CHAPTER-III

RELATIVE DEFECTS FOR DISTINCT

ROOTS OF MONOMIALS

Introduction:

Let f(z) be a meromorphic function in the complex plane. Let $n(t,\alpha)=n(t,\frac{1}{---})$ denote the number of roots $f-\alpha$ of $f(z)=\alpha$ in $|z|\leqslant t$, the multiple roots being counted with their multiplicity.

Also, let
$$\bar{n}$$
 (t, α) = \bar{n} (t, $\frac{1}{---}$)

denote the number of distinct roots of $f(z) = \alpha$ in |z| < t. For $\alpha = \infty$, $n(t, \alpha) = n$ (t,f) and $\overline{n}(t, \alpha) = \overline{n}$ (t,f) respective denote the number of poles and the number of distinct poles of f(z) in |z| < t. We get

$$N(r, \alpha) = \int_{0}^{r} \frac{n(t, \alpha) - n(o, \alpha)}{t} dt + n(o, \alpha) \log r,$$

$$\bar{N}(r, \alpha) = \int_{0}^{r} \frac{\bar{n}(t, \alpha) - n(o, \alpha)}{t} dt + n(o, \alpha) \log r,$$

$$N(r, \frac{1}{f-\alpha}) = N(r, \alpha), N(r, f) = N(r, \infty).$$

The other terms being similarly defined.

As usual let

$$N (r, \frac{1}{2})$$

$$\delta (\alpha, f) = 1 - \lim \sup_{r \to \infty} \frac{1}{r(r, f)}$$

$$\frac{1}{N} (r, \frac{1}{n-1})$$

$$f = \alpha$$

and if $P_n(f)$ denotes a differential polynomial of degree n, we set

$$\delta_{r} (\alpha, P_{n}(f)) = 1 - \lim \sup_{r \to \infty} \frac{P_{n}(f) - \alpha}{T(r, f)}$$

$$\tilde{N}(r, \frac{1}{T(r, f)})$$

The suffix r in \bigoplus_r (α , $P_n(f)$) denote the relative defect with respect to simple zero. Here we shall introduce absoluted defect with respect to simple zeros, viz.

$$H_{a}(\alpha, P_{n}(f)) = 1 - \lim \sup_{T(r, P_{n}(f))} \frac{1}{T(r, P_{n}(f))}$$

and prove relations involving these. Finally the terms S(r,) will denote any quantity satisfying

$$S(r,f) = 0 (T(r,f))$$
 as $r \to \infty$

except possibly for a set of r of finite linear measure.

We first prove,

Theorem 3.1:

Let f and g be two meromorphic functions and $g(o) \neq 0$. Then

N (r,
$$\frac{f}{g}$$
) = N (r, $\frac{g}{f}$) = N (r, f) + N(r, $\frac{1}{g}$) - N(r, g) - g - N (r, $\frac{1}{f}$).

Proof -

By Jensen's formula we have on using (1,7) and (1.8) of [12, 4] in (1.5) of [12, 3], log [1(4)]

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{\frac{10}{2}}| do - N(r, 1/f) + N(r, f).$$

Therefore,

$$-N(r,f) + N(r, \frac{1}{f}) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{\frac{1}{2}})| de - \log |f(o)|.$$
(3.1)

But by hypothesis we have $g(o) \neq 0$ and therefore, we can change f to f/g in (3.1) and obtain

$$N (r, \frac{g}{f}) - N(r, \frac{f}{g})$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| \frac{f(re^{0})}{g(re^{0})} \right| de - \log |f(e)| + \log |g(e)|$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{-10})| de - \frac{1}{2\pi} \int_{0}^{2\pi} \log |g(re^{-10})| de -$$

$$= \left[\frac{1}{2\pi} \int_{0}^{2\pi} \log \left| f\left(r^{\frac{1}{e}}\right) \right| d \cdot 0 - \log \left| f(o) \right| \right] - \left[\frac{1}{2\pi} \int_{0}^{2\pi} \log \left| g\left(r^{\frac{1}{e}}\right) \right| d \cdot 0 - \log \left| g\left(o\right) \right| \right]$$

$$= \left[N \ (r, \frac{1}{f}) - N \ (r, f) \right] - \left[N(r, \frac{1}{g}) - N(r, g) \right] ,$$

and hence finally we get

N
$$(r, \frac{f}{g})$$
 - N $(r, \frac{g}{f})$ = N (r, f) + N $(r, \frac{1}{g})$ - N (r, g) - N $(r, \frac{1}{f})$ which completes the proof.

Theorem 3.2:

Let f(z) be a meromorphic function. Then for any monomial $P_n(f)$, we have $H_r(\alpha, P_n) \leqslant 2 - H(\alpha, f) - \delta(\alpha, f)$.

For the proof, we shall need the following lemma:

Lemma 3.1:

Let

$$P_{n}(f) = (f)^{1_0} (f')^{1_1} ((f)^{(k)})^{1_k}$$

where $l_0 + l_1 + \ldots + l_k = n$, be a monomial of degree n. Then

$$P_{n}^{i}(f) = P_{n}(f) \left\{ 1_{n-\frac{f}{f}}^{i} + 1_{1-\frac{f}{f}}^{i} + \dots + 1_{k-\frac{f}{f}}^{(k+1)} \right\}.$$

Proof of lemma 3.1:

We have

$$P_n(f) = (f)^{10} (f')^{11} \dots (f^{(k)})^{1k}$$

This implies

$$P_{n}^{i}(f) = l_{0}(f)^{\frac{1}{0}-1}(f^{i})(f^{i})^{\frac{1}{1}} \dots (f^{(k)})^{\frac{1}{k}} +$$

$$+ (f)^{\frac{1}{0}} l_{1}(f^{i})^{\frac{1}{1}-1}(f^{i})(f^{i})^{\frac{1}{2}} \dots (f^{(k)})^{\frac{1}{k}} +$$

$$+ \dots + (f)^{\frac{1}{0}}(f^{i})^{\frac{1}{1}} \dots (f^{(k-1)})^{\frac{1}{k}-1} l_{k}(f^{(k)})^{\frac{1}{k}-1}(f^{(k+1)}).$$

That is

$$P_{n}^{t}(f) = l_{0} \frac{f'}{f}(f)^{l_{0}}(f')^{l_{1}} \dots (f^{(k)})^{l_{k}} + \\ + l_{1} \frac{f''}{f'}(f)^{l_{0}}(f')^{l_{1}} \dots (f^{(k)})^{l_{k}} + \\ + \dots + l_{k} \frac{f^{(k+1)}}{f^{(k)}}(f)^{l_{0}}(f')^{l_{1}} \dots (f^{(k)})^{l_{k}}.$$

$$= P_{n}(f) \left\{ l_{0} \frac{f'}{f} + l_{1} \frac{f''}{f'} + \dots + l_{k} \frac{f^{(k+1)}}{f^{(k)}} \right\}.$$

Proof Of Theorem 3.2:

Clearly

$$\frac{\alpha}{f^{n}} = \frac{P_{n}}{f^{n}} - \frac{P_{n} - \alpha}{P_{n}^{i}} \cdot \frac{P_{n}^{i}}{f^{n}} \cdot \dots (3.2)$$

But by lemma 3.1

By Milloux's theorem

$$m(r, \frac{f(i)}{f(j)}) = S(r, f) \text{ for } j < i.$$

And as in (2.1), even if $P_n(f)$ contains terms in f, we get

$$m(r, \frac{P_n(f)}{f^{n-1}}) = s(r, f).$$
 (3.3)

It now easily follows that

$$m(r, \frac{p_n^i}{-r}) = s(r, f).$$
 (3.4)

Therefore, from (3.2), (3.3), (3.4) we get

$$m(r, \frac{\alpha}{f^n}) < m(r, \frac{P_n - \alpha}{P_n^i}) + S(r, f)$$

$$= T(r, \frac{P_n - \alpha}{P_n^i}) - N(r, \frac{P_n - \alpha}{P_n^i}) + S(r, f).$$

And so, by Nevanlinna's first fundamental theorem we obtain

$$m (r, \frac{\alpha}{f^{n}}) \leqslant T(r, \frac{P_{n}}{P_{n}-\alpha}) - N(r, \frac{P_{n}-\alpha}{P_{n}}) + S(r, f)$$
.

which is nothing but

$$m(r, \frac{\alpha}{f^{n}}) \leq N(r, \frac{P_{n}^{i}}{P_{n}-\alpha}) - N(r, \frac{P_{n}-\alpha}{P_{n}^{i}}) + m(r, \frac{P_{n}^{i}}{P_{n}-\alpha}) + s(r, f).$$

which yields on using Milloux's theorem,

m (r,
$$\frac{\alpha}{f^n}$$
) $\leq N(r, \frac{P_n^!}{P_{n-\alpha}}) - N(r, \frac{P_{n-\alpha}}{P_n^!}) + S(r, P_{n-\alpha}) + S(r, f)$.

But $S(r, P_n - \alpha) = S(r, f)$ and so

nm (r, 1/f)
$$\leq N(r, \frac{p_n^t}{---}) - N(r, \frac{p_n-\alpha}{---}) + S(r,f)$$
.

That is

$$nT(r, 1/f) < [N(r, \frac{P_n}{P_n - \alpha}) - N(r, \frac{P_n - \alpha}{P_n})] + nN(r, 1/f) + S(r, f).$$

which gives with the use of theorem 3.1

$$nT(r,f) \leq N(r, P_n^*) + N(r, \frac{1}{---}) - N(r, P_n - \alpha) - \frac{1}{P_n^* - \alpha}$$

$$-N(r, \frac{1}{P_n^*}) + nN(r, \frac{1}{---}) + S(r,f).$$

and hence

$$nT(r,f) \leqslant \left[\overline{N} \ (r, \frac{1}{P_{n}-\alpha}) - N_{0} \ (r, \frac{1}{P_{n}^{!}}) \right] + N \ (r, P_{n}^{!}) - N(r, P_{n}-\alpha) + nN \ (r, \frac{1}{f}) + S(r, f),$$

where N $_{0}$ (r, $\frac{1}{p_{n}^{*}}$) are formed by those zeros of P which are not the zeros of P $_{n}$ - α .

But $N(r, P_n - \alpha) = N(r, P_n)$, and so

nT (r,f)
$$\leq \overline{N}$$
 (r, $\frac{1}{P_{n}-\alpha}$) - N_O (r, $\frac{1}{P_{n}^{i}}$) + N(r, P_{n}^{i}) - N(r, P_{n}^{i}) + nN (r, $\frac{1}{f}$) + S(r,f).

It now easily follows that

$$nT(r,f) \leqslant \bar{N} (r, \frac{1}{P_{n}-\alpha}) - N_{0} (r, \frac{1}{P_{n}^{+}}) + \bar{N} (r, P_{n}) + \\ + nN (r, \frac{1}{f}) + S(r, f).$$

Since \bar{N} (r, P_n) = \bar{N} (r,f) and since N_0 (r, $\frac{1}{P_n^i}$) \geqslant 0,

we obtain

as $r \rightarrow \infty$

we get

$$nT(r,f) < \bar{N}(r,\frac{1}{p_n-\alpha}) + \bar{N}(r,f) + nN(r,\frac{1}{p_n-\alpha}) + S(r,f).$$

Dividing throughout by T(r,f) and then taking limit superior

That is

$$n \leq \left[1 - H_r(\alpha, P_n)\right] + \left[1 - H(\infty, f)\right] +$$

+ n
$$\left[1 - \delta(o, f)\right]$$
,

which on simplification gives

$$\bigoplus_{r} (\alpha, P_n) \leq 2 - \bigoplus_{r} (\infty, f) - \delta (o, f).$$

This completes the proof of the theorem.

In [28] Theorem 4, A.P.Singh has mentioned the Theorem 3.3. However, he has not given the proof of that Theorem. Here we give a detailed proof of that theorem. Thus we shall prove,

Theorem 3.

Let f(z) be a meromorphic function. Let each zero of f(z) have multiplicity \geqslant n. Then for all positive integers k and $a \neq 0$,

$$n \bigoplus_{r}^{(k)} (a,f) \leq (n+k+1) - n \bigoplus_{r}^{(k)} (\infty,f) + (k+1) \delta(a,f)$$

Proof of Theorem 3.3:

Consider the identity

$$\frac{1}{f-a} = \frac{1}{a} \begin{bmatrix} f^{(k)} & f^{(k)} - a & f^{(k+1)} \\ \frac{1}{f-a} & \frac{1}{f^{(k+1)}} & \frac{1}{f-a} \end{bmatrix}.$$

Then
$$\frac{1}{m \ (r, \frac{1}{-a}) \le m \ (r, -\frac{1}{a}) + m(r, \frac{f^{(k)}}{f - a}) + m \ (r, \frac{f^{(k)}}{f^{(k+1)}}) +$$

$$f^{(k+1)}$$
+ m (r, ----) + S(r,f).

And so by Milloux's theorem we get

$$m (r, \frac{1}{f-a}) \leqslant m (r, \frac{f^{(k)}-a}{f^{(k+1)}}) + S(r, f)$$

$$f^{(k)} - a f^{(k)} - a$$

$$= T(r, \frac{f^{(k)} - a}{f(k+1)}) - N(r, \frac{f^{(k)} - a}{f(k+1)}) + S(r, f)$$

which yields on using the first fundamental theorem of Nevalinna,

$$m(r, \frac{1}{f-a}) \leqslant T(r, \frac{f^{(k+1)}}{f^{(k)}-a}) - N(r, \frac{f^{(k)}-a}{f^{(k+1)}}) + S(r, f)$$

$$= m (r, \frac{f^{(k+1)}}{f(k)_{-a}}) + N(r, \frac{f^{(k+1)}}{f(k)_{-a}}) - N(r, \frac{f^{(k)}_{-a}}{f(k+1)}) +$$

$$+ S(r,f)$$
.

Using Theorem 3.1 and Milloux's theorem, one easily gets

m (r,
$$\frac{1}{f-a}$$
) $\langle N(r, f^{(k+1)}) + N(r, \frac{1}{f(k)-a}) - N(r, f^{(k)}-a) - N(r, \frac{1}{f(k+1)}) + S(r, f) \rangle$

Adding N(r, ---) on both the sides and using first fundamental f-a

theorem .. of Nevanlinna, the above inequality reduces to

$$T(r,f) \leq N(r, \frac{1}{f-a}) + N(r, f^{(k+1)}) + N(r, \frac{1}{f(k)-a}) -$$

- N(r, f(k)-a) - N(r,
$$\frac{1}{f(k+1)}$$
) + S(r, f).

But $N(r, f^{(k)}-a) = N(r, f^{(k)})$ and

$$N (r, f^{(k+1)}) - N (r, f^{(k)}) = \overline{N} (r, f^{(k)})$$

and so

$$T(r,f) = N(r, \frac{1}{f-a}) + N(r, \frac{1}{f(k)-a}) - N_a(r, \frac{1}{f(k+1)}) +$$

$$+ \bar{N} (r, f^{(k)}) + S(r, f)$$

where N_a (r, $\frac{1}{f(k+1)}$) is formed by those

Zeros of f(k+1) which are not the zeros of f(k)-a. Thus

$$T(r,f) \le N(r, \frac{1}{f-a}) - N_a (r, \frac{1}{f(k+1)}) + N(r, \frac{1}{f(k)_{-a}}) +$$

$$+ N(r, f^{(k)}) + S(r, f)$$

$$\leq N_0 (r, \frac{1}{f-a}) + \overline{N} (r, \frac{1}{f(\overline{K})-a}) + \overline{N} (r, f^{(k)}) + S(r, f),$$

where N_0 (r, $\stackrel{1}{---}$) is formed by all zeros of f(z)-a taken

with proper multiplicity if the multiplicity < k+l and each zero of multiplicity \geqslant K+2 being counted (k+1) times only.

Now,
$$\bar{N}$$
 (r, f^(k)) = \bar{N} (r, f) and so

$$T(r,f) \leq N_0 (r, \frac{1}{f-a}) + \bar{N} (r, \frac{1}{f(\bar{k})-a}) + \bar{N} (r,f) + S(r,f).$$

But,

$$n N_{O}(r, \frac{1}{r-1}) \le (k+1) N(r, \frac{1}{r-2}).$$
 ... (3.5)

Since on the left hand side of the inequality (3.5) each zero is counted atmost n(k+1) times whereas on the right hand side each zero is counted atleast n(k+1) times. Hence

$$T(r,f) \leq (\frac{k+1}{n}) N(r, \frac{1}{n-1}) + N(r, \frac{1}{\sqrt{k}}) + N(r,f) + N(r,f)$$

Dividing throughout by T(r,f) and then taking limit superior as $r \longrightarrow \infty$ of both the sides we get MATA TO THE PROPERTY OF THE PARTY OF THE PAR

which yields

$$\left[1 < \left(\frac{k+1}{n}\right) \left[1 - \delta(a, f)\right] + \left[1 - H\right]_{r}^{(k)}(a, f)\right] + \left[1 - H\right](\infty, f)$$

which on rearrangement gives

$$n \overset{(k)}{H}_{r}^{(k)}$$
 (a,f) \langle (n+k+1) - $\left[n \overset{(k)}{H}\right]$ (∞ ,f) + (k+1) δ (a,f) as desired.

Theorem 3.4:

Let f(z) be a meromorphic function and $P_n(f)$ be a monomial of degree n not containing f. Then

$$3\delta_r$$
 (∞ , $P_n(f)$) \leq (n+3) + $n\delta$ (∞ ,f) - $2n\delta$ (0,f).

Proof -

Consider the following identity.

$$\frac{a}{f^n} = 1 - \frac{f^{n-a}}{P_n(f)} \cdot \frac{P_n(f)}{f^{n-a}}, a \neq 0.$$

Then

$$T(r, \frac{a}{f^n}) \le T(r, \frac{f^{n-a}}{P_n(f)}) + T(r, \frac{P_n(f)}{f^n}) + S(r, f)$$

$$< T(r, \frac{f^n}{P_n(f)}) + T(r, \frac{a}{P_n(f)}) + T(r, \frac{P_n(f)}{f^n}) + S(r, f).$$

Using first fundamental theorem of Nevanlinna, we get

$$nT(r,f) \leqslant T(r, \frac{P_n(f)}{f^n}) + T(r, \frac{P_n(f)}{a}) + T(r, \frac{P_n(f)}{f^n}) + S(r,f).$$

$$< 2T (r, \frac{P_n(f)}{f^n}) + T(r, P_n(f)) + T(r, \frac{1}{a}) + S(r, f)$$

$$= 2m(r, \frac{P_n(f)}{f^n}) + 2N(r, \frac{P_n(f)}{f^n}) + m (r, P_n(f)) +$$

$$+ N(r, P_n(f)) + S(r, f).$$

Using (2.1) we at once get

$$nT(r,f) \leqslant 2N(r, \frac{P_n(f)}{f^n}) + m(r, \frac{P_n(f)}{f^n} - f^n) + N(r, P_n(f) + S(r, f).$$

That is

$$nT(r,f) \leq 2N(r, P_n(f)) + 2N(r, \frac{1}{f^n}) + m(r, \frac{P_n(f)}{f^n}) + m(r, f^n) + N(r, P_n(f)) + S(r, f).$$

So, once again using (2.1) we obtain

$$nT(r,f) \le 3N(r, P_n(f)) + 2nN(r, \frac{1}{f}) + nm(r,f) + S(r,f);$$

and hence

$$n \left[T(r,f) - m(r,f)\right] \ll 3N(r,P_n(f)) + 2nN(r,-\frac{1}{f}) + S(r,f),$$

which gives

$$nN(r,f) \le 3N(r, P_n(f)) + 2nN(r, -\frac{1}{f}) + S(r,f).$$

Dividing throughout by T(r, f) and then taking limit superior as $r \to \infty$ of both the sides and after adjusting the terms, we will get

$$3\delta_{r}(00, p_{n}(f)) \le n+3 + n\delta(00, f) - 2n\delta(0, f)$$
.

which completes the proof.

Note:

If $a \neq \infty$ then putting n=1 and $P_n(f) = f^{(k)}$ we get Theorem 2 of [28].

Theorem 3.5:

Let f(z) be a meromorphic function. Let

$$P_{n}(f) = a(z)(f^{s})^{\frac{1}{2}} (f^{s})^{\frac{1}{2}} \dots (f^{(k)})^{\frac{1}{k}}$$

where $l_1 + l_2 + + l_k = n$;

be a monomial of degree n not containing f. Let each zero of f(z) have multiplicity > m. Then

$$\mathsf{m} \ \bigoplus_{\mathbf{r}} (1, \, \mathsf{P}_{\mathsf{n}}) \ \leqslant \ (\mathsf{k} + \mathsf{m} + 1) \ - \ \left[\ (\mathsf{k} + \mathsf{l}) \ \delta(\mathsf{o}, \mathsf{f}) \ + \ \mathsf{m} \ \bigoplus \ (\, \infty \, , \mathsf{f}) \right] \ .$$

Proof .-

Consider the identity

$$\frac{1}{f^{n}} = \frac{P_{n}(f)}{f^{n}} - \frac{P_{n}(f)-1}{P_{n}^{i}(f)} \cdot \frac{P_{n}^{i}(f)}{f^{n}},$$

from which it follows that

$$m (r, -\frac{1}{f^n}) \leqslant m (r, -\frac{P_n}{f^n}) + m (r, -\frac{P_n(f)-1}{P_n^i(f)}) + m (r, -\frac{P_n^i(f)}{f^n}) + s(r, f).$$

But by inequality (2.1) and (3.4) we respectively have

$$m(r, \frac{P_n}{f^n}) = S(r, f)$$

and
$$m(r, \frac{p_n^*}{f^n}) = S(r, f)$$
.

Using these results the above inequality gets converted into

$$m (r, -\frac{1}{f^n}) < m (r, -\frac{P_n-1}{P_n'}) + S(r, f)$$

$$= T(r, \frac{P_{n}-1}{p_{n}!}) - N(r, \frac{P_{n}-1}{p_{n}!}) + S(r, f).$$

And so by first fundamental theorem

$$m(r, -\frac{1}{f^n}) \leqslant T(r, -\frac{P_1^{t}}{P_{n}^{-1}}) - N(r, -\frac{P_{n}^{-1}}{P_{n}^{t}}) + S(r, f)$$

$$= N (r, \frac{P_n^i}{P_{n-1}}) - N(r, \frac{P_{n-1}}{P_n^i}) + m (r, \frac{P_n^i}{P_{n-1}}) + S(r, f).$$

With the use of Theorem 3.1 this reduces to

nm
$$(r, \frac{1}{f}) \le N(r, P_n') + N(r, \frac{1}{P_{n-1}}) - N(r, P_{n-1}) - P_{n-1}$$

-
$$N(r, \frac{1}{p_n^{-1}}) + S(r, p_{n-1}) + S(r, f)$$
.

Adding both the sides by $nN(r, \frac{1}{f})$ and using the fact that $S(r, P_n-1) = S(r, f)$, we get

$$nT(r, \frac{1}{f}) \leq nN(r, \frac{1}{f}) + N(r, P_n^*) + N(r, \frac{1}{P_{n-1}}) - N(r, P_{n-1}) + N(r, P$$

which gives, on using $N(r_n, P_n-1) = N(r, P_n)$,

$$nT(r,f) \leqslant nN(r,\frac{1}{f}) + N(r,P_n') - N(r,P_n) + \\ + N(r,\frac{1}{P_n-1}) - N(r,\frac{1}{P_n'}) + S(r,f).$$

That is $nT(r,f) < nN(r, \frac{1}{f}) + N(r, P_n) + \begin{cases} -1 & 1 \\ N & (r, \frac{1}{P_n-1}) - 1 \end{cases}$ $-N_0 (r, \frac{1}{P_n}) + S(r,f)$.

where N $(r, \frac{1}{r-r})$ are formed by taking those zeros of P_n^i which are not the zeros of P_n^i . Thus

 $\text{nT}(\mathbf{r},\mathbf{f}) \leqslant \text{nN}_{\mathbf{a}}(\mathbf{r},\frac{1}{\mathbf{f}}) + \tilde{\mathbf{N}} \; (\mathbf{r},\frac{1}{\mathbf{p}_{\mathbf{n}}-1}) + \tilde{\mathbf{N}} \; (\mathbf{r},\,\mathbf{p}_{\mathbf{n}}) + \mathbf{S}(\mathbf{r},\mathbf{f}),$ where $\mathbf{N}_{\mathbf{a}} \; (\mathbf{r},\,\frac{1}{\mathbf{f}})$ is formed by all zeros of $\mathbf{f} \; (\mathbf{z})$ taken with proper multiplicity if the multiplicity is $\leqslant \mathbf{k}+1$ and each zero of multiplicity $\geqslant \mathbf{k}+2$ being counted $(\mathbf{k}+1)$ times only

where k is as in hypothesis.

$$\overline{N}$$
 (r, P_n) = \overline{N} (r,f)

and therefore above inequality becomes

$$nT(r,f) \leqslant nN_a(r,\frac{1}{f}) + N(r,\frac{1}{p_{n-1}}) + N(r,f) + S(r,f).$$

But

Now,

$$mN_a$$
 (r, $\frac{1}{f}$) \langle (k + 1) N (r, $\frac{1}{f}$),

Since on the left hand side of above inequality each zero is counted atmost m(k+1) times whereas on the right hand side each zero is counted atleast m(k+1) times. Hence,

$$nT(r,f) \leqslant \frac{k+1}{m} N(r,\frac{1}{f}) + \overline{N}(r,\frac{1}{r-1}) + \overline{N}(r,f) + S(r,f).$$

Dividing throughout by T(r,f) and then taking limit superior as $r \to \infty$ of both the sides, we get

That is
$$n \leqslant (\frac{k+1}{m}) \left[1 - \delta (o, f)\right] + \left[1 - H_r(1, P_n)\right] + \left[1 - H_r(1, P_n)\right] + \left[1 - H_r(1, P_n)\right] + \left[1 - H_r(1, P_n)\right]$$

After simplification it gives

which is what we wanted to show.

Note:

Putting $P_n = f^{(k)}$ i.e. a monomial of degree 1, we get

m
$$H_r$$
 (1, $f^{(k)}$) \leq (m + k + 1) - $[(k+1) \delta(o,f) + m H]$ (∞ , £) which is Theorem 4 of [28].

Theorem 3.6:

Let f(z) be a transcendental meromorphic function. Let $P_n(f)$ be a monomial of degree n and not containing f. Then

$$(H)_{r}$$
 (0, P_{n}) + $(H)_{r}$ (b, P_{n}) + $(H)_{r}$ (c, P_{n})

 $(L)_{r}$ (0, P_{n}) - $(L)_{r}$ (c, P_{n})

where a, b, c are distinct finite numbers and b \neq 0, C \neq 0,

Proof:

Since $P_n(f)$ does not contain f, it follows as in (2.1) that

$$m (r, \frac{1}{(f-a)^n}) < m (r, \frac{1}{P_n(f)}) + S(r, f).$$

Thus

m (r,
$$\frac{1}{(f-a)^n}$$
) $\leq T(r, \frac{1}{P_n(f)}) - N(r, \frac{1}{P_n(f)}) + S(r, f)$.

And so by Nevanlinna's first fundamental theorem

m (r,
$$\frac{1}{(f-a)^n}$$
) $\leq T(r, P_n(f)) - N(r, \frac{1}{P_n(f)}) + S(r, f) \dots (3.7)$

Also by Nevanlinna's second fundamental theorem, since $S(r, P_n(f)) = S(r, f)$ we have

$$T(r, P_n(f)) \leqslant \overline{N}(r, \frac{1}{P_n(f)}) + \overline{N}(r, \frac{1}{P_n(f)-b}) +$$

$$+ \bar{N} (r, \frac{1}{p_n(f)-c}) + S(r, f).$$

Making use of this, inequality (3.7) gets converted into

$$m (r, \frac{1}{(f-a)^{n}}) \leqslant \bar{N}(r, \frac{1}{P_{n}(f)}) + \bar{N}(r, \frac{1}{P_{n}-b}) + \bar{N}(r, \frac{1}{P_{n}-c}) -$$

$$- N (r, \frac{1}{P_{n}}) + S(r, f).$$

Adding $N(r, \frac{1}{r-r})$ on both the sides, we get (f-a)

$$T(r, \frac{1}{(f-a)^{n}}) < N(r, \frac{1}{(f-a)^{n}}) + N(r, \frac{1}{P_{n}}) + N(r, \frac{1}{P_{n}}) + N(r, \frac{1}{P_{n}-b}) + N(r, \frac{1}{P_{n}-b})$$

Thus

$$nT(r,f) < nN(r, \frac{1}{f-a}) + \bar{N}(r, \frac{1}{p_n}) + \bar{N}(r, \frac{1}{p_n-b}) + \\ + \bar{N}(r, \frac{1}{p_n-c}) - \bar{N}(r, \frac{1}{p_n}) + \bar{S}(r,f).$$

From which it easily follows that

which is nothing but

After simplification, finally, we get

$$(H)_r$$
 (0, P_n) + $(H)_r$ (b, P_n) + $(H)_r$ (c, P_n)
$$< 2 + \delta_r$$
 (0, P_n) - $n\delta$ (a, f)

which is our required theorem.

Remark -

We once again observe that, putting n = 1, our theorem reduces to Theorem 6 of [28].

Now we come to another interesting result.

Theorem 3.7:

Let f(z) be a meromorphic function. Let as earlier, $P_n(f)$ be a monomial of degree n and not containing f. Then for all integers p > 1 and $a_i (i = 1, 2, ..., p)$ finite, distinct and non-zero complex numbers,

$$\sum_{i=1}^{p} \left(H \right)_{r} \left(a_{i}, P_{n} \right) + \left(H \right)_{r} \left(o, p_{n} \right) + \left(H \right) \left(\infty, f \right)$$

$$\leq z + p \left\{ \delta_{r} \left(o, P_{n} \right) - n\delta \left(o, f \right) \right\}.$$

Proof

By Nevanlinna's first fundamental theorem we have

$$T(r, f^{n}) = T (r, -\frac{1}{f^{n}}) + S(r, f)$$

$$= m (r, -\frac{1}{f^{n}}) + N (r, -\frac{1}{f^{n}}) + S(r, f)$$

$$= m (r, -\frac{P_{n}}{f^{n}}, -\frac{1}{P_{n}}) + N (r, -\frac{1}{f^{n}}) + S(r, f).$$

So

$$T(r,f^n) \le m(r,-\frac{P_n}{f^n}) + m(r,-\frac{1}{P_n}) + N(r,-\frac{1}{f^n}) + S(r,f)$$

reduces on using (2.1),

$$T(r, f^{n}) \le m (r, \frac{1}{-r}) + N (r, \frac{1}{f^{n}}) + S(r, f)$$

$$= N (r, \frac{1}{f^{n}}) + T(r, \frac{1}{-r}) - N(r, \frac{1}{-r}) + S(r, f)$$

and hence

$$T(r,f^n) \le N(r, -\frac{1}{f^n}) + T(r,P_n) - N(r, -\frac{1}{P_n}) + S(r,f).$$

This gives

$$pT(r,f^n) \leq pN(r, -\frac{1}{f^n}) + pT(r, P_n) - pN(r, -\frac{1}{P_n}) + s(r,f) . . . (3.8)$$

Next, by Nevanlinna's Second Fundamental Theorem we obtain

$$pT(r,P_n) \le \bar{N}(r,P_n) + \bar{N}(r,\frac{1}{---}) + \sum_{i=1}^{p} \bar{N}(r,\frac{1}{----}) + S(r,f).$$
 (3.9)

But,

$$\bar{N}$$
 $(r,P_n) = \bar{N}$ (r,f) .

Therefore by (3.8) and (3.9) we have

$$p.nT(r,f) < p.n N(r, \frac{1}{f}) + \overline{N} (r,f) + \overline{N} (r, \frac{1}{-P_n}) + \frac{p}{1-1} \overline{N} (r, \frac{1}{f}) + \overline{N} (r, \frac{1}{-P_n}) + S(r,f).$$

It now easily follows on dividing by T(r,f) that

. . .

This yields,

$$pn \leqslant pn \left[1 - \delta (o, f)\right] + \left[1 - H(\infty, f)\right] +$$

$$+ \left[1 - H(o, P_n)\right] + p - \sum_{i=1}^{p} H_r(a_i, P_n)$$

$$- p \left[1 - \delta_r(o, P_n)\right].$$

After proper adjustment and cancellation of some terms, at the end, we get

$$\sum_{i=1}^{p} (H)_{r} (a_{i}, P_{n}) + (H)_{r} (o, P_{n}) + (H) (0, f)$$

$$< 2 + p \left[\delta_{r} (o, P_{n}) - n\delta (o, f) \right]$$

which we wanted to show.

Remark:

As an immediate consequence is Theorem 7 of [28] which is obtained by putting n = 1 in the above theorem.

We now prove

Theorem 3.8:

Let f(z) be a meromorphic function and $P_n(f)$ be a monomial of degree n and not containing f. Then,

$$\sum_{i=1}^{p} (\widehat{H})(a_{i},f) + (\widehat{H})(o,f) + 2(\widehat{H})(\infty,f) + \sum_{j=1}^{q} (\widehat{H})_{r}(b_{j},P_{n}) + (\widehat{H})_{r}(o,P_{n})$$

$$+ (\widehat{H})_{r}(o,P_{n})$$

$$\leq 4 + q \left\{ \delta_{r}(o,P_{n}) - n\delta(o,f) \right\} ,$$

where a_i are non-zero, finite, distinct and $b_j \neq 0$, for any j ($j = 1, 2, \ldots, q$).

Proof -

By inequality (3.8) we have

$$qT(r,f^n) \leqslant qN(r, -\frac{1}{f^n}) + qT(r, P_n) - qN(r, -\frac{1}{P_n}) + S(r,f).$$

$$(3.10)$$

Next, by Nevanlinna's second Fundamental Theorem, we obtain

$$qT (r, P_n) \leqslant \bar{N} (r, P_n) + \bar{N} (r, \frac{1}{P_n}) + \sum_{j=1}^{q} \bar{N} (r, \frac{1}{P_n - b_j}) + S(r, f).$$
 (3.11)

With this inequality (3.10) becomes

$$qT(r,f^n) \leqslant \bar{N}(r, P_n) + \bar{N}(r, \frac{1}{P_n}) + \sum_{j=1}^{q} \bar{N}(r, \frac{1}{P_n-b_j}) +$$

+
$$q^{N}$$
 (r, $-\frac{1}{f^{n}}$) - q^{N} (r, $-\frac{1}{p_{n}}$) + $s(r, f)$.

But

$$\bar{N}$$
 (r, P_n) = \bar{N} (r,f)

and therefore

$$nqT(r,f^n) \leqslant \bar{N}(r,f) + \bar{N}(r,\frac{1}{---}) + \sum_{j=1}^{q} \bar{N}(r,\frac{1}{----}) + p_n^{-b_j}$$

+
$$qN (r, \frac{1}{r^n}) - qN(r, \frac{1}{r^n}) + s(r, f) ...(3.12)$$

Also, by Second Fundamental Theorem, we have

$$pT(r,f) \leq \bar{N}(r,f) + \bar{N}(r,\frac{1}{f}) + \sum_{i=1}^{p} \bar{N}(r,\frac{1}{f-a_i}) + s(r,f).$$
 (3.13)

Adding (3.12) and (3.13) we get

$$(p + nq) T(r,f) \leq 2\bar{N} (r,f) + \bar{N} (r,\frac{1}{f}) + nq N(r,\frac{1}{f}) + \\ + \bar{N} (r,\frac{1}{-p_n}) - qN(r,\frac{1}{-p_n}) + \sum_{i=1}^{p} \bar{N}(r,\frac{1}{-q_i}) + \\ + \sum_{j=1}^{q} \bar{N} (r,\frac{1}{-p_n-b_j}) + S(r,f).$$

Dividing both the sides by T(r,f) and then taking limit inferior as $r \to \infty$, we can have

$$p + nq \leq \liminf_{r \to \infty} \begin{cases} \frac{2\overline{N}(r,f)}{T(r,f)} + \frac{\overline{N}(r,\frac{1}{f})}{T(r,f)} + \frac{nqN(r,\frac{1}{f})}{T(r,f)} \end{cases}$$

$$+ \sum_{i=1}^{q} \frac{\bar{N}(r, ----)}{\bar{T}(r, f)} + \sum_{j=1}^{q} \frac{\bar{N}(r, ----)}{\bar{T}(r, f)} + \sum_{j=1}^{q} \frac{p_n - b_j}{\bar{T}(r, f)} + \sum_{j=1$$

$$\begin{array}{c} S(r,f) \\ + \overline{T(r,f)} \\ \hline N(r,--) \\ \end{array}$$
Since $\lim \inf \left(-q - \frac{p_n}{T(r,f)}\right) = -\lim \sup r - p_n$

$$T(r,f)$$

$$T(r,f)$$

it easily follows that

$$p + nq \leqslant 2 \lim \sup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} + \lim \sup_{r \to \infty} \frac{\overline{N}(r, 1/f)}{T(r, f)} + \lim_{r \to \infty} \frac{1}{T(r, f)} + \dots$$

r -300

This gives,

$$p+nq \leq 2 \left[1 - H\right) (\emptyset, f) + \left[1 - H\right) (\emptyset, f) + nq \left[1 - \delta(0, f)\right] + \\ + \left[1 - H\right]_{r} (\emptyset, P_{n}) - q \left[1 - \delta_{r} (\emptyset, P_{n})\right] + \\ + \sum_{i=1}^{p} \left[1 - H\right) (a_{i}, f) + \sum_{i=1}^{q} \left[1 - H\right]_{r} (b_{j}, P_{n}) .$$

After simplification finally it reduces to

$$\sum_{i=1}^{p} \widehat{H} (a_i,f) + \widehat{H} (o,f) + 2 \widehat{H} (\infty,f) + \sum_{j=1}^{q} \widehat{H}_r(b_j,P_n) + \\ + \widehat{H}_r (o,P_n)$$

$$\leq 4 + q \left[\delta_r (o,P_n) - n\delta (o,f) \right]$$
as desired.

Theorem 3.9:

Let f(z) be a meromorphic function. Then

$$\sum_{j=0}^{q+1} (h_r^{(k)}(b_j,f)) \leqslant 4 - \sum_{a \in C} (h) (x,f) + q \left[\delta_r^{(k)}(o,f) - \delta(o,f) \right]$$
where b_j 's are distinct, $b_0 = 0$, $b_1 = \infty$.

Proof:

By Theorem 8 of [28], we have

$$\sum_{i=1}^{p} (H) (a_i,f) + (H) (o,f) + 2 (H) (00,f) +$$

+
$$\sum_{j=1}^{q} (k)_{r} (b_{j}, f) + (k)_{r} (o, f)$$

$$\leq 4 + q \left[\delta_r^{(k)}(o,f) - \delta(o,f)\right]$$
.

Therefore, on making $p \rightarrow \infty$ and observing that

$$\{a / (H)(a) > 0\}$$
 is countable, it follows that

$$(H) (a,f) + (H) (\infty,f) + \sum_{j=1}^{q} (H)_{r} (b_{j},f) + (H)_{r}$$

$$\leq 4 + q \left[\delta_{r}^{(k)}(o,f) - \delta(o,f)\right]$$
.

Now

$$(\text{H}) (\text{M}, \text{f}) = (\text{H})_{\text{r}}^{(k)} (\text{M}, \text{f}),$$

and hence

$$\sum_{\alpha \in \overline{c}} (H) (a,f) + \sum_{j=0}^{q} (H)_{r} (b_{j}, f) + (H)_{r} (o,f)$$

$$\leq 4 + q \left[\delta_r^{(k)} (o,f) - \delta (o,f)\right]$$
.

Now, denoting zero by b_{q+1} , the above inequality takes the form

$$\sum_{j=0}^{q+1} (\mathbf{h}_{r}^{(k)}) (\mathbf{b}_{j}, \mathbf{f}) \leq 4 + q \left[\delta_{r}^{(k)} (\mathbf{0}, \mathbf{f}) - \delta (\mathbf{0}, \mathbf{f}) \right] - \sum_{a \in T} (\mathbf{a}, \mathbf{f}).$$

which proves the theorem.

Finally we prove one more theorem on monomials.

Theorem 3.10:

Let f(z) be a meromorphic function and let a_i (i = 1, 2, ..., p) and b_j (j = 1, 2, ..., q) be finite complex numbers distinct within each set and such that $b_j \neq 0$ for any j. Further, let $P_n(f)$ be a monomial of degree n and not containing f. Then,

$$\sum_{j=1}^{q} (H)_{r} (b_{j}, P_{n}) + (H)_{r} (o, P_{n}) + (H) (\infty, f) + nq \sum_{j=1}^{p} \delta(a_{j}, f)$$

$$\leq q + 2.$$

Proof -

Let
$$F(z) = \sum_{i=1}^{p} \frac{1}{(f(z) - a_i)^n}$$

Then by $\begin{bmatrix} 21, 24 \end{bmatrix}$ we have

$$\sum_{i=1}^{p} m (r, \frac{1}{(f-a_{i})^{n}}) \leqslant m (r, F) + S(r, f)$$

$$= m (r, \frac{F}{P_{n}} \cdot P_{n}) + S(r, f)$$

• • •

$$(r, FP_n) + m (r, \frac{1}{---}) + s(r, f)$$

$$\begin{cases} \sum_{i=1}^{p} m(r, \frac{P_{n}}{(f-a_{i})^{n}}) + m(r, \frac{1}{P_{n}}) + s(r, f) \\ = m(r, \frac{1}{P_{n}}) + s(r, f). \end{cases}$$

Adding $\sum_{i=1}^{p} N(r, \frac{1}{1-r-1})$ on both the sides, we get

$$\sum_{i=1}^{p} m (r, \frac{1}{(f-a_i)^n}) + \sum_{i=1}^{p} N (r, \frac{1}{(f-a_i)^n})$$

$$\langle m (r, \frac{1}{--}) + \sum_{i=1}^{p} N (r, \frac{1}{(f-a_{i})^{n}}) + S(r, f),$$

which gives on using Nevanlinna's first fundamental theorem

$$npT(r,f) \leqslant T(r,P_n) + \sum_{i=1}^{p} N(r, \frac{1}{(f-a_i)^n}) + S(r,f).$$

And so

$$npqT(r,f) \leq qT(r,P_n) + q \sum_{i=1}^{p} N(r, \frac{1}{(f-a_i)^n}) + S(r,f)...(3.14)$$

But by Nevanlinna's Second Fundamental Theorem, we have

$$qT(r,P_n) \leqslant \bar{N}(r,P_n) + \bar{N}(r,\frac{1}{---}) + \sum_{j=1}^{q} \bar{N}(r,\frac{1}{----}) + s(r,f).$$

$$(3.15)$$

With the use of (3.15) inequality (3.14) becomes

$$\begin{split} \text{npqT}(\textbf{r},\textbf{f}) \; \leqslant \; & \overset{-}{\textbf{N}} \; (\textbf{r},\; \textbf{P}_{\textbf{n}}) \; + \; \overset{-}{\textbf{N}} \; (\textbf{r},\; \frac{1}{\textbf{P}_{\textbf{n}}} \;) \; + \; \overset{q}{\textbf{j}=1} \; \overset{-}{\textbf{N}} \; (\textbf{r},\; \frac{1}{\textbf{P}_{\textbf{n}}-\textbf{b}_{\textbf{j}}} \;) \; + \\ & + \; q \; \; \overset{p}{\overset{}{\textbf{p}}} \; \; \textbf{N} \; (\textbf{r},\; \frac{1}{(\textbf{f}-\textbf{a}_{\textbf{j}})^{n}} \;) \; + \; \textbf{S}(\textbf{r},\textbf{f}) \; . \end{split}$$

But \overline{N} (r, P_n) = \overline{N} (r,f)

and so

Dividing both the sides by T(r,f) and then taking limit superior as $r \rightarrow \infty$, we get

which is nothing but

$$\operatorname{npq} \left\{ \begin{bmatrix} 1 - H \end{bmatrix} \left(\infty, f \right) \right\} + \begin{bmatrix} 1 - H \end{bmatrix}_{r} \left(0, b_{n} \right) \right] +$$

$$+ \sum_{j=1}^{q} \begin{bmatrix} 1 - H \end{bmatrix}_{r} \left(b_{j}, P_{n} \right) + \operatorname{nq} \sum_{j=1}^{p} \begin{bmatrix} 1 - \delta(a_{j}, f) \end{bmatrix} .$$

Simplification of the above inequality finally gives,

$$\sum_{j=1}^{q} (H)_{r} (b_{j}, P_{n}) + (H)_{r} (o, P_{n}) + (H) (\infty, f) +$$

$$+ nq \sum_{j=1}^{p} \delta (a_{j}, f) \leq q + 2,$$

which completes the proof of the theorem.