CHAPTER-IIT

RELATIVE DEFECTS FOR DISTINCT

ROOTS OF MONOMIALS
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Introduction :

Let f(z) be a meromorphic function in the complex

l
plane. Let n(t,a) = n(t, ---- ) denote the number of roots
f-or

of £(z) = a in {zi,s t, the multiple roots being counted wit.
their multiplicity.
Also, let n(t, o =71 (t QE— )

f-a
demote the number of distinct roots of f(z) = o« in (21 £ t.
For o« = 0 , n(t, o) = n (t,f) and n(t, o) = n (t,£f) respecti~ -
denote the number of poles and the number of distinct poles o!

f(z) in {z] € t. We get

r
t R -, N
N (r, a) = j oty o) - nl o &) dt + n (o, «) log r,
o _ t
- T 8 (t, o) - nlo,a)
N (r, a) = ‘f ------- . e e e e e at + n(o, a) log r,
o t ‘
l.;
N(r, —we-- ) = N(r,ua), N(r,£f) = N(r, c0 ).
f-ix ;

The other terms being similarly defined.

As usual let

1
N (£, =mme=)
, f -
§ (ay £) = 1 = 1lim SUPp  =—mermmcmciccen ;
r =300 T (r;f)
1
N (r, ==see)
: S S 4 ‘
® (ao f) = 1l - limsup - > o o o > :

r =300 T (r, f)
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and if Pn(f) denotes a differential polynomial of degree n,

we set
1
N (I?, 00 o e e e o o )
P, (£)-«
6r (op Pp(f))= 1 - lim sup . =--mm—mm——eeee - .
r -0 T(r, £)
- 1
] ¢ — )
(:)r (o, Pn(f) ) = 1 - 1lim sup . ~emevemmnmeeee .
r -3¢0 T(r, f)

The suffix r in @r (as P (£) ) denote the relative defect
with respect to simple zero. Here we shall introduce absolvsr
defect with respect to simple zeros, viz.

N (ry =—weoecw- - )

@, (0 Py(f) ) 1 = 1im SUP  mmrem—mmmmm e o
T(r, Pn(E) )

and prove relations involving these. Finally the terms S(r, I:

will denote any guantity satisfying
S(r,f) =0 (2(r,£) ) as r =300

except possibly for a set of r of finite linear measure.
we first prove,

Theorem 3,1 :

Let £ an& g te two meromorphic functions and

g(o) # 0. Then
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£ g 1
N (r, === ) =N (r, =~==) 2 N (r, £f) + N(r, o ) - N‘Fqg) -
g ‘ £ g -
1
- N (r, === ).
£

Proof -

By Jensen’s formula we have on using (1,7) and (1.8)

of [12, 4] 1in(1.5) of [12, 3] , log |£( a )}

1 27

= -—= [ log | £ (2 { a0 =N (r, /) + N(x,£).
27 (o) ’
Therefore,
, 1 1 2n 7 i0:
- N(r,£) + N(r, === ) = «- ,f log t £(re »i d:e - log |£(o)}.
£ 27 (o) ’

LY (3-1)

But by hypothesis we have g(o) # 0 and therefore, we can change

f to £/¢ in (3.1) and obtain

g £
N (r, ~== ) = N{r, ===
£ s}
1 o7 £( réo )
R 1og{m-r~~{5~-)d ® - log l£)l + 1og tg (o)
2n o 19 (&)

1

2
-
O

27

Vi 1 27
log ‘f(réo )] doe - E-- j\ log ’gjf%o)’ ae -
n o

= log { £(0) | + log | (o) |
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1

5

2n

A

L

log |£ (z2 %)} a6 - 1og lf(o)!}-

1 2mn .
- -—— o rée - (o] ox
{ j;lg‘g( ))d@ lgtg(i]

1 T 1
=&au3§> -N(nfﬂ ntgu,§>-rungﬂ ,

and hence finally we ge%

£ g 1 1
N (r, === ) « N (r, ===~ =N (r,f) + N(r, ===) = N(r,g)- N(xr,=)
g £ g - £

which completes the proof.

Theporem 3,2 :

‘Let f(z) be a meromorphic function. Then for any

monomial P, (£), we have @r (@, P 2 - @ (0 £) - (0. 5)w
For the proof, ws shall need the following lemma :
Lemma 3.1 :

Let

P, () = (B (071 ... (1 )k

where 1o + ll + eee + 1k =.n, be a monomial of degree

n. Then

E1 zu. f(’k‘*’l)
PI‘.l (£) - Pn(f) ll—;— + ll -:-: + eee + lk —.—..f...(.ﬁy . .
. =
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Proof of lernma 3.1 :

e hagve

» (2) = (£) Yo entr L. (6%,

Tris implies

v oo 1 (£ ey (2 L (@)K
baee s (00T L (D)1 g (00 DT Ol
That is
Pro(£) =1 - (5t (gnhl (9 k4
pt = 1, -==
£g? 1 1 ()41
+ 1] ——— (£)7° (£9)71 ... )k o+
fl
(k+l)
' l (x) lk
toaves + 1 R (£) 1o (f )7l oa.. (£,
. £ f(1~:~4~1)
= P (f) 1 - + 1 - + a0 + 1 -
n { o 7z 1T k TRy
Proof 0f Theorem 3,2 :
Clearly
o - PE P‘n - f ﬁﬁ (322) .
£7 £" p! Coe
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But by lemma 3.1

. Pl") Pn £1 £u £ (k+l‘)
——— T e 1y === + 1 ===+ cun + Ly omoes

£ £ £ (k)

By Milloux's theorem

£(1)
mLr, *gij ) = 8(r,f) for j<4i.

And as in (2.1), even if Pn(f) contains terms in £, we get
m(r’ ----- ) = S(rlf)‘ Teon ‘3'3)

It now easily follows that

P
m(r, =--) = 8(r,£f). veo (3a4)
fn

Therefore, from (3.2), (3.3), (3.4) we get

o A P~
m(;,wﬁﬁ— ) £ m{r;, ~==m=) + S(zr,£)
I 4 Pé
P_~-a P —q
n
= T(r, mmmem ) = N (L, ==== ) + S(z, £).
Pl PA

2nd so, by Nevanlinna's first fundamental theorem we obtain

o Pa Po=~«
m (x, ;5-) £ Tr, ==v-m ) =N Axy =me=-) 4+ 5(n 1) .

which is nothing but
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o pt P - pt
n
m(r, -=-) ¢ N (x, D I 1 & == ) + m(r, ==Beee) +
£ P - P P ~a
+ 5(r, £).

which yields on using Milloux's theorem,

o Prlz Pp~a
m (r, ===) € N(£, ==-B== ) = N (5, —c=== ) + S(r, P~x)+ S(r,£).

n 1
£ Pn-a | ” Pn

But S{r, P, - «) = S(r,£) and so

, pé S P~
nm (r, 1/f) £ N(r, =====- ) = N(r, ==-==) + S(r,£f).
Ph = o I?Ifl S
That is
s o
nT(r, 1/f) \giN(r, ----- ) = N(r, —=ce- )i + nN(r,1/£)+5(r, £).
P_~o p! - 2

n ' n

which gives with the use of theorem 3.1

. 1
P~
n
1 1 o
-N (£, === ) + nN (r, =-- ) + S(r,/£Y.
p! £
n
and hence
- 1 1
o5, £) § [§ (6 === ) - ng (5 == ] 4w By -
Ph-a Pﬁ

, 1 o
- N(r,P_~0t) + N (r, === ) +8(r,£f),
£
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1

where No (r, === ) are formed by those zeros of Pxfz which
Pl
n

are not the zeros of Pn - e

But N{(r, P, - a) = N(r, Pn)' and so

1l 1
nT (I‘,f) é ﬁ (r‘ hadd ol ) - NO (r, ——— ) + N(rt_P' ) -
© P_~a P! n

1
£

It now easily follows that

1 - 1

n?(r, £) L N (r, ==== ) =N, (5, === ) + N (r, P, ) +
P_—x ‘ P!
n n
1
+ nN (r, ---) + s(r,£f).
£ .
- _ 1
Since N (r, Pn) =N (r,f) and since N, (r, === ) .) 0,
Pn,
we obtain
- 1 - 1
P - f :

Dividing throughout by T(r,f) and then taking limit superior

as r =20 we get 1
N (£, =--=)

n £ lim sup  ~—mmccecm——— + lim sup  e,wm———— +
r =300 T(x, £) r -»00 T(r,f)
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+ n lim sup  —-——————— + lim sup —===-- -
r -2 T(r, £) r -300 T(r, £)

That is

n \< {l-— @r (o, Pn)] + L1-® (-w;f)] +

+ n ‘{_l - G(Q;f)l ,

which on simplification gives

@, (@ Py) & 2-® (00, £ -6 (0,5 .
This completes the proof of the theorem.

In {é&] Theorem 4, A.P.Singh has mentioned the
Theorem 3,3. However, he has not given the proof of that
Theorem. Here we give a detailed proof of that theorem. Thus

we shall prove,

Theorem 3.0

Let f£(z) be a meromorphic function. Let each zero of
£(2z) have multiplicity > n. Then for all positive integers k
and a # O, )
(x) -~
n @'Y @H  rk+ ) - ol (0,04 D) 5(arB)]

Proof of Theorem 3.3 :

Consider the identity

1 1 { £00 B, f(k+l)J

f-(k’fl) ) fea

f~a a f-a



81

Then

1 1 f(k) f(k)ua
m (r, g:; )$ m (r, —;- ) + m(r, -f’-':-;) + m (r, ;E;i)-—'—-) +
£ (k+1)
+m (r;, ————- ) + S(r,£f).
fwa

And so by Milloux's theorem we get'

1 f(k)-a .
m(r, == ) & m (r;, ~gp=re- ) + S(r,£f)
faa *ERFIY -

L £ g
= T(r, -;(]-(';i‘y- ) - N(r) 'f“(}-(;Iy ) + S(rlf)

which yields on using the first fundamental theorem of

Newvalinna,
1 f(k+l) £(6) _g
m(r, ;:; ) £ T{r, ;ziy:; ) - N(r, ETE¥17 ) + s(x, £)
f(k+l) f(k+l) f(k)_af

=mAm —ggyrs ) PN oy ) - NOE gy ) ¢

+ 8(r, £f).

Using Theorem 3.1 and Milloux's theprem, one easily gets
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1 , 1

m (L, ==-=) S N{(r, f(k+l)) + N(r, *z}zy—* ) - N(r, f(k)-a) -

f-a £ -a

l.
- N(r, E‘(E;Is-) + 8(r,f).
1l
Adding N(r, =--- ) on both the sidés and using first fundamental
0 f-a

theorem :‘of Nevanlinna, the above inequality reduces to

1 1
(e (k+1) .
T(r, f) <. N(r, - o e ) + N(r,f ) + N(r, ;z}zy:;) -

1
(k)
- N(r, £ ~a) - N(r, =7grvy) + S(r, ).
R f'(E+I)

But N(r, f(k)-a) = N(r, f(k))and

N (m £ ) Cwor, £ F (r, £
and so
1 - 1 o 1
T(r,f) = N(r, -f-:; ) + N (r, -f-TES-:; ) - Na (‘I’l ;'(}'E;Iy) +

+ N (g, f(k)) + 5(r,£)

1

where N (r, ETE;IT) is formed by those

f(k+l)

Zeros of which are not the zeros of £}.a. Thus
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1 1 - 1

T(r, £ . N{r, =—- - N Y, =eew— + N (r, —ome=—- +
(r,£) L (xr, - ) a (L 2 (k3 T) ) (r, fzk)—a )
+ ﬁ(r, f(k)) + 8(r,f)
P 1 i - l; = (k)
L Ny (rp ===) + N (z; —ggy-= ) + N (5 £70)+s(r, ),
f-a £ -a
l .
where Ny (r, --- ) is formed by all zeros of £(z)-a taken
f-a ,

with proper multiplicity if the multiplicity « k+1 and

each zero of multiplicity > K+2 being counted (k+1) times only.

Now, N (r,f(k)) = N (r,f) and so

1 1 -
T(r,£) £ N, (r, === ) + N (I, =9ec== ) + N (r,£f) + S(r,£).
! © ‘ f-a f-(k)-a
But,
1 1 ~
n N (r, =-= ) & (k+1) N(r, —-= ). eeo (3.5)
f-a fua

Since on the left hand side of the inequality (3.5) each
zero is counted atmost n(k+1l) times whereas on the right

hand side each zero is counted atleast n{(k+1l) times. Hence

k+1 1 1

T(rlf) \<. ( - ) N(rl o s - ) + ﬁ(ri “‘t-E)""" ) + ﬁ(rlf) +S(rlf)¢
n f-a £ -3

Dividing throughout by T(r, £f) and then taking limit superior

as r -~ of both the sides we get

PR T
L X
o R ‘?
wtgu'\’ . P
Pory) '
ory



1 _ 1
» N(r, =-=) N (r, ===-c-- )
‘ k+1 " foa £(k) _a
‘ ]1( (-5-) lim sup  ~emecm————— + lim sup B T 2
r -3 T(r, £) r =300 T(r, £)
N (r,f) S(x, )
+ lim sup = =e————- . + lim sup ~————- ’
r -3 T(r; £) r =300 T(x, £)

which yields

+

K+l _ X
1< (=) [1-8D] + ;1-®(r)(a,f)] +[l -@(Oojfa
which on rearrangement gives

(k)
n{H) (a, £f) £ (nt+k+l) - [n@ (00 ,£f) + (k+1) 5(a,fﬂ

as desired.

Theorem 3.4 :

Let £(z) be a meromorphic function and Pn(f) be a

monomial of degree n not containing f£. Then
38y (00 ,P,(£)) £ (n+3) + n§( 00 ,£) ~ 2n8(0, £).
Proof -

Consider the following identity.

a f ~a Pn(f)
- = l = e ‘—E"— s da # C.
£1 p_(£f) f
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Then
£-a P, (£)
T(r, === ) £ T(r;, =-=-=) + T{r, “====) + S(r,£)
£ P, (£) £
£7 _ a P (£)
{ T(r, ==ee )} + T(r, =—=—- ) + T(r, ——weae= ) +
N P (£) P_(f) | £0
+ S(r,f).
Using first fundamenta1 £heQrem of Nevanlinna, we get
SR (8) P_(£) P_(£)
nT(r,£) " T(r, —-=-- ) + T(r, —==-—o ) + T(r, =====) + s(r,f).
. £ a £0
pn(f) 1
< 2T (r, ===--) + TP, (f) ) + T(xr, =) +5(r, f)
£0 : a
P, (£f) P (£)
= 2m(r, ————- ) + 2N(ry w—eee Y + m (r,Pn(f) ) +
£1 £

+ N(r, Pn(f) ) + S(x,£).

Using (2.1) we at once get
. n n
BT(r,€) § W(r, Do) 4 mlr, Baeee o £ 4

+ N(r, P,(f) + S(r, £f).

That is
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1 P, (f)
nT(r:f) £ av(r, PL(£f)) + 28(rx, ;ﬁ‘ ) + m (r, —;E-- ) +

+ m(x, £7) + N(xr, P_(£)) + S(5, ).

So, once again using (2.1) we obtain

1 '
L anlr, Pn(f) ) + 2nN (r, ~=e) +nm(r,f) + S(r, £f)s
f

nT(xr, £)

and hence
.
n l:T(r,f) - m(r,f)] L (5 Ph(£)) + 208 (r, —==)+S(x, £),’
| £

which gives
1 .
N (r, £) L 3N(r, Pn(f) ) +2nN(r, «=-- ) + 8(r,£).
£
Dividing throughout by T(r,£f) and then taking limit superior
as r -3¢0 of both the sides and after adjusting the terms, ’

we will get
35r(w1 Pn(f) ) \< n+3 + nd( 0 LE) - 2n§(o,fv).

which completes the proof.
Noté H
If a #00 then putting n=1 and P, (f) = £(k) we get

Theorem 2 of [28] .

Theore’m} 3.5 ¢

Let £(z) be a meromorphic function. Let

P (£) = a(z) (£nY1 (en'2 .. (g0 k
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be a monomial of degree n not containing f. Let each zero
of £(2z) have multiplicity >, m. Then

mE_ (L, P) & k+m+1) - Q(k+l) 5(0; ) + n(@ (OO,Vfﬂ .

Proof -

s —

Consider the identity

1 Po(E)  Pp(E)-1 P (£)
- = - o - _-— - e v - . e e v —— 7
£n £0 P (£) £0

from which it follows that

1 P P.(f)-1 P} (£)

m (r, —-= )< m (5, ) +m (r, -Pemmee ) +m (£, —o==-=) +
£1 £D P! (£) . £1
+ S(r, f).

But by ineQuality (2.1) and (3.4) we respectively have

Pn
n(r, =--- ) = S(r,f)
fn
Pl
and m (r, -2 )} = 8(r,£).
£N

1  Pp-l
m(r, === ) & m (5, =——me ) + s(x, £)
, £ © o po ,
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And so by first fundamental theorem

1 , P! P -1
m (r; =-=) £ T(r, —===- ) = N(r; ===e- ) + s(z, £)
£0 P -1 p!
n n
pt p_-1 - po
P -1 p! P ~1
n n n

Wwith the use of Theorem 3.1 this reduces to

1
1
n
1
- N(r, ==== ) + S{(r, Pn-l) + S(r,£)..
p!
n

Adding both the sides by nN(r, % ) and using the fact that
S(r, Py-1) = s(xr,£), we get

1 1 1
nT(r, = ) g mi(r, = ) + N(x, P¥ ) + N(r, === ) =
£ f n p_-1

1

- N(r, P -1) - N(r, == ) + 8(r,£).
n p!
n

) .

which gives, on using N(r, Pp-1) = N(xr, P

nT(r,f) £ nN(r, E») + N(r, P' ) - N(r, P_) +
N £ n n

1 1l

+N{(r, ====) =N (£, ====) + S(r,£).
[}
‘Pn~l Pn



89

That ‘is
1 - - 1
nT(r,£) £ mwN(r, =) + N(r, P_) + N (L, === ) =
N £ n 51 -
. 1
P*
n
1 ,
where 'No (r, === ) are formed by taking those zeros of PA
p! S
n

which are not the zeros of Pn -1 . ihus

- 1 -
)‘ + N (rl - ) + N (ro Pn) + S(r.rf)v
Pn-l ‘ e

-

nT(r, f) $ m_(r,

where N, (r, ) is formed by all zeros of £ (z) taken with

(3] J andN <

proper multiplicity if the multiplicity is ${ k+1 and_each
zero of multiplicity 2> k+2 being counted (k+1) timés‘ only
where k is as in hypothesis. |

Now,

ﬁ (r, Pn) =N (r,f)

and therefore above inequality becomes -
1., = 1 ~ |
nT(r,f) ¢ ™w_(r, =) + N (r, =-==) + N (5, f) + S(r,£).
@ £ P -1 -
n
But
( 1 1 1 y
““ar’?.)\{(k*,)N(r’E ’
Since on the left hand side of‘abOVé inequaliﬁy‘éa&h zero

is counted atmost m(k+l) times whereas on the right hand

side each zero is counted atleast m(k+l) times. Hence,
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k+1 1 - 1 -
nT(r,£f) { ---- N(r, =) + N (r, =--=) + N (5, £) + S(r, £).
m £ Pn-l '

Dividing throughcut by T(r,f) and then taking limit superior

as r = 00 of both the sides, we get

l - l
N(r, =) N (r, m—w-)
k+ 1 f pn_l
N { { ===m~e ) lim sup —=-=—---m= + 1lim sup —————————

» m r -3 T(r, f) r -30m T (r, £)

N(r, £) S(r, £)
+ lim sup B — + lim sup  e~=——- .

o =300 T(r, £) r ->m T(r, £)

That is
k+1

n g (=) 166 n] + [1-0B, W )]+
+ J1-() (0:9,;‘3):{~ .

After simplification it gives

m#E, (1, pp) £ (erml) - [(m) 8(c, ) + m (H) <oo,f§

which is what we wanted to show.
Note :

Putting P, = f(k) i.e. a monomial of degree 1, we get

n @ @ P gmexrn - [00) 500 40 @ 00,8

which is Theorem 4 of [28].
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Theorem 3.e 3

Let £(z) be a transcendental meromorphic function. Let P (f)

be a monomial of degree n and not containing f. Then
o)+ ®,  p)+ B, (copy)
£ 2+ 6, (0, Py) - né (a,£);
where a, b, ¢ are distinct finite numbers and b # 0, C # 0,

Proof

3

Since P, (f) does not contain f, it follows as in (2,1) that

1 1
L R T . N € T — ) + 8(r,£).
(g-)™ O P (£) |
Thus |
1 1 1
m (r, ----- ) T(r, =--==) - N(r, =-—— ) + 8(x, £).
(£-a)™ p_(£) P, (£)

Also by Nevanlinna's second fundamental theorem, since

s(r, Pn(f) ) = 8(r,f) we have
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1 1

T(rl Pn(f) ) < I-\i (r, e )'!' ﬁ (r, -'.-“.‘;‘..a-_) +
- P, (£) P, (£)=b
1
+ N (r, =—====<) + S(r,£f).
p (f)-e :

1 - 1 o 1 -
m (r, —===-- ) & N(r, —=-==) + N (r; s=<==) + N(x,
(£-a)® Pp(£) P ~b
1
- N (r, ===~ ) + 8(r,£f).
Pn
1
Adding N(r, —=--- = ) on both the sides, we get
_ (fwa)
1 1 - 1 _
T(r, —=—--= ) & N(r, «-eeee ) + N (r, === ) + N (r,
(£-a)® - (f-a)? Pp
_ 1 1
+ N (r, ==== ) =N (r, === ) + S(r,£f).
Pn—c Py
Thus
1 _ 1 1
nT(rff) \< rlN(ri - —— ) + N (r’ "’-") + N (r’ ----- )
f-a P, P,~b
- -1 1 :
+ N (r, ===-=) « N (r, =i~ ) + 8(r, £).
P,~C P

From which it easily follows that
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1 - 1
N(r, mmmmmm ) N (r, =-=<)
f-a Pn
n £ n lim sup ——————————— + lim sup  ~—e—— it et +
' r =30 T (r, £) r -»0 T(x, f)
. 1 1
R (£, ——==) N (r, --==)
: P _-b : Pnﬁ-c
+ lim sup - e e e + lim sup —————— - &
T -300 T(r,;f) r -3® T(r, £)
1
N (r' - ) '
P, _ S(r, £)
= lim sup  ==—=—e—e——ee 4+ 1im SUP  em—mewe
r -3 T(r, ) r -3»0 T(r; f)

which is nothing but

ngn \11 -6 (a,f)] +.{:1 - @r (0, Pn)} + }'1_' -@r(b,Pnﬂ +

-

+ [1 -@r'(c,pn)] - L 1 -5, (0'-’Pn)] .
Aﬁter simplification, finally, we get
@r (0, P,) +®r (b, P ) + @r (c, P)
5 2 + 6. (0, P)) - né(a,f)
which is our required theorem.
Remark -

We once again observe that, putting n = 1, our

theorem reduces to Theorem 6 of tZQ} R

Now we come to another interesting result.



94

Theorem 3.7 2

Let £(z) be a meromorphic function. Let as earlier,
Pn(f) be a monomial of degreé n and not containing f£. Then
for all integers p > 1 and ai(i = 1,2, ...., p) finite,

distinct and non-zero complex numbers,

P
Z @r (aj, Py) + @r (o, py) + @ (00, f)
=1

\< 2 +p { 51? (Olpn) - nd (O:f)} . ‘

Proof
By Nevanlinna's first fundamental theorem we have
a 1
£n
1 1
=m(r, =-= ) + N (r, === ) + S(r, £)
X £ £
P, 1 1
=m (X, === » === ) + N (r, =-=") + 3(r, £f).
n n
£ P f
So,
. 7 P : 1 1
T (r,£%) ¢ m (r, === ) + m (£, -=-=) + N(x, --= ) + S(z, £)
N £0 P £
n

reduces on using (2.1),

n 1 1
T™(r, £ ) £ m (r, === ) + N (r, === ) + 8(r,f)
~ P £
n
1 1 1 .
= N (rl - —— ) + T(rl - ) - N(rl - ) + S(rtf)
i P P

n n
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and hence :
n 1l ‘ 1
T(r,f ) 6 N (rr ~~h Yy + ™ (r,P.) - N(r, === ) + S(rof)-
¢}
£ Py
This gives
| 1 1
pT(r, £%) \< pN{(r, --= ) + pT(r, Pn) - pN(r, ~—=)+3(r,f). ..(3.8)
' £ b :
n

Next, by Nevanlinna's Second Fundamental Theorem we obtain

1 P 1

PT(r,B) § N (5,py) + 8 (5, ——= ) + ¥ F(r, ——-m- )+
Py =1 Pn-ai
+ S(r,£f). ees (3.9)

But,

ITI (r,Pn) =N (r, f).

Therefore by (3.8) and (3.9) we have
1

1 - —
p.nT(r, f) (( p.n N(r, z ) + N (r,f) + N (r, == ) +
Py
jo] - 1 1
+ F N (r’ ————— ) - pN (r, hasimadand ) +S(r; f)o
=1 P -a. P
n 1 n

It now easily follows on dividing by T(r,f) that

1

N(r, =-) -
£ N (r,£)

p.n £ p n lim sup ~-=-ee=ee + lim sup ~-=e—- -
~ r -3ap T(x, f) r -3200 T(r,f)

- 1 - 1

N (r, =-=) ) . N (r, —-—-f-)
P =] P_-a.

+ lim sup commee + 1iM SUP  mmmmmmmem—eotoll

r->00 ~ T(f) r =00 T(;:,,f)



- 1
N (r, ---
P S(rlf)
- p lim sup  ==-————- z + lim sup ——————

r -=c0 T(r, £) r -»@ T(r, £)

This yields,

pn £ pn {1-a(o,f>] + [-@(oo, f)] +

+ {'1 - (), to. Pn)] + p- é @ (a.py) -

- p [1-5, 0] .

After proper adjustment and cancellation of some terms, at

the end, we get

,£ @r (a;, Py) + @r (0, Py) + @ ( 00, £)

=1

\< 2+p ‘_61‘_‘ (01 Pn) - n5 (Olf):i
which we wanted to show.

Remark :

As an immediagta consequence is Theorem 7 of {28]

which is obtained by putting n = 1 in the above theorem.

We now pnyw’

Theorem 3.8 3

§et £(z) bg a megomorphic function and P,(f) be a

monomia} of degree n and not containing f. Then,
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| | .
! S ) (as, £) +(@) (0,£) + 2 (M) (00,8 + 2 (@) _(b,,p.) +
+ (H), (o, Pn)

\5. 4 + g {ér (o, Pn) - nd (Oif)} .
where a;y are non-zero, finite, distinct an& bj # O,

for any j (J = 1, 2, ecee » Q)

Proof -
By inequality (3.8) we have
1 1
qT(r,fn) L aN (r, ~-= ) + gT(xr, P ) - g¥ (r, === ) +S(r,f).
N fn n .

p
n ee. (3.10)

Next, by Ne'vanlinna's second Fundamental Theorem, we obtailn

- - 1. q
qT (r, Pn) L N (r, Pp) + N (r, -— ) + Z;L N (r, ==-==- )+
) i=

Pn

.*.’ S(r'f). . oo (3.11)
With this inequality (3.10) becomes

- - 1 g - |
() £ N (x, P +8 (r, -==) + X N (5, ----- ) +
25

n

1 1

+ N (r, === ) = gV (r, === ) + 8(r,f).
£ Py,

But

N (r, P, ) = N (r,f)

and therefore
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- ¢ - 1 q - 1
ngT(r, £7) £ N (r,f) + N (r, === ) + > N (£, =--=—- )+
P, j=1 Pn--bJ
1 1
+ gN (r, === ) = qN(x, === ) + S(r, £). ...(3.12)
£8 P
n

Also, by Second Fundamental Theorem, we have

pT(r,£) £ N (r,£) + N (r,

thi

P
) + > N (r, —=—-- ) +
i=1

+ S(r,£). eev (3,13)

Adding (3.12) and (3.13) we get

: - - 1 1
(p + nq) T(r, £) \g 2N (r,f) + N (r, z ) + ng N(r,§ ) +

- 1 1 P - 1
+ N (r, === ) = gN(x, === ) + > N(r, ——-=) +
q - 1
+ 3 N (r, =e=—- ) + 8(r,.f).
J=l Pn'—bj
Dividing both the sides by T(r,f) and then taking limit
inferior as r -»00 , we can have
N (r, =) ngN (r, =) )
2N (r, £)
P + ng \s lim inf { —memeewan + e——————— 4 cwm—e———— v+

r -»00 T(r, f) T(r, £) T(r, £)
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- 1 1
N (r, === ) Qi (L, === )
P P
4 me————— D e - Do 4+
T(r, f) T(r, £)
1 - 1
q N (r, ----- ) N(r, ==---- )
+ f-a q P _~b
Z ......... . + E: ...... n__J.. +
i=1 T(r, £) i=1 T(r, £)
s(r, £) z
+ ----- .
T(r, £) ..> 1
N{r, ~-= QN(r, ==-)
P 4 : Pn
Since lim inf ( =g =~~—e——- o) = =« 1im sup  ~cee—emen—-
L =30 T{r, ) r ~3200 T™(r, £)
it easily follows that
N(z, £) N (r, 1/f)
p +ng (K 2 lim sup  ~=——- + lim SUp  =e——eccce——- +
r -0 T(r, ) r -300 T(r, £)
1 '_ 1
N(r, == ) N (r, ===
£ Pn
+ ng lim sup  ——--eeoma + lim SUpP ==wem-—————— -
r =300 T(r, £) T -300 T(r, £)
1 - 1
N(r, ---) N(r, =---)
- P P f-ai :
- d lim SUp e I-l—— + lim sup g - 2o > i +
r -300 T(r, £) r =300 i= T(r, £)
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- 1
N (£, -=-=- )
q Pn'bj S(r; £)
+ 1lim sup D + 1lim sup —==—-= .
r-»00 j=1 T(r, £) r-3mo T(r,£f)

This gives,

ping £ 2 [1-(B) ( w,£)] + [1 -® (o0,£)] + ng [1-5(0, D))
+[1- (O,P)J -qu-é (OP)_( +
+ fi [l —@ (ai, f)j + é -EL -@r(bj,PnE! .

After simplification finally it reduces to

P ‘
P (B (ay,8) +{H) (0.5 + 2 @) (00,8 + Zl@r(b ,Py) +
+<§)r (o,

< 4+ a [ 8 (0P - g (o,fzj
as desired.

Theorem 3.9 3

Let £(z) be a meromorphic function. Then

g+l

Z..@ ( f) L 4‘Zo(rbf)+qf_6 (o, f) -

aecC

- §(o, f)]

where bj's are distinct, bo =0, by = oo,



101

Proof :

By Theorem 8 of [28:} , we have

+

1

D
( 'lf) +H ( lf) + 2 H (OO,f) +
T ® @
aq (k) (k)
+ J;::i @, ®.0) +®, (o9 .

(k)
\{ 4 + dq Lér (Olf) -6 (Olf):[ .

Therefore, on making p -3 and observing that

{a / @(a) > O} is countable, it follows that
(k) (k

3
(1) (2.6 +(H) (00,8 + s @ (b, £) +() (s

J=l r r

(k)

£ 4+gq [Gr (0, £) - & (o,f)} .

Now

(k)
® (o0 ,6) = @}; (00,5,

and hence

IZE: (:) (a,£) + ;i% (:)r

ae&C

(k) (k)

(bj' f) + @;r (O, f)
< 4+q [5(}{) (o, £) - & (o fﬂ .
N r d . .

Now, denoting zero by bq+l' the above inequality takes the

form
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g+l ()

- k I
> @r (b, £) < 4 + g Lsi) (0, £) = & (o,f.)J -
j=0

- Z@ (a,£).

aectT
wnich proves the theorem.

Finally we prove one more theorem on monomials.

Theorem 3,10 :

Let £(z) be a meromorphic function and let aj(i = 1,
2, «+e, pP) and by (j =1, 2, ..., q) be finite complex
numbers distinct within each set and such that o; # 0 for

any j. Further, let P, (f) be a monomial of degree n and not

containing f£. Then,
1 P
jg@r (bj' P.) ’*‘@r (0,P,) +@ (00 ,£f) + ng Ei é(ai,f)

\gq‘+2.

Proof -
jo) 1
Let F (z) = X_ ————————— =
i=1 (£(z) - ay)
Then by C21, 241 we have
o) 1
Toom (r, =—————— ) m (r,F) + s(r,f)
i=1 (fmap)™

F
=m (r, --= « Py ) + 8S(r,£)
Pp
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; 1 ‘
‘$ m (rIFPn) + m (rp - ) + S(rl/f)
Pn
p o 1
Ph ~
SO e =)+ m(x, —--) +8(5,8)
o
= m (rl - - ) + S'(r: f)o
Pn
P 1
2dding J_  N(r, e—wmee- ) on both the sides, we get
i=1 (f-aj)? ‘
p 1 p 1
> mA(r, mmmmeem )+ TN (@, ——cwa-= )
=1 (£-a;) " =1 (£~ap) "
1 jo) 1
< m(x, === ) + zzi N (r, ~——ene- ) + s(r,£f),
~ P, 1= (£-ay)

which gives on using Nevanlinna's first fundamental theorem

np'I‘(r.f)”‘S T(r,P,) + ;}é N(r, ‘(-E:;;)-ﬁ ) + s(r,f).
And so
‘ p 1 o
npgT(r, £) & qT(xr,Pn) + g —%::"1 N(r, ZE:;;)—;‘ Y + s(r,f)...(3.14)

But by Nevanlinna's Second Fundamental Theorem, we have

g - 1 - 1
qT (r,Pp) £ N (5,Pp) + N (r, === ) + X N (£, =---- )y +
Pp j=1 - Pu-by

+ S8(r,£). ces (3.15)
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With the use of (3.15) inequality (3.14) becomes

- _ 1 q - 1
npgT(r,£) ¢ N (r, Pp) + N (r, === ) + F N (r, =--u-
Pn j=1 Pp-bj
P ( 1
+ g N (r, —=—ece—w= Y + 8(r,f).
E‘-—i (f-—ai)n
But N (r, Py) = K (r,f)
and so
- - 1 d . 1
npgl (r,£) £ N (r,£f) +N (r, === ) + F N (r, -—-=n ) +
A . P j= P,~-b
n J
P 1
+g X N (r, —-—e—— Y + s(r,f).

Dividing both the sides by T(r,f) and then taking limit

superior as r -»0} , we get

1
‘ N (r, --=)
N (r,f) Pp
npgq \S lim sup  ~=—ewe- + 1lim SUp  =mmmee———— 4
r-»00 T(rf r -300 T(r, £)
- 1l
P_-
+ lim sup 'qz ....... D3 . 4
r -200 j=1 T(x, f)
1
N(r, === )
P f-ay s(r,£f)
+ ng lim sup F | emcecmeeieea + 1im SUP ~———e-

Y-> 00 i=1 T(r, £) r->00  T(r,£f)
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which 1is nothing but

npa QE' ® (w:f)] . [l -#), (o, bn)j +

q P~ T
+ 3§=:1 [1 _@r (bj,Pn)] + ng ;‘é_l Ll - 5(ai'fl{ .

Simplification of the above inequality finally gives,
3 \
”Jg_:l B by By + B, (00 2y +® (00,5 +
P
+ng 2 6 (ay, ) L g+ 2
i=1

which completes the proof of the theorem.

olo



