL(£)) 21 - n-m+n5(0,8) +m (1) (a8,

Theorem 2.6

¢ Let £(z) be a %ramscendental meromorphic function.Let
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Dp(£) = Py(£) + Py(f) + ... + P ().

be a homogeneous differential polynomial of degree n and not
containing the term f. Further, let D,(f) not reduces to zero
and K; be the highest derivative occurring in Pi(f) (1 = 1,

2, ees, t). Then

1) 6p(a Dp(£)) > 1 =n=-n (kK +ky + ..o +k)n

xfL - (0, B ,
ii) &y (0, D(£) ) > 1 - 2n + n§(0,£) - n(ky +

+ Ky + eeeet ki) El-@ (oo £) .

Proof of Theorem 2.5

We first prove (i)

By Nevanlinna's first fundemental theorem we have

1 1
m (z, -=z- ) + N{r, -—= Y = mlr, £ + N(r,f?) + s(r, f).
f £

And htence

1
N (r, =-=) -N(r, £f)
fn

L]

m (r, £ - m (r, /") + 5(r,f)

1 27 1 2 41
_— JF logt ‘fn; 4o - -—-== jﬂlog {——ﬁl a® +s(r,f).
2R 27 0 £

Since log x = log *x - log * -i-, it follows that

1 1
N(r, ===) - N(r, £7) = ---

2
]log {£7%] a0 + s(r,f) . ..(2.16)
£ am 0 “



Next
‘ 1
N(r.Pn(f) = a) = N(rj —e—-cema
PL(f)-a
1
=m (r, ————=m——- ) = m{x, P (£)-a) + sS(r,£).
Pn(f) -a o
1 20 1 1 2n
T em— _Jﬂlog+‘$ ——————— 49 = —-- log P (f)m-.
2n 0 : Pn(f)-a 27
- a} d® + S(r,f).
As above we get
1
N (r, Pu(f) - a) - N(r, =m=——- -)
P, (f)-a
1 2 ' 1 ,
2n 0 P (f)-a
Similarly, it is easily seen tha*
P_(£f)-a £
N{x, ~§~—n--- ) = N (r, ——e-eee }
£ Pn(f)—a
1 2 £1
-~ hadanl o lOg ""“" ------ { d@ + S(r: f) - o« e (2.18)
2m 0 WPn(f)—a
From (2.16), (2.17) and (2.18) we get
1 1 2m 1
N (r, ——eeee=- ) =N (r, P (f)—a) - ——— ‘fp log) ------- ~}d@ +
P, (f)-a 2n 0O P_(f)-a{

+ 3(r,£)
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Tooar £ 1
= N (rl Pn(f)"’a) - - E/ lOg ‘—m-—a'_— .  ——— a0 +
2mn Pn(f)—a £
+ 8{(r,£)
1 2 £0
= N(r, Pn(f)-a) - - _Jp log \ _______ _‘ de
2n 0 P, (f)-a
1 27 1
- ——— log } —— d0 +s(r,f).
2m 0 £
and so
1 _ 1 2 £0
N(r, ——cee—- ) = N(I,Pn(f)-a) - —— f ]_ogt ....... do¢
p (f)-a | 2m P,(f)-a
1 27,
+ ——— { log ( fnl a@ + s(r,f)
27 0}
' P_(f)-a 7
= N (ran(f)-a) - {—N (rl -E ————— j - :N:(r,-f-—-,-—{-.-i
v £ P (£)-a

-~ 1 A
+ {N (r, -—= )y - W™ (r,fn)J + 8(r,f).
o £

And hence

1 o1
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e £
+ | T(r, sceeee=) =m (r, ewceem-- Yy +8(r, ).
&. P (f)-a Pn(f)-a _
eee (2,19)
31t by first fundamental theorem we have
£ Ph(f)-a
T(L, w——e——— - ) = T(r, —————— ) + 8(r,f). eee (2.20)
P (f)~a £

Also, we have
Pa(6) = a (2) (£0'1 (@)'2 ... (gm)im

where 1, + 1, + .... + 1 = n,

2

New, if Zq is a pole of order k for £ then 2, is a pole of
orcder (k+l) for f£'. Therefore, z_  is a pole of order 1, (k+1)

1
for (£')"1 and so on.

Thus z, is a pole of multiplicity for (k+l1) 1; +

(et} 10 4 (k +2) 1o+ eee + (ktm)1

=k(1; + 1+ oo+ 1) + (1] + 215 + o0 + mly)

1

g kn + m (ll + 1y + eee + 1m )

5;kn + mn

n (k+m);
and therefore

N(r, Pp(£) )€ n (N (5, £f) + mN (r,£) ).
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But we know that the poles of P,(f) are the same as the
poles of Pn(f)~a‘ And so
N(z, P,(£) ) = N(r, P (f) - a)

Thus,

N(r, P, (£) -a) ¢ n (N (5, £) + mN (5, £) ). .. (2.21)

With the help of (2.20) and (2.21) equation (2.19) gets

transformed into

1 1l
1 € S —— ) € N( 1, === ) = N(r, £ +n(N(r, £)+mN (r, £))+
Pn(f)ua ' £
P (f)-a £
+ m (r, ——————- Y = m (r, =—e—eee==) +8(r,£f).
£0 P, (f)-a
1
L N(r, === ) - nN(r,£f) + nN (r,f) +
£n '
+ mn N(r,£) + m(r, ————ce—= ) +8(r,f).
£1 ' ‘
LY (2‘22)
But
P, (f)-a Pn(£) a
m(rl ““““““ < m (rl ”””” ) + m(r: ——— )I
£° £

And so using (2.1) and the fact that T(r,a) = S(r,£f), it
easily follows that

P_(£f)~-a 1 .
m(r, —"EE" )$m (r, E;‘-) + 8 (r,f). eee (2,23)

Therefore,
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N (?; —mrmlimec) £ N(r, -e= ) + mn N(z,£)+m(zr, -==)+5(z, )
P (f)-a £0 £n

=T (r, 1/£% + mn N(r,£) + S(r,£).
Thus by the first fundamental theorem
N(L, =me=——— ) & nr(r,f) + mn N (r,£) + s(r,f).

Dividing throughout by T(r,f) and taking limit superior as

r -» 08 of both the sides of above inequality we get

1
N(X) e——eee= ) -
P (f)~a N(r, £)
lim sup o o o R é n 4+ mn lim sup —me—————
r -3¢0 T(r, £) r -3¢0 T(r, f)

Thus
1-6.(a P(E))E n+mn (1= (H) (00 ,£));

and hence

8, (a, PL(£)) ?,l-.'n-mn-i-mn @ (00, f£).

which proves (i)

For the proof of (ii) we consider the inequality (2.22)

1 1 - _Pn,(f),-_-a
N(r, ==eeee== )L N (£, w== ) + an N (,f) #+ m(r, =ve=ee=) +
P (f)-a £0 ' £0
n .
+ 8(r,f).

1f we consider a = 0 then from (2.23) (or (2.1) ) immediately
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we will have

Using this in the above inequality, we get
| 1 1 .
N (r, ————=- ) & N(x, --==) + mn N (r, £f) + 8(x,£).
P_(£f) £ ,
Dividing throughout by T(r, £f) and then taking limit superior

as r -3 , we get

1
N (r, === ) N(r, -=-)
Pn(f) £
lim sUp  —=-m=—e—eaeeaw < n lim sup S — +
r -3 00 T(r, £) =~ r -2@ T(r, £)
N (ro £)
+ mn lim sUup =~cece—w- +

r -3¢0 T(r, £)

Thus
1- 5,00, B, (£)) < n [1 -sn [ +m[1-@) (w.fﬂ

which reduces to

6plo, P (£)) 2 1 ~-n-mn+ ng (o,f) + mn @ (00,f).
Remark :

Putting n = 1 in (i) and (ii) above we get Theorem 3 of {_273._
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Proof of Theorem 2.6 :

We first prove (i).

As in the proof of Theorem 2.5, using Nevanlinna's

first fundamental theorem we have

1 1
m(r, === ) + N (r, === ) = m(r, £%) + N(r, f?) + s(r, £),
£ £0
and hence

1
N (r, -5~ ) - N(r, £7)
£

=m (£, £ - m(r, I/£Y + s8(r,f)

1 2 1 2 + 1
= - ‘ja lOg+ l fn ld@ - e j‘ lOg { -—-5 I dae +S(rl f) .
27 Fo) 27 :

£
And so
1 27 ’
N (r, 1/f%) - N(r, £0) = --m log }fnl 30 + S(r, £)...(2.24)
27 o i
Similarly,
1
N (r, D (f) - a) - N(r, ——===m—- )
Dn(f)-a
1
=m (I, ———ee—- ) - m (r, Dn(f)-a) + S(r, £)
Dn(f)-a
1 21 1 ' 1 2n +
Z - ~/alog+ ’ ------- } A0 - —=- Jflog ”‘Dn(f)-al dao+
2n o Dn(f)wa 2n
+ S(r, £).

And so
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1 1 r2m - -1
N(r, D (f)-a) - N(r, --===—= ) = == N log |see—mem- L aoe +
Dp(f)-a 2n o 'D_(£)-a
+ 8(r,f). eee (2425)
Similarly
Dn(f)-a N fn
N (r, ==w=-= =<ed = N (r, =me————- )
£ Dn(f)-a
£B Dn(f)-—a
= m (r, ————e——- ) = m (r, ——m————— ) + 8(r,£)
D, (f)-a £
1ocem £ 1 f~-2“+. D_(£)-a
= eem log { ------- &d @ -~ == ilog" | ==emzmn 4 de +
2m 0 ' D (f)-a 21 J ! £
+ S(r, f).
And so
D, (£)-a £7 1 co2m N i
N (r: "'""“'E"“'"‘) - N (r' """""" ) el Sk } log )—--"-—-— de +
i D, (f)~a 2n 0 D, (£)-a
+ 8(r,f). eee (2.26)

Combining (2.24), (2.25) and (2.26) we will get

1
N (rl e - )
D (f)-a
1l 2T ) 1
= N (r, Dp(f)=a) - =—= logf ——————— td e + s(r,£)
2m 0 D_(f)-a
n
1 .2m £" 1
= N(r,D_(f)-a) - --= 3 log q-—~~~--- o« == j 46 + s(r,f)
©n 2 0 ‘D (£)-a £
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1 2n | '
= N (r, Dn(f)-a) - —— ~f log | —wwee=- ae +
2n o D_(f)-a
n
1 - 27
+ - ‘f log }fnz‘ a + S(r,£f)
2n e )
' D, (f)-a £1
= N(r,Dn(f)-a) - [‘N(rl ''''' ) - N(r) "—-'-.EEQ-L‘..) o+
' £n D,{f)~-a

- l .
+{.N(r, -—=) = N(r, f“{}a + S(r, £).
fn

Thus;,
1l ) 1 n (
N(f; wwosame) = N(r, === ) = N(r, .£7) +1(z,D_(£f)=-a) =
D (f)-a £0 ’ n
n
Dn(f)—a D _(f)w~a
-{T (r, =-——e——- ) -~ m (r, ——————- ) +
f . fn
. £07 - £
+ | T(r, ecm—mm Yemlr, ceeeee «=)| +8(r, £).
Dn(f)—a D_(f)-a

eee (2.27)

Again by first fundamental thecrom of Nevanlinna we have

e £
T Dn(s.)-'a
T(r' ....... ) = T(r' ——————— ) + S(r'f). LI (2.28)
D_(£)~a £2

But by counting the poles it easily follows that
N(r, Dn(£) ) £ nt N(r, £) + n((ky + ky + oo + k) N(£, £).

Also, we know that, the number of poles of bn(f) equals the
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number of poles of‘Dn(f)-a.
Thus,

N (r, DL(£) ) = N(r, D, (f)-a);
and hence the above inequality becomes

N(r, D (f)-a) & nt N(r,£) + n(kl + Kot e tke) N(r, £) .
oo (2‘29)

With the use of (2.28), (2.29) equation (2.27) reduces to

1

N(r, —m=———— )& N(r, —*—5) - N(r,f%) + nt N (r,£) +
Dn(f)~a £ o
+ n {kl + Ky Feen + ki) N (r, £) +
B, (f)-a £1
+ m{r, —w—-———- ) - m (r, =eee---) + S(r,£f).
£7 D, (£) -a .
And so
1l 1 ‘
N(r, —s—ee—- Yy £ N(r, ====) -« n (l-t) N(r,f) + n ('k +Knte e
Dp(f)-a ~ £ 1772
D.(f)~-a
- n
4..;fkt> N (5, £)+ m (5, ws-mm-m ) +
£
+ 3(r,£f). : oo (2.30)
But |
D (£f)-a . Pi(f)-a
m (L, —mee——— ) = m (r, i ------- )
£0 =1 0
t Py (£) a

=m (r, zt' ------- ---»)
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t P, (£) a
it )
< m(r, ————e ) +m (r, === )
~ :L}é_i £0 £n

and as in the proof of theorem (2.5) we will get

D, (f)-a 1 .
m(r, .'.‘.-a--ﬁ-—«- ) = m (r’ .—-ﬁ ) + S(r,f). sese (2o3:)
£ £
Therefore,
1
N (r, ~—ceecwe= &
D, (£f)-a
l - ) -
= £
1
+ m (rl ———) 4 S(r,f),
fn
1 | | _

f
+ S5(r,£).

TFrom first fundamental theorem it now follows that

1 - -
N(r, =——————- ) ¢ nT(r. £) + n(kl'+k2+ cen k) N(r, £)+58(r, £).

Dividing throughout by T(r,£f) and then taking limit

superior as r a-—)c'i, we get

N(r, ——c=-- )
D, (f)-a - :
lim sup  =~--=--B m—meee &0+ n(kyFkgt oa0 + kD) X
N(r, £f) s(r, £)
¥ lim sup = o + 1lim sup ------ ;
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which immediately’givesh
1 -6, (a, DU(EYPL D+ n (k) +hpt ooe + kY (1- G ( . 9)
‘which vyields

5r(a,bn(f)} 3 1-n-n(kpk, + .o )0 -@ (00,8),
which proves (i) .
To prove (ii) consider the inequality (2.30).AThen

, 1 1
N (L} =—————— ) £ N(r, === ) = n (1-t) N (r,f) +
D_(f)=a £D ‘

+m (r, 55 e o )+ s(r, f).

Dph(f)~o 1 |
m (r, --;5-~- ),=,m (r, ;ﬁ- ) f S(r,£f).
Thus | o

D (£) 1
m (r, —;ﬁ--) :F T(r, —Eﬁ } +8(r,f)

) =4nT(r,f) + S(r,f).

And hence for a =‘0,bit follows that

1 . 1 ;
N (r, ——ece- )€ n N(xr, === ) = n (1-t) N (r,f) +
£
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+ n(ky + X+ ...+ ky) N (r,£f) + nT(r,£f) + S(r,£f).
$ nN(r,% ) + n(kl + kg Fees + k) ﬁ(r,f) +
+ nT(xr,£f) + s(r, £)

Dividing throughout by T(r,f) and then taking limit superior

as r =3¢ , we will get

, 1
- D, (f)
lim sUp ewem—eeloiiia. K
Y5 C0 T(r, £) h
1
N(r, =) -
‘ £ - N(r,£)
£ lim sup  ~w=e--= + D 9‘;*%--#&) 1im SUp ==-e-ej

ST =30 T(r, £) ‘r-300  T(r,£)

+ n+ lim sup  w————-
r =300 T(r, £)
which gives
1 -6y, (0, Du(f) ) £ n(1 =8 (0,f) ) + nlky; + KXy + ¢euceh
#eeea k) (1 - B(0,H))+n
After adjusting the term finally we will get
Sz (0, Dy(E) ) 21 - n - n{1-6(cf)) = n () + ky + ===+

=1 - 2n + nslo,£) = nlky+kp+...4k,) (1= @ (00, £))
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which completes the proof-of theorem 2,6.

In our next theorem we shall find a lower bound for
the relative defects corresponding to the poles of the
homogeneous differential polynomials in terms of the defi-
ciencies corresponding to the poles of f. More precisely

‘we shall prove :

Theorem‘2.7 :

Let £(z) be a transcendental meromorphic function
and let Dn(f) be a homogeneous differential polynomial as

stated in theorem 2.6. Then

5¢ (60, Do(£)) > 1 = nt - n (ky+ky oo + k) + nt 5(00 ,£)+

we first prove the following lemma :
Lemma 2.4 :

Let f£(z) be a transcendental meromorphic function.

Then for any integer k > 1,
600, P (£)) 21 - n (1+k) + ns(w ,£) + k@ (00 ,f).
where P, (f) is a monomial of degree n and mot containing f.

Pro®f of Lemma 2.4 3

Set
1
P (£) = a (£ 1 (gm72 ..., (£%))lx
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Then we have

N (r, Pn(f))
1
= N(r, a (£ (272 . (£50) 1K)
e . ll n 1
£ N (5 a) + N5 (ED71) + N5, (£)72) + cues +

+ N, RNk 4 s

& T(rag) + 1 N(r, £ + LN E) + e+, N(5, £59) +
+ 8(r,f).

< L[N @O + ¥ (D] + 1, [N + 2 (o] -+
et 4 [ NE T (o] + s

= (13 + 1, + con + L) N(5, ) + (1] + 21, + «uo + kL)N(r, £) +

+ S{r,f).

Thus,

N(r,Pn(f) ) £ (ll + 12 + eee +'1k)N(r,f) + k(ll + l2 + eeee
LR + lk) ﬁ (r]f) + S(r,f).

Since ll + 12 4+ wase +* lk = n, we- 'obtain

N(r, P (£)) £ n N(f£) + K N (5, £) + s(5,£). ... (2.32)

Dividing both the sides by T(r,£) and then taking limit
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superior as r -300 , we get

N(x,P (£)) N (z, £) N(r, £)
lim sup  ~—-——e—e- L n lim sup —mw=—= 4+ nk lim sup ewww=— +
T =3 T(x, f) -3 d T(rc, ) r->m T (r, £)
S{r,f)
+ lim sup =———s--

which gilves

1-6(@, p(H)) & n (1-68(w,0) +nk (1- @ (0,0).
which yields

5 (00, Pp(£) 3 1 -n(+k) +n [6(o0,8) +k & (0,8
This proves lemma 2.4.

We shall now prove theorem 2.7.

Proof of theporem 2.7 :

We have
N (r, D(£)) < N(r,Py) + N(x, Pp) +.... +N(x,P.).
Using (2.32) we t‘nerefo‘;e get
N(r, Do(f) ) & n [N(r,f)' + kg N (r,f)] + n [N(r,f) +
3 N8 + oo+ 0 [N(m O+ k()] +5(r,6)

= DtN(r, £)+ nlky+kyt... +k.) N(5, £) + S(r,£).
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Dividing both the ‘sides by T(r, £f) and then taking limit
superior as r =»® , as usual, we get on simplification
+ nt §(00 ,£f) + n (kl + k2 + cee

-0 + kt) @ {w )f)

rorollary

Putting n = 1, t = 1 we get Theorem 3(ii) of [27} -

o0o



