CHAPTER-III

GROWTH OF DIFFERENTIAL

POLYNOMIALS

CHAPTER-III

Growth of differential polynomials

Let f(z) be a meromorphic function. As mentioned in Chapter II, $\pi_n(f)$ will denote a homogeneous differential polynomial of degree n. That is a finite sum of the form

$$a(z)(f)^{10}(f')^{11}...(f^{(k)})^{1k}$$

where $l_0 + l_1 + \ldots + l_k = n$ and a(z) is meromorphic function satisfying T(r, a(z)) = S(r, f) as $r \to \infty$ where by S(r, f) we mean any quantity satisfying S(r, f) = O(T(r, f)) as $r \to \infty$ if f is of finite order and S(r, f) = O(T(r, f)) outside an exceptional set of finite linear measure if f is of infinite order. Throughout we assume that the homogeneous differential polynomial is such that it does not become zero. The term $\delta(\alpha, f)$, $\Theta(\alpha, f)$ etc. being as defined at the beginning of the Chapter II.

We now prove our results.

Theorem 3.1: For any transcendental meromorphic function of finite order

$$\Delta(\pi_{n}(f),0) \lim_{r \to \infty} \inf \frac{T(r,\pi_{n}(f))}{T(r,f)} \geqslant n \sum_{i=1}^{\infty} \delta(a_{i}) \dots (3.1)$$

and
$$(\Delta(\pi_n(f), 0))(n_t (1+q-q \Theta(\infty))) \geqslant n \sum_{i=1}^{\infty} \delta(a_i)$$
.

•
$$(1 + \Delta(\pi_n(f), 0) - \delta(\pi_n(f), 0)$$
 ... (3.2)

where $|a_i| < \infty$ and $\delta(a_i) > 0$

and $\pi_n(f)$ is a homogeneous differential polynomial of degree n, not containing f for the proof of this theorem we shall need the following two lemmas:

Lemma 3.1: Let f(z) be a transcendental meromorphic function and a_1 , a_2 a_q , q>2 be distinct finite complex numbers. Then

n
$$\sum_{i=1}^{q}$$
 m (r, a_i , f) < T(r, $\pi_n(f)$) - N(r, $\frac{1}{\pi_n(f)}$) + $\pi_n(f)$... (3.3)

where S(r,f)=o(T(r,f)) as $\to \infty$ through all values if f is of finite order and S(r,f)=o(T(r,f)) as $r\to \infty$ outside a set of finite linear measure otherwise. And $\pi_n(f)$ is a non-zero homogeneous differential polynomial of degree n not containing f. That is $\pi_n(f)=\sum a(z)(f')^{\frac{1}{2}}\dots(f^{(k)})^{\frac{1}{2}}$

where
$$l_1 + l_2 + \dots + l_k = n$$

$$\frac{\text{Proof}}{\text{Proof}}: \text{ Let } F(z) = \sum_{i=1}^{q} \frac{1}{(f-a_i)^n}$$

Then we have

$$n \sum_{i=1}^{q} m(r, a_{i}, f) \leq m(r, F) + o(1)$$

$$= m(r, \frac{F\pi_{n}(f)}{\pi_{n}(f)}) + o(1)$$

$$\leq m(r, F\pi_{n}(f)) + m(r, \frac{1}{\pi_{n}(f)}) + o(1)$$

$$= \sum_{i=1}^{q} m(r, \frac{\sum a(z)(f')^{1} \dots (f^{(k)})^{1} k}{(f - a_{i})^{n}} +$$

$$+ m(r, \frac{1}{\pi_{n}(f)}) + o(1)$$

$$= \sum_{i=1}^{q} m(r, \sum a(z)(\frac{f'}{f - a_{i}})^{1} \dots (\frac{f^{(k)}}{f - a_{i}})^{1} k)$$

$$+ m(r, \frac{1}{\pi_{n}(f)}) + o(1)$$

$$= m(r, \frac{1}{\pi_{n}(f)}) + o(1)$$

$$= m(r, \frac{1}{\pi_{n}(f)}) + o(1)$$

$$= T(r, \frac{1}{\pi_{n}(f)}) - N(r, \frac{1}{\pi_{n}(f)}) + o(r, f)$$

$$= T(r, \pi_{n}(f)) - N(r, \frac{1}{\pi_{n}(f)})$$

Therefore

$$n \sum_{i=1}^{q} m(r, a_i, f) \leq T(r, \pi_n(f)) - N(r, \frac{1}{\pi_n(f)}) + S(r, f)$$

Lemma 3.2: Let f be a transcendental meromorphic function of finite order, then

$$T(r,\pi_n(f))$$

$$\limsup_{r\to\infty} \frac{T(r,f)}{T(r,f)} \leq nt (1+q-q \oplus (\infty)) \dots (3.4)$$

where $\pi_n(f)$ is a homogeneous differential polynomial of degree n, not containing f.

$$\frac{\text{Proof}}{\text{f}} : T(r, \pi_n(f)) = m \ (r, \pi_n(f)) + N(r, \pi_n(f))$$

$$\leq m \ (r, \frac{\pi_n(f)}{f^{n-1}}) + m(r, f^n) + N(r, \pi_n(f))$$

$$= m(r, \frac{\sum a(z) (f')^{1_1} \dots (f^{(k)})^{1_k}}{f^{1_1} + \dots + 1_k}) + m(r, f^n)$$

$$+ N(r, \pi_n(f))$$

$$= m(r, \sum a(z) (\frac{f'}{f})^{1_1} \dots (\frac{f^{(k)}}{f})^{1_k})$$

$$+ m(r, f^n) + N(r, \pi_n(f))$$
But m (r, \sum \sum a(z) (\frac{f'}{f})^{1_1} \dots (\frac{f^{(k)}}{f})^{1_k}) = S(r, f) .

and so

$$T(r, \pi_n(f)) \le m(r, f^n) + N(r, \pi_n(f)) + S(r, f).$$

Now without any loss of generality let $\pi_n(f)$ consist of t terms say $\pi_n(f) = \beta_1(f) + \beta_2(f) + \dots + \beta_t(f)$ where each $\beta_i(f)$ (1 \leq i \leq t) is a monomial in the derivatives of f but not containing f and of degree n. And so

$$T(r, \pi_{n}(f)) \leq m(r, f^{n}) + N(r, \beta_{1}(f)) + \dots$$

$$\dots + N(r, \beta_{t}(f)) + S(r, f)$$

$$\leq m(r, f^{n}) + (n N(r, f) + k_{1} n \bar{N}(r, f))$$

$$+ (nN(r, f) + k_{2} n \bar{N}(r, f)) + \dots$$

$$+ (n N(r, f) + k_{t} n \bar{N}(r, f)) + S(r, f)$$

where k_i is the highest derivatives in the corresponding monomials $\emptyset_i(f)$ ($1 \le i \le t$). Let q be the highest derivative occurring in the homogeneous differential polynomial (so that k_1 k_2 ... $k_t \le q$)

Therefore

$$T(r,\pi_{n}(f)) \leqslant m(r,f^{n}) + t n N(r,f) + tqn \overline{N}(r,f)$$

$$\leqslant nm(r,f) + tnN(r,f) + tqn \overline{N}(r,f)$$

$$\leqslant tn m(r,f) + tn N(r,f) + tqn \overline{N}(r,f)$$

$$= tn T(r,f) + tqn\overline{N}(r,f)$$

Now dividing by T(r,f) and taking limit superior of the above inequality we get

Therefore

Proof of theorem 3.1:

From lemma (3.1)

$$n = \sum_{i=1}^{q} m(r, a_i, f) \leq m(r, \frac{1}{\pi_n(f)}) + S(r, f)$$

Dividing by T(r,f) and taking limit inferior on both sides as $r \to \infty$ it easily follows that

$$= \Delta(\pi_n(f), o) \lim_{r \to \infty} \inf \frac{T(r, \pi_n(f))}{T(r, f)}.$$

Since above inequality is true for q > 2 letting $q \rightarrow \infty$ we get

$$n \sum_{i=1}^{\infty} \delta(a_i) \leq \Delta(\pi_n(f), 0) \lim_{r \to \infty} \frac{T(r, \pi_n(f))}{T(r, f)}$$

This proves (3.1)

For the proof of (3.2) we add $n = \sum_{i=1}^{q} N(r, a_i, f)$ to both

sides of result of Lemma 3.1 to get

$$nqT(r,f) < T(r, \pi_n(f)) - N(r, \frac{1}{\pi_n(f)}) + n \sum_{i=1}^{q} N(r, a_i, f) + S(r, f)$$

Dividing by T(r,f) to both the sides and taking limit superior as $r \to \infty$ we obtain

Since $\Delta(\pi_n(f), 0) > 0$ by (3.1) multiplying by $\Delta(\pi_n(f), 0)$ and using (3.1) and lemma 3.2 we obtain

$$\Delta(\pi_n (f), 0)$$
 nq $< \Delta(\pi_n(f), 0)$ lim sup $r \to \infty$ $T(r, \pi_n(f))$

.
$$\lim_{r \to \infty} \inf \frac{T(r, \pi_n(f))}{T(r, f)} + (n \sum_{i=1}^{q} (1-\delta(a_i)))$$

$$\Delta$$
 (π_n (f), 0).

And so

Thus

$$\Delta(\pi_{n} (f), 0) \ n \ q + (1 - \delta (\pi_{n}(f), 0)) \ n \ \sum_{i=1}^{q} \delta(a_{i})$$

$$\leq nt \ (1 + q - q \ \Theta(\infty)) \ \Delta (\pi_{n} (f), 0)$$

$$+(n \ \sum_{i=1}^{\infty} (1 - \delta(a_{i}))) \ \Delta (\pi_{n} (f), 0)$$

from which it follows that

Rearranging and letting $q \rightarrow \infty$ we get

$$(1 + \Delta(\pi_n(f), c) - \delta(\pi_n(f), c)) \quad n \quad \sum_{i=1}^{\infty} \delta(a_i)$$

$$\leq n \ t(1 + q - q \ \Theta(\infty)) \ (\Delta(\pi_n(f), c))$$

which proves the theorem.

Theorem 3.2: If f(z) is a meromorphic function of finite order with Θ (0,f) = Θ (∞ , f) = 1 and π_n (f) is a

homogeneous differential polynomial in f of degree n which does not reduce to a constant then

$$T(r, \pi_n(f)) \sim n T(r, f)$$
 as $r \to \infty$

<u>Proof</u>: We have Θ (0,f) = 1 = Θ (∞ , f)

$$\begin{array}{c} = 1 \\ \hline N & (r, f) \\ \hline \Theta & (\infty, f) = 1 - \lim \sup_{r \to \infty} \frac{1}{T} & = 1 \\ \hline \end{array}$$

Therefore $N(r, \frac{1}{f}) = S(r, f)$

and
$$N(r,f) = S(r,f)$$

and we know that from theorem 1 of [3]

$$n (1 - m\alpha) \leqslant \lim_{r \to \infty} \inf \frac{T(r, \pi_n)}{T(r, f)} \leqslant \lim_{r \to \infty} \sup \frac{T(r, \pi_n)}{T(r, f)} \leqslant n(1+m\alpha)$$

$$\stackrel{\bar{N}}{n} (r, f) + \bar{N} (r, \frac{1}{r})$$
where $\alpha = \lim_{r \to \infty} \sup \frac{T(r, \pi_n)}{T(r, f)} \leqslant n(1+m\alpha)$

Therefore $\alpha = 0$

Therefore from above inequality we get

Thus
$$\lim_{r \to \infty} \frac{T(r, \pi_n(f))}{T(r, f)} = n,$$

Consequently T(r, $\pi_n(f)$) $\sim n$ T(r, f) as r $\rightarrow \infty$

This completes the proof.

Before giving an application of theorem 3.2 we shall need the following definition:

By a homogeneous differential polynomial of degree n not containing f we shall mean a finite sum of the form

$$\pi_n$$
 (f) = $\sum a(z) (f')^{1} (f'')^{2} \dots (f^{(k)})^{1k}$

where $l_1 + ... + l_k = n$ and a(z) is meromorphic functions satisfying T(r, a(z)) = S(r, f).

We now give the application,

Theorem 3.3: If f(z) is an entire function of finite order with $\sum_{\alpha \neq \infty} \delta(\alpha, f) = 1$ then $\delta(0, \pi_n(f)) = 1$.

where $\pi_n(f)$ is a non-zero homogeneous differential polynomial of degree n not containing f.

$$\frac{\text{Proof}:}{\text{set } F(z) = \sum_{v=1}^{q} \frac{1}{(f(z) - \alpha_{v})^n}$$

then as in the thesis of A.A. Mudalgi [8]

$$\frac{q}{v=1} \quad m \; (r, \frac{1}{f-\alpha_{v}}) \leqslant m \; (r,F) + o(1)$$

$$= m \; (r, \frac{F\pi_{n}(f)}{\pi_{n}(f)}) + o \; (1)$$

$$\leqslant m \; (r, \sum_{v=1}^{q} \frac{\pi_{n}(f)}{(f-\alpha_{v})^{n}}) + m(r, \frac{1}{\pi_{n}(f)})$$

$$+ o(1)$$

$$= m(r, \sum_{v=1}^{q} a(z) \frac{(f')^{1}(f^{u})^{1} \cdot ... (f^{(k)})^{1} k}{(f-\alpha_{v})^{n}}$$

$$+ m \; (r, \frac{1}{\pi_{n}(f)}) + o(1)$$

$$\leqslant \sum_{v=1}^{q} m(r,a(z)) + m(r, (\frac{f'}{f-\alpha_{v}})^{1}) + ...$$

$$+ m(r, \frac{1}{\pi_{n}(f)}) + o(1)$$

Using Milloux's results and the fact that $m(r, a(z) \leq T(r, a(z)) = S(r, f)$

We obtain
$$n \sum_{v=1}^{q} m (r, \frac{1}{r-r-v}) \leq m (r \frac{1}{r-r-v}) + s(r, f)$$

Dividing by T(r,f) and taking limit inferior we get

. lim sup
$$T(r, \pi_n(f))$$

 $r \to \infty$ $T(r, f)$

Therefore $n \sum_{v=1}^{q} \delta(\alpha_v, f) \leq n \delta(0, \pi_n(f))$

Consequently $\sum_{v=1}^{q} \delta(\alpha_v, f) \leq \delta(0, \pi_n(f))$

Making $q \rightarrow \infty$ we obtain

$$\sum_{\nu=1}^{\infty} \delta(\alpha_{\nu}, f) \leq \delta(0, \pi_{n}(f))$$

Since the set $\left\{\delta(\alpha,f) \ / \ \delta(\alpha,f) > 0\right\}$ is countable it follows that

$$\sum_{v=1}^{\infty} \delta(\alpha_v, f) = \sum_{\alpha \neq \infty} \delta(\alpha, f)$$

And so

$$\sum_{\alpha \neq \infty} \delta(\alpha, f) \leq \delta(0, \pi_n(f))$$

But by hypothesis $\sum_{\alpha \neq \infty} \delta(\alpha, f) = 1$

And so

$$1 \leqslant \delta (0, \pi_n f) \leqslant 1$$

Thus δ (o, π_n (f)) = 1.

Our next theorem finds relation between deficient values of entire functions with that of its derivative. Thus we prove:

Theorem 3.4: If f(z) is an entire function of finite order then

$$\sum_{a \neq \infty} \delta(a, f) \leq \delta(0, f^{(k)})$$

Proof: Set
$$F(z) = \sum_{v=1}^{q} \frac{1}{f(z)-a_v}$$
 then by [7,33]

$$\sum_{v=1}^{q} m (r, \frac{1}{2-av}) \leq m (r, F(z)) + o(1)$$

= m (r,
$$\frac{\text{Ff}^{*}}{\text{f}^{*}}$$
) + 0 (1)

$$\leq m (r, \sum_{f-a_{2}}^{f'}) + m(r, \frac{1}{f'}) + o(1)$$

$$= m (r, \frac{1}{r}) + o(T(r, f))$$

$$f^{(k)} = m(r, \frac{1}{f!} - \frac{1}{f(k)}) + o(T(r, f))$$

$$\leqslant m (r, \frac{f^{(k)}}{f^{(k)}}) + m (r, \frac{1}{f^{(k)}}) + o(T(r, f))$$

=
$$m(r, \frac{1}{f(k)}) + S(r, f^*) + o(T(r, f))$$

by Milloux's theorem.

Also since S(r,f') = S(r,f) it follows that

$$\sum_{v=1}^{q} m(r, \frac{1}{f(z)-a_{v}}) \leq m(r, \frac{1}{f(k)}) + S(r, f) \qquad ... (3.5)$$

Now dividing by $T(r, f^{(k)})$ and taking limit inferior (3.5) becomes

Consequently

$$\sum_{v=1}^{q} \delta(a_v, f) \leq \delta(o, f^{(k)}).$$

Making $q \rightarrow \infty$ we get

$$\sum_{v=1}^{\infty} \delta(a_v, f) \leq \delta(o, f^{(k)}).$$

since the set of values of a for which $\delta(a,f)>0$ is countable, it now follows that

$$\sum_{i \neq \infty} \delta(a_{i,i},f) \leq \delta(0, f^{(k)}).$$
 This prove the theorem.

Remark: Putting k = 1 we obtain Theorem 4.6 of W.K.Hayman [7, 104]. Another result dealing with the Nevanlinna characteristic of f and the Nevanlinna characteristic of $f^{(k)}$ is the following.

Theorem 3.5: If f(z) is a meromorphic function of finite order, then

$$\begin{array}{ccc} & T(r,f) & 1 \\ \lim \inf & ---- & \geqslant & --- \\ r \to \infty & T(r,f^{(k)}) & k+1 \end{array}$$

Proof : If f(z) is a meromorphic function of finite order
we have

$$\begin{array}{ccc}
T(r,f) \\
1 & \text{im inf} & \frac{T(r,f)}{2} \\
r \to \infty & T(r,f')
\end{array} \geqslant \frac{1}{2}$$

Clearly N(r, $f^{(k)}$) = N(r,f) + k N (r,f)

$$\leq$$
 N(r,f) + k N (r,f)

Thus

$$N(r, f^{(k)} \leq (k+1) N(r, f)$$
 ... (3.6)

Now consider m(r,f(k)).

m (r, f^(k)) = m (r,
$$\frac{f^{(k)}}{f^{(k)}}$$

 \leq m (r, $\frac{f^{(k)}}{f^{(k)}}$
 \leq m (r, f) + s (r, f).

And so

$$m(r, f^{(k)}) \leq (k+1) m(r, f) + S(r, f)$$
 ... (3.7)

Therefore combining (3.6) and (3.7) we get

$$m(r, f^{(k)}) + N(r, f^{(k)}) \le (k+1) T(r,f) + S(r,f)$$

Thus

$$T(r, f^{(k)}) \le (k+1) T(r, f) + S(r, f)$$

which in turn yields

In the other direction we have

Theorem 3.6: Let f(z) be a meromorphic function of order 9, $(0 < e < \infty)$ Then

$$\begin{array}{ccc}
T(r,f) \\
\lim \inf & \xrightarrow{----} & < \infty \\
r \to \infty & T(r,f^{(k)})
\end{array}$$

Proof: It is known (See for e.g. [17]) that

$$T(r,g) < A_q T(kr, g^i)$$

where k > 1 and r > 0

Therefore $T(r, f^{(k-1)}) < A_{f^{(k-1)}} T(kr, f^{(k)})$

Also

$$T(r, f^{(k-2)}) < A_{k-2} T(kr, f^{(k-1)})$$

$$< A_{k-2} (A_{k-1} T(k^2 r, f^{(k)}))$$

$$= B_{k-2} T(k^2 r, f^{(k)})$$

where B_{k-2} is a constant depending on $f^{(k-1)}$ (0) $f^{(k-2)}$ (0).

In general

$$T(r, f^{(k-p)}) < B_{k-p} T(k^p r, f^{(k)})$$

and

$$T(r, f') < B_1 T(k^{k-1} r, f^{(k)}),$$

$$T(r,f) < B_0 T(k^k r, f^{(k)})$$

$$= B_0 T(\alpha r, f^{(k)})$$

where $\alpha = (k)^k$

Thus

$$T(r,f) \leqslant B_0 (\alpha r)^{e(\alpha r)}$$

$$\sim B_0 \alpha^{e} r^{e(r)}$$

$$= B_0 \alpha^{e} T(r, f^{(k)})$$

using proximate order for a sequence.

Therefore
$$\lim_{r \to \infty} \inf \frac{T(r,f)}{T(r,f^{(k)})} < \infty$$
.

This proves the theorem.

We next prove

Theorem 3.7: Let f(z) be a non constant meromorphic function, then

$$m(r, \infty) + n \sum_{v=1}^{q} m(r, p_v) \le (n+1)T(r, f) - N_1(r) + S(r, f)$$

where P(z) is a polynomial of degree n,

$$N_1(r) = (n+1) N(r, f) + N(r, \frac{1}{m-1}) - N(r, \beta_n)$$

$$S(r) = m (r, \frac{\beta_n}{f^n}) + m (r, \sum_{\nu=1}^{q} \frac{\beta_n}{(f - p_{\nu}(z))^n}) + ng \log^{+} \frac{3q}{\delta} + n \log 2 + \log \frac{1}{|f'(0)|}$$

where β_n is a monomial of degree n in derivative of f but not containing f.

Proof: The construction of $|P_i - P_j| > \delta$ given below is as in [11] which we give here for sake of completeness. Let q be any positive integer > 2 and consider any q Polynomials P_i , $1 \le i \le q$ and let $P_i \in B(1)$ where B(1) be the set of all polynomials in z of degrees at most 1 > 0. Let $A = (a_1, a_2, \ldots, a_N)$ be the finite set of coefficients associated with these q polynomials, the a_i 's being distinct. Then for $i \ne j$ $P_i - P_j$ is a polynomial whose highest degree term is $(a_\lambda - q_\mu)$ z^k or a_λ z^k . Here $\lambda \ne \mu$ and $0 \le k \le 1$, a_λ , $a_\mu \in A$. Therefore $|P_i - P_j| \sim |a_\lambda - a_\mu|$ $|r^k|$ or $|P_i - P_j| \sim |a_\lambda|$ $|r^k|$ as $r \to \infty$. Let $\delta = \min \{|a_\lambda|, |a_\lambda| - a_\mu|\}$ Then for $1 \le i < j \le q$, we have $|P_i - P_j| > \delta$ for $r > r_0$ uniformly in z

Set
$$F(z) = \sum_{y=1}^{q} \frac{1}{(f(z) - P_y(z))^n}$$

Suppose for some v , $|f(z) - P_v(z)| < \frac{\delta}{---}$... (3.8)

Then for µ ≠ v

$$|f(z) - P_{\mu}| \geqslant |P_{\mu} - P_{\nu}| - |P_{\nu} - f(z)|$$

$$\geqslant \delta - \frac{\delta}{3 q}$$

$$\geqslant \frac{2}{3} \delta.$$

Therefore for $\mu \neq \nu$

$$\frac{1}{|f(z) - P_{u}|} \leq \frac{3}{2\delta} \leq \frac{1}{2q |f(z) - P_{v}(z)|} \dots (3.11)$$

Consider

$$| F(z) | \geqslant \frac{1}{(f(z) - P_{\upsilon})^n} - \sum_{\mu \neq \upsilon} \frac{1}{(f(z) - P_{\mu})^n}$$

$$= \frac{1}{|f(z)-P_{i,j}|^{n}} - \sum_{\mu \neq \nu} \frac{1}{2^{n}q^{n}|f(z)-P_{\nu}|^{n}} using(3.9)$$

$$= \frac{1}{|f(z) - P_{z}|^{n}} \left\{ 1 - \frac{q-1}{2^{n}q^{n}} \right\}$$

$$\geqslant \frac{1}{|f(z) - P_{z}|^{n}} \cdot \frac{1}{2^{n}}$$

since $1 \geqslant \frac{1}{2^n} + \frac{1}{2^n}$ for $n \geqslant 1$ and

$$1 - \frac{q-1}{2^n - q^n} \geqslant 1 - \frac{q^n}{2^n - q^n} = 1 - \frac{1}{2^n}$$

which gives $1 - \frac{q-1}{2^n - q^n} \geqslant \frac{1}{2^n}$.

Hence

$$\log^{+} |F(z)| \geqslant \log^{+} \frac{1}{|f(z)-P_{\upsilon}|^{n}} - n \log 2$$

$$= \sum_{\mu=1}^{q} \log^{+} \frac{1}{|f(z)-P_{\mu}|^{n}} - \sum_{\mu \neq \upsilon} \log^{+} \frac{1}{|f(z)-P_{\mu}|^{n}} - n \log 2 \qquad ... (3.10)$$

But since $\mu \neq \nu$,

$$|f - P_{\mu}| \geqslant |P_{\mu} - P_{\nu}| - |f - P_{\nu}|$$

$$\delta - \delta/3q$$

$$= \frac{(3q - 1)\delta}{3q}$$

$$\frac{\delta}{3q}$$

we have

$$\log^{+} \frac{1}{|f - P_{u}|^{n}} \leqslant \log^{+} \left(\frac{3q}{--}\right)^{n}.$$

Therefore

$$\sum_{\mu \neq \upsilon} \log^{+} \frac{1}{|f - P_{\mu}|^{n}} \leqslant (q - 1) \log^{+} (\frac{3q}{-\delta})^{n}$$

$$\leq nq \log^{+} (\frac{3q}{-\delta})$$

Hence from (3.10) we have

$$\log^{+} |F(z)| \geqslant \sum_{\mu=1}^{q} \log^{+} \frac{1}{|f(z) - P_{\mu}|} - ng \log^{+} \frac{3q}{\delta} - n \log 2$$
... (3.11)

Next we consider the case when

$$|f(z) - P_{\upsilon}| \geqslant \frac{\delta}{2}$$
 for all υ .

Then we have

$$\log^{+} \frac{1}{|f(z) - P_{z}|^{\frac{1}{n}}} \leq \log^{+} (\frac{3q}{--})^{n}$$

and so

$$\sum_{v=1}^{q} \log^{+} \frac{1}{|f(z)-P_{v}|} \leqslant nq \log^{+} \frac{3q}{\delta}$$

This shows that R.H.S. of (3.11) is negative. But L.H.S. of (3.11) is non-negative and therefore (3.11) is trivially true in this case and it is true in all cases.

Multiplying (3.11) both the sides by $1/2\pi$ and integrating over $[0, 2\pi]$ we get

$$m (r,F) \geqslant \sum_{n=1}^{q} m (r, \frac{1}{(f-P_n)^n}) - nq \log^{\frac{1}{2}} \frac{3q}{\delta} - n \log 2.$$

And so

$$m (r,F) \geqslant n \sum_{y=1}^{q} m (r,P_{y}) - n q \log^{+} \frac{3q}{---} - n \log 2.$$

$$\delta \qquad ... (3.12)$$

Thus
$$\frac{1}{m} (r, F) = m (r, \frac{1}{-r}, \frac{1}{p}, F), \text{ which yields}$$

$$\frac{1}{n} f^{n} f$$

$$m (r,F) \leq m (r, \frac{1}{f^n}) + m(r, \frac{f^n}{g_n}) + m (r, g_n F) \dots (3.13)$$

But from Nevanlinna's first fundamental theorem we have

$$T(r,f) = T(r, \frac{1}{f}) + \log |f(0)|$$

and so

$$m(r, \frac{f^n}{\emptyset_n}) = m(r, \frac{\emptyset_n}{f^{n-1}}) + N(r, \frac{\emptyset_n}{f^{n-1}}) - N(r, \frac{f^n}{\emptyset_n}) + \log \left| \frac{f^n(0)}{\emptyset_n(0)} \right|$$

and

$$m(r, \frac{1}{f^n}) = T(r, f^n) - N(r, \frac{1}{f^n}) + \log \frac{1}{|f^n(0)|}$$

Therefore (3.13) will finally yield

$$m(r,F) \le nT(r,f) - n N(r, \frac{1}{f}) + n \log \frac{1}{|f(0)|} + m(r, \frac{\beta_n}{f^n}) + N(r, \frac{\beta_n}{f^n}) - N(r, \frac{f^n}{\beta_n}) + m(r, \beta_n F) + \log \left| \frac{f^n(0)}{\beta_n(0)} \right|$$

Combining this inequality with (3.12) gives

$$\frac{q}{v=1} m (r, P_v) - nq \log^{\frac{1}{4}} \frac{3q}{\delta} - n \log 2 \leq m(r, F)$$

$$\leq n T(r, f) - nN (r, \frac{1}{f}) + n \log \frac{1}{|f(0)|} + m(r, \frac{g_n}{f^n})$$

$$+ N(r, \frac{g_n}{f^n}) - N(r, \frac{f^n}{g_n}) + m (r, g_n F) + \log \left| \frac{f^n(0)}{g_n(0)} \right|.$$

Therefore

+
$$\log \frac{1}{|p'_n(0)|}$$
 + $T(r,f) - N(r,f) + nq \log^{+} \frac{3q}{6}$ + $n \log 2$

Thus

$$\frac{q}{v} = 1 \quad \text{m} \quad (r, P_v) + m(r, f) \leq rT(r, f) - n N(r, \frac{1}{f}) + N(r, \beta_n) \\
+ N(r, \frac{1}{f^n}) - N(r, f^n) - N(r, \frac{1}{\beta_n}) + \log \left| -\frac{1}{\beta_n(0)} \right| \\
+ T(r, f) - N(r, f) + nq \log^{+} \frac{3q}{\delta} + n \log 2 \\
+ m \quad (r, \frac{\beta_n}{f^n}) + m(r, \beta_n F) \\
\leq 2(n+1) \quad T(r, f) + N(r, \beta_n) - N(r, \frac{1}{\beta_n}) \\
- n + 1 N(r, f) + S(r, f).$$

And so

$$n \sum_{\nu=1}^{q} m(r, P_{\nu}) + m(r, f) \leq (n+1)T(r, f) - \{(n+1)N(r, f) - N(r, \beta_{n}) + N(r, \frac{1}{\beta_{n}})\} + S(r).$$

which finally yields

$$m(r,f) + n \sum_{\nu=1}^{q} m(r, P_{\nu}) \leq (n+1)T(r,f) - N_{1}(r) + S(r)$$

$$where N_{1}(r) = (n+1) N(r,f) + N(r, \frac{1}{\beta_{n}}) - N(r, \beta_{n})$$

$$and S(r) = m(r, \frac{\beta_{n}}{f^{n}}) + m(r, \sum_{\nu=1}^{q} \frac{\beta_{n}}{(f-P_{\nu})(z)^{n}}) + \frac{\beta_{n}}{(f-P_{\nu})(z)^{n}}$$

+
$$ng log^{+} \frac{3g}{--}$$
 + $n log 2 + log \frac{1}{----}$
 δ $|\beta_{n}(0)|$

Remark: If P_{ij} (z) is constant and n=1 then we get theorem 2.1 of Hayman [7, 31].

We now give proofs of two theorems stated without proof by R. Parthasarathy [12]

Theorem 3.8: Let f(z) be an entire function of order $9 (0 < 9 < \infty)$ for which

and
$$\lim_{r \to \infty} \sup_{r \in L(r)}^{N(r, 1/f)} = \beta.$$
 (3.15)

Let $\psi(z)$ be a homogeneous differential polynomial of degree p > 1 with all the coefficients a(z) entire. Then for every complex number w except possibly for w = 0

and
$$\delta$$
 (0, f) + Θ (w, ψ) \leq 1 ... (3.18)

where
$$h(?) = \{q + (1 + q^2)^{1/2}\} \left\{\frac{1 + (1 + q^2)^{1/2}}{q}\right\}, q > 0$$

Proof: Let & > 0 be given. Then by (3.15) we have

$$N(r, \frac{1}{f}) < (\beta + \varepsilon) r^{9} L(r) \text{ for all } r \geqslant r_{0}. \text{ Also}$$
 by (3.14)

 $\log M(r,f) > (r-e)r^{0}L(r)$ for a sequence of $r \to \infty$. Using Lemma 3.1 and the fact that f(z) is entire, we obtain

P
$$\{1 + O(1)\}\ T(r,f) < PN(r, \frac{1}{f}) + \overline{N}(r,w,\psi)$$
 $< P(\beta + \epsilon)r^{\gamma} L(r) + \overline{N}(r,w,\psi)$

for all $r \gg r_0$.

Also for $\lambda > 1$

$$T(r,f) \geqslant \frac{\lambda-1}{\lambda+1} \log M (r/\lambda, f).$$

Thus we have for a sequence of $r \rightarrow \infty$

$$T(r,f) > (\alpha - \epsilon) \frac{\lambda - 1}{\lambda + 1} (\frac{r}{\lambda}) L(\frac{r}{\lambda})$$

and
$$\frac{\bar{N}(r, w, \psi)}{r^{\bar{N}}(L(r))} > \frac{P}{\lambda^{\bar{N}}} \left\{ 1 + O(1) \right\} (\alpha - \varepsilon) \left(\frac{\lambda - 1}{\lambda + 1} \right) \frac{L(\frac{r}{\lambda})}{L(r)}$$

- P(
$$\beta$$
 + ξ).

Since $L(r/\lambda)$ $L(r/\lambda)$ L(r)1 as $r \to \infty$ we get

The maximum value of $\frac{1}{\lambda}$ ($\frac{\lambda-1}{\lambda+1}$) is easily seen to be

1 ---- and hence h(%)

from Lemma 1 of [12] we have

Therefore

$$\frac{\overline{n}(r, w, \psi)}{\lim \sup_{r \to \infty} \frac{\alpha}{r^{\beta} L(r)}} \geqslant \beta P \left(\frac{\alpha}{1 - \alpha} - \beta \right).$$

Again by (3.14) we have for $r > r_0$

$$P \{1+o(1)\} < P \xrightarrow{N(r, 1/f)} + \frac{\bar{N}(r, w, \psi)}{T(r, f)}$$

Since Ψ (z) is entire N(r, Ψ/W) = 0 and by lemma 2 of [12]

$$m(r, \frac{\psi}{w}) \le m(r, \frac{\psi}{wf^{p}}) + m(r, f^{p})$$

$$= S(r, f) + pm(r, f)$$

Hence by $T(r, \Psi/W) < \{P + O(1)\}$ T(r, f)

Thus we have for all $r > r_0$

$$P \{1+o(1)\} < P \xrightarrow{N(r, 1/f)} P \xrightarrow{\vec{N}(r, w, \psi)} T(r, f) T(r, \psi)$$
 (1+o(1))

Letting $r \rightarrow \infty$ we get

And so

 $P \le P (1 - \delta(0, f)) + P (1 - \Theta(w, \psi))$, which on simplification yields

$$\delta$$
 (0, f) + Θ (w, Ψ) \leq 1.

This completes the proof.

Theorem 3.9: Let f(z) be a meromorphic function of order $g(0 < g < \infty)$ for which

$$T(r, f)$$

$$\lim \sup_{r \to \infty} \frac{-r}{r} = a \qquad \dots (3.19)$$

and
$$\lim_{r \to \infty} \sup \frac{\frac{1}{p} \overline{N}(r, f) + N(r, 1/f)}{r^{\frac{2}{p}} L(r)} = b.$$
 (3.20)

Let $\psi(z)$ be a homogeneous differential polynomial of degree P ($\geqslant 1$) in f. Then for every complex number w, except possibly for w = 0

$$\frac{\bar{N} (r, w, \psi)}{\lim \sup_{r \to \infty} \frac{-\bar{N} - 1}{r}} \geqslant P (a - b)$$

$$\begin{array}{ccc}
& & \overline{n} & (r, w, \psi) \\
\lim \sup_{r \to \infty} & & & \overline{r}^{\varsigma} & L(r)
\end{array} \Rightarrow P \varsigma (a-b)$$

and
$$\delta(0, f) + \frac{1}{p} \Theta(\infty, f) + (k+1) \Theta(w, \psi) \leq k+1 + \frac{1}{p}$$

where k is the order of the highest derivative occurring in Ψ (z).

<u>Proof</u>: We have from (3.20), given $\varepsilon > 0$ with $0 < |w| < \infty$

$$\frac{1}{p} \vec{N} (r,f) + N (r, \frac{1}{f}) < (b + g) r^{9} L(r)$$
for all $r \ge r_{0}$.

Theorem 3.10: Let f(z) be a meromorphic function and $\pi_n(f)$ be a homogeneous differential polynomial of degree n.

Let $T(r, \pi_n(f)) \rightarrow \alpha$ as $r \rightarrow \infty$ where $\alpha > n$ then T(r, f)

$$e (\infty, f) \leq 1 + \frac{1}{m} - \frac{\alpha}{pmn}$$

where m is the highest derivative occurring in $\pi_n(f)$ and p is the number of terms in $\pi_n(f)$.

Proof:

Let $T(r, \pi_n(f))$ T(r, f) $\rightarrow \alpha$ as $r \rightarrow \infty$ where $\alpha > n$.

Now m(r,
$$\pi_n(f)$$
) = m(r, $\frac{\pi_n(f)}{f^n}$) + m (r, f^n) ... (3.23)
And so

$$m (r, \frac{\pi_n(f)}{f^{n-1}}) = m (r, \frac{\sum a(z)(f')^{1_1} \dots (f^{(k)})^{1_k}}{f^{1_1} + 1_2 \dots + 1_k})$$

$$\leq \sum_{1}^{p} m(r, a(z)) + m(r, (\frac{f'}{--})^{1_{1}}) + \dots$$

$$f \qquad \qquad f^{(k)} \qquad \qquad$$

$$\leq \sum_{1}^{p} l_{1} m(r, \frac{f'}{f}) + l_{2}m(r, \frac{f''}{f}) + ... + l_{k} m(r, \frac{f^{(k)}}{f})$$

$$+ s(r, f)$$

Since $m(r, a(z)) \leq T(r, a(z) = S(r, f)$.

And so using Milloux's theorem it follows that

$$m(r, \frac{n}{r^{n-1}}) \le \sum_{i=1}^{n} l_{i} s(r, f) + l_{i} s(r, f) + + l_{i} s(r, f)$$

$$= np s(r, f)$$

$$= s(r, f).$$

Therefore

$$m(r, \pi_n (f)) \le m(r, f^n) + S(r, f)$$
 by (3.23)
= $nm(r, f) + S(r, f)$

Thus

$$m(r, \pi_n(f)) \leq Pnm(r, f) + S(r, f)$$
 ... (3.24)

Also

$$N(r, \pi_n(f)) = N(r, \sum a(z) (f')^{1} (f'')^{1} \dots (f^{(k)})^{1k}$$

$$= \sum_{1}^{p} N(r, a(z)) + 1_1 N(r, f') + \dots$$

$$\dots + 1_k N(r, f^{(k)})$$

$$N(r, \pi_n(f)) \leqslant \sum_{i=1}^{p} l_i (N(r, f) + \overline{N}(r, f)) + l_2 (N(r, f) + 2\overline{N}(r, f)) + l_k (N(r, f) + k \overline{N}(r, f)) + s(r, f)$$

Since
$$N(r, a(z)) \leq T(r, a(z)) = S(r, f)$$

And so

$$N(r, \pi_{n}(f)) \leqslant \sum_{1}^{p} (l_{1} + l_{2} + \dots + l_{k}) N(r, f) + l_{1} \overline{N} (r, f) + \\ + 2l_{2} \overline{N} (r, f) + \dots + kl_{k} \overline{N} (r, f) + S(r, f)$$

$$\leqslant \sum_{1}^{p} n N(r, f) + l_{1}k\overline{N} (r, f) + l_{2} k \overline{N} (r, f) + \dots \\ \dots + l_{k} k\overline{N} (r, f)$$

$$= \sum_{1}^{p} n N (r, f) + n k \overline{N} (r, f) + S(r, f)$$

$$= p n N(r, f) + pnm \overline{N} (r, f) + S(r, f)$$

where p denotes the number of terms in the homogeneous differential polynomial and m is the highest derivative of differential polynomial and $l_1 + l_2 + \dots + l_k = n$ and where n is the degree of differential polynomial.

Therefore

$$\text{N } (r, \ \pi_{_{\bf n}}(\mathbf{f}) \) \leqslant \text{Pn N } (r, \mathbf{f}) \ + \ \text{pnm N} \ (r, \mathbf{f})$$
 That is
$$\text{N}(r, \ \pi_{_{\bf n}}(\mathbf{f}) \) \leqslant \text{Pn (N } (r, \mathbf{f}) \ + \ \text{m N} \ (r, \mathbf{f}) \) . \qquad ... \ (3.25)$$

Combining (3.24) and (3.25) we get

$$T(r, \pi_{n}(f)) \leq P \ n \ T(r, f) + P \ nm \ \overline{N} \ (r, f) + S(r, f).$$
Since $T(r, \pi_{n}(f)) / T(r, f) \rightarrow \alpha$ it follows that
$$\alpha \ T(r, f) \leq Pn \ T(r, f) + Pnm \ \overline{N} \ (r, f) + S(r, f)$$

$$(\alpha - Pn) \ T(r, f) \leq pnm \ \overline{N} \ (r, f) + S(r, f) \qquad \dots (3.26)$$

Dividing (3.26) by T(r,f) and taking limit superior we get

$$(\alpha - Pn) \leqslant \lim_{r \to \infty} \sup \frac{Pnm \tilde{N}(r, f)}{T(r, f)} \qquad S(r, f)$$

$$r \to \infty \qquad T(r, f) \qquad r \to \infty \qquad T(r, f)$$

Thus

$$(\alpha - Pn) \leq Pnm (1 - \Theta(\infty, f))$$

Consequently

Pn m Θ (∞ , f) \leq P n m + Pn - α .

And so

$$\Theta$$
 (∞ , f) \leq 1 + $\frac{1}{m}$ - $\frac{\alpha}{pmn}$.

Remark: If m = 1, n = 1 and P = 1 then $\pi_n(f) = f^*$ and so $\Theta(\infty, f) \leq 2 - \alpha$ which is theorem 3 of S.K.Singh and V.N.Kulkarni [17]

We finally end the Chapter by giving some application of Nevanlinna theory to differential equations.

Theorem 3.11: The differential equation

$$a_1 (z) (f(z))^n p (f) + \pi_{n-k} (f) = 0$$
 ... (3.27)

where $a_1(z) \neq 0$ and $1 \leq k \leq n$ has no transcendental meromorphic solution f(z) satisfying N(r,f) = S(r,f) where $\pi_{n-k}(f)$ is a non-zero homogeneous differential polynomial of degree n-k and P(f) is any non-zero differential polynomial and a(z) are meromorphic functions satisfying T(r,a(z)) = S(r,f).

Proof : Suppose there exists a transcendental meromorphic

function f satisfying (3.27) such that N(r, f) = S(r, f) then

$$(f)^n P(f) = \frac{-\pi_{n-k}(f)}{a_1}$$

Hence by lemma (3.5)

$$m(r, P(f)) = S(r, f).$$

Also N(r, P(f)) = N (r,
$$\sum a(z)(f)^{10}(f')^{11}...(f^{(k)})^{1k}$$

= S(r,f).

Therefore

$$T(r, P(f)) = S(r, f)$$
 ... (3.28)

Also from (3.27) we get

$$(f)^{n} = \frac{-\pi_{n-k}(f)}{a_{1} P(f)}$$

And hence by Nevanlinna's first fundamental theorem

$$n T(r, f) \le T(r, \pi_{n-k}(f)) + T(r, P(f)) + T(r, a_1) + o(1)$$

$$= T(r, \pi_{n-k}(f)) + S(r, f) \text{ by } (3.28)$$

Also since N(r, f) = S(r, f) we have

$$T(r, \pi_{n-k}(f) = m(r, \pi_{n-k}(f)) + S(r, f)$$

$$\leq m(r, \frac{\sum a(z)(f)^{10}(f')^{11}...(f^{(k)})^{1k}}{f^{n-k}}$$

$$+ m(r, f^{n-k}) + S(r, f)$$

$$= m(r, \quad \sum a(z) \quad (\frac{f^{*}}{-})^{1_{1}} \quad ... \quad (\frac{f^{(k)}}{-})^{1_{k}})$$

$$+ m \quad (r, \quad f^{n-k}) + S(r, f)$$

$$\leq m \quad (r, \quad a(z)) + l_{1} \quad m \quad (r, \quad \frac{f^{*}}{-}) + ...$$

$$+ l_{k} m(r, \quad \frac{f^{(k)}}{-}) + m(r, \quad f^{n-k}) + S(r, f)$$

$$= m(r, \quad f^{n-k}) + S(r, f)$$

$$T(r, \pi_{n-k}(f)) \le (n-k) m(r, f) + s(r, f)$$

$$= (n-k) T(r, f) + s(r, f)$$

 $n T(r,f) \leq (n-k) T(r,f) + S(r,f)$

This is a contradiction. Hence the theorem

Remark: Putting P(f) = f' and k = 1 we obtain theorem 3 of G.P.Barker and A.P.Singh [1].

We have then on using lemma 4

$$\{P + O(1)\} \qquad T(r,f) < P(b+\ell)r^{\frac{Q}{2}} \quad L(r) + N(r,w, \ \psi(z))$$
 for all $r \geqslant r_0$ on dividing by $r^{\frac{Q}{2}} \quad L(r)$ and letting $r \to \infty$ and using (3.21) we get

and so

$$\{P+O(1)\} \ a \leq P(b+e) + \lim \sup_{r \to \infty} \frac{N(r, w, \psi(z))}{r^{9}L(r)}$$

which yields

Pa
$$\leqslant$$
 Pb + lim sup
 $r \rightarrow \infty$ r^{9} L(r)

Thus

$$\lim_{r \to \infty} \sup_{x \to \infty} \frac{\overline{N}(r, w, \psi(z))}{r^{\frac{6}{5}}L(r)} \gg P(a-b) \qquad ... (3.21)$$

from Lemma 1 of [12] we have

$$\frac{1}{n} (r, w, \psi) \qquad \qquad \overline{N} (r, w, \psi)$$

$$\lim \sup_{r \to \infty} \frac{1}{r^{\varsigma} L(r)} \qquad \lim \sup_{r \to \infty} \frac{1}{r^{\varsigma} L(r)} \qquad (3.22)$$

Combining (3.21) and (3.22) we get

$$\frac{\bar{n} (r, w, \psi)}{\lim \sup r \to \infty} \qquad \frac{\bar{n} (r, w, \psi)}{r (a-b)}$$

Using lemma 3 of [12] we obtain

$$\Upsilon$$
 (r, $----$) \leq P(k+1) Υ (r, f) + S(r, f)

Also by lemma 4 of [12] we have

$$PT(r,f) < PN(r, 1/f) + N(r,f) + N(r,w, \psi(z)) + S(r,f)$$

And so

$$P < P \xrightarrow{(r, 1/f)} + \frac{\bar{N}(r, f)}{T(r, f)} + \frac{\{P(k+1)+O(1)\}}{T(r, w, \psi)} \xrightarrow{\bar{N}(r, w, \psi(z))} \cdot \frac{T(r, w, \psi)}{T(r, f)} + O(1)$$

Letting $r \rightarrow \infty$ we get

$$P < P [1 - \delta(0,f)] + [1 - \Theta(\infty, f)] +$$
 + $(P(k+1)) (1 - \Theta(w, \Psi(z)))$

which on simplification yields

$$\delta(0,f) + \frac{1}{p} \Theta(\infty, f) + (k+1) \Theta(w, \Psi(z)) \leq k+1 + \frac{1}{p}$$
.

Lemma 3.3 Let $\Psi(z)$ be a homogeneous differential polynimial of degree P in the meromorphic function f(z) then

$$PT(r,f) < PN(r, \frac{1}{f}) + \overline{N}(r,f) + \overline{N}(r, 1, \frac{\psi}{w}) + S(r,f)$$

Proof: Working as in theorem 3.2 of Hayman [7, 57] we get

m (r,
$$\frac{1}{\psi(z)}$$
) < \bar{N} (r, f) + \bar{N} (r, $\frac{1}{\psi(z)}$) - N_0 (r, $\frac{1}{(\psi)}$) +

$$+ s(r, f)$$

Also

PT
$$(r, f) = T(r, f^{p}) = T(r, \frac{1}{f^{p}}) + o(1)$$

$$= m(r, \frac{1}{f^{p}}) + N(r, \frac{1}{f^{p}}) + o(1)$$

$$\leq m(r, \frac{\psi(z)/w}{f^{p}}) + m(r, \frac{1}{\psi(z)}) + \cdots$$

$$+ PN(r, 1/f) + o(1).$$

And so

$$PT(r,f) \leq m(r, \frac{1}{-\psi(z)}) + PN(r, 1/f) + S(r,f)$$

$$\psi(z)/w$$

since m (r, -----) = S(r,f).

Thus

$$PT(r,f) \leq PN(r,\frac{1}{f}) + \bar{N}(r,f) + \bar{N}(r,-\frac{1}{\psi(z)}) - \frac{1}{w}$$

$$- N_{o} (r, -\frac{1}{-\psi}) + S(r, f)$$

since N_0 (r, $\frac{1}{(\Psi/\psi)}$) \geqslant 0, it follows that

 $PT(r,f) < PN(r, 1/f) + \overline{N}(r,f) + \overline{N}(r, w, \psi(z)) + S(r,f)$ which completes the Lemma.

Note:

(i) $p(f) \neq 0$ is essential, since, if P(f) = 0 then there exists transcendental solutions of (3.27) satisfying N(r,f) = S(r,f). For example consider $f(z) = e^{z}$ and π_{n-1} (f) = π_{1} (f) = f - f' = e^{z} - e^{z} = 0.

Thus $e^{\mathbf{Z}}$ is a solution of (3.27) and $N(r, e^{\mathbf{Z}}) = 0 = S(r, f)$.

(ii) Also the condition N(r,f) = S(r,f) in the above theorem is essential.

Since consider the equation $2f^3 - (f^n + f) + 0$, that is $2f^2 f - (f^n + f) = 0$ then the above has $f(z) = \sec z$ as its solution and clearly $N(r, f) \neq S(r, f)$

(iii) $(f)^n - (f)^n = 0$ for any function f trivially shows that k should be greater than or equal to 1 in our theorem.

G.P.Barker and A.P.Singh in [1] have proved the following theorem.

Theorem: No transcendental meromorphic function with N(r,f) = S(r,f) can satisfy an equation $a_1(z)(f(z))^{n}P(f) + a_2(z)P(f) + a_3 = 0$ where $a_1(z) \neq 0$, n is positive integer and P(f) is a monomial of degree > 1.

It looks reasonable to except that the above theorem should hold for homogeneous differential polynomials also instead of only monomials. But as the number of terms in a differential polynomial though finite, may be large, we have not been able to prove this result. However, if we put a restrictions on the number of terms in a homogeneous differential polynomial then we have the following theorem:

Theorem 3.12: No transcendental meromorphic function f with N(r,f) = S(r,f) can satisfy an equation of the form

$$a_1(z)(f(z))^n \pi_k(f) + a_2(z)\pi_k(f) + a_3(z) = 0, \dots (3.29)$$

n \geqslant 1, where $a_1(z) \not\equiv 0$ and $\pi_k(f)$ is a non-zero homogeneous differential polynomial of degree k having p terms, where p & K satisfy the relation (p-1)k < n.

For the proof of the above theorem we shall need the following lemmas of [1]

Lemma 3.4: If f is meromorphic and not constant in the plane, if $g(z) = f(z)^n + P_{n-1}$ (f), where P_{n-1} (f) is a

differential polynomial of degree almost n-1 in f and if N(r,f) + N(r, 1/g) = S(r,f) then $g(z) = (h(z))^n$, $h(z) = f(z) + \frac{1}{n} a(z)$ and $(h(z))^{n-1} a(z)$ is obtained by substituting h(z) for f(z), h'(z) for f'(z) etc. in terms of degree n-1 in P_{n-1} (f).

Lemma 3.5: If f(z) is meromorphic and transcendental in the plane and that $(f(z))^n P(z) = Q(z)$ where P(z), Q(z) are differential polynomials in f(z) and degree of Q(z) is atmost n. Then m(r, P(z)) = S(r, f) as $r \to \infty$

Proof of theorem 3.12:

Case (i) we first consider the case $n \ge 2$ suppose (3.31) holds clearly $a_3 \ne 0$, for otherwise either f is a relational or T(r,f) = S(r,f) and both of which are not possible.

Now from (3.31) we get

$$(f)^n + \frac{a_2}{a_1} = \frac{a_3}{a_1 \pi_k} = G(z)$$
 say

Then

$$N(r, \frac{1}{G}) = N(r, \frac{a_1 \pi_k (f)}{a_3}) = S(r, f).$$

Also N(r,f) = S(r,f).

Therefore by Lemma (3.4)

$$G = (f)^n$$

which yields $a_2 = 0$. Thus equation (3.29) becomes

$$(f)^n \pi_k(f) = -\frac{a_3}{a_1}$$

and hence $T(r, (f)^n \pi_k(f)) = S(r, f)$ (3.30)

Now let \emptyset (f) = $f^n \pi_k$ (f)

=
$$f^n \left\{ \sum_{1}^{p} (f)^{1_0} (f')^{1_1} \dots (f^t)^{1_t} \right\}$$

where $l_0 + l_1 + ... + l_t = k$.

Therefore
$$\frac{1}{f^n} = \frac{1}{g(f)} \left\{ \sum_{i=1}^{p} (f^{i})^{1} (f^{i})^{1} \dots (f^{t})^{1} \right\}$$
.

Thus

$$\frac{1}{f^{n+k}} = \frac{1}{\emptyset(f)} \left\{ \sum_{i=1}^{p} \left(\frac{f'}{f} \right)^{1_{1}} \dots \left(\frac{f^{t}}{f} \right)^{1_{t}} \right\}$$

Applying Nevanlinna's first fundamental theorem and that $T(r, \beta) = S(r, f)$ we obtain

(n+k)
$$T(r,f) \le \sum_{1}^{p} \left\{ l_{1} T(r, \frac{f'}{f}) + ... + l_{t} T(r, \frac{f^{(t)}}{f}) \right\} + S(r,f).$$

Using Milloux's theorem [7, 55] it now follows that

$$(n+k) T(r,f) \le \sum_{1}^{p} l_{1} N(r, \frac{f}{f}) + ... + l_{t} N(r, \frac{f}{f}) + ... + l_{t} N(r, \frac{f}{f})$$

$$+ s(r,f).$$

But N(r,f) = S(r,f) and so

$$N(r, \frac{f^{(t)}}{f^{(t)}}) \le N(r, f^{(t)}) + N(r, \frac{1}{f})$$

$$\le (t+1) N(r, f) + N(r, \frac{1}{f})$$

$$= N(r, \frac{1}{f}) + S(r, f)$$

Therefore

$$(n+k) T(r,f) \leqslant \sum_{1}^{p} \left\{ l_{1} N(r, \frac{1}{f}) + \dots + l_{t} N(r, \frac{1}{f}) \right\} + s(r,f)$$

$$= \sum_{1}^{p} (l_{1} + l_{2} + \dots + l_{t}) N(r, \frac{1}{f}) + s(r,f)$$

$$= \sum_{1}^{p} (k - l_{0}) N(r, \frac{1}{f}) + s(r,f)$$

$$= p(k - l_{0}) N(r, \frac{1}{f}) + s(r,f)$$

Thus

$$(n+k)T(r,f) \leq p(k-l_0) T(r,f) + S(r,f)$$

 $\leq pk T(r,f) + S(r,f)$

This is a contradiction since n + k > pk.

Case (ii): We now consider the case n=1. when n=1, the hypothesis implies p=1 and so π_k (f) becomes a monomial. This particular case has been considered by G.P.Barker and A.P.Singh. We give their proof for sake of completeness.

Let
$$F = f + \frac{a_2}{a_1}$$

then π_k (f) = Q(F) where Q(F) is a differential polynomial

in F. Then (3.31) can be written as
$$FQ(f) = \begin{bmatrix} -a_3 \\ --- \\ a_1 \end{bmatrix}$$

and hence by Lemma (3.5)

$$m(r, Q(F)) = S(r,f) = S(r,f)$$

 $N(r, Q(F)) = S(r,f)$

Now N(r, Q(F)) = N(r,
$$\pi_k(f)$$
)

= N(r, $\sum a(z)(f)^{10} \cdots (f^{(t)})^{1t}$
 $\leq N(r, a(z)) + N(r, (f)^{10}) + \cdots$
 $\cdots + N(r, (f^{(t)})^{1t})$

= N(r, a(z)) + $\log N(r, f) + \cdots$
 $\cdots + \log N(r, f)$

= S(r, f) + S(r, f) + \cdots + S(r, f)

and so

$$N(r, Q(F)) = S(r,f)$$
. Also $m(r, Q(F)) = S(r,f)$

Therefore

$$T(r, Q(F)) = S(r,f)$$

from which it follows that

$$T(r,f) = S(r,f)$$

This is a contradiction. This proves the theorem.