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CHAPTER - III

Growth of differential polynomials

Let £(z) be a meromorphic function. As mentioned in
Chapter II, n,(f) will denote a homogeneous differential

polynomial of degree n. That is a finite sum of the form

a(z) (B (£ ..., (£K))k
where 15 + 1} + ... +1) = n and a(z) is meromorphic function
satisfying T(r, a(z) ) = S(r,f) as r = oo where by S(r,f)
we mean any quantity satisfying S(r,£f) = 0(T(r,£f)) as r — ao
if £ is of finite order and s(r,£f) = o(T(r,£f)) outside an
.exceptional set of finite linear measure if f is of
infinite order. Throughout we assume that the homogeneous
differential polynomial is such that it does not become zero.
The term §(a,£f), © (a,f) etc. being as defined at the

beginning of the Chapter II.
We now prove our results.

Theorem 3.1 : For any transcendental meromorphic function

of finite order

T(rlnn(f) ) QO
A(nn(f)'O) lim inf ececcccceccwaa 2 n S: 6(a1) cee (301)
r — oo T™(r, £) i=1
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(00
and (a(m (£f), 0))(ng (1+q - g @ (@))) > n i}:l 6(ay).

o (1 + a(my(£),0) - 8(N (), 0) ) oeo (3.2)

where la;l < ‘@ and 6(ay) > o

and T (f) is a homogeneous differential polynomial of
degree n, not containing £ for the proof of this theorem

we shall need the following two lemmas 3

Lemma 3,1 3 Let £(z) be a transcendental meromorphic

function and A1r 2 eeee aq, q > 2 Dbe distinct finite
complex numbers. Then

q ,
n 3  m(r a, f) < T(r, " (f)) - N(r, —---- -) +

i=1 T (£)
+ S(r, £) eee (3.3)

where S(r,f) = o(T(r,f) ) as — oo through all values if £
is of finite order and S(r,f) = o(T(r,f) ) as r —» oo outside
a set of finite linear measure otherwise. and n, (£f) is a
non-zero homogeneous differential polyrmomial of degree n

not containing f. That is n (f) = ;_‘_’a(z)(f.)ll_” (f(k))lk

where 11 + 12 + ceeee + lk =En

d
Proof : Let F(z) = Z .......
i=1 (f-ai)n
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Then we have

q
n Zl m(ro 310 £f) < m(r.E ) + 0(1)
i=

£ (X

q 1
i=1 f-a; f-ay
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Therefore
q ( ( ( 1

n m(r, a,,f) £ T(r,n_(£f) ) = N(r, —caw=- ) + 8(r, £)
&1 t | " n (£)

Lemma 3.2 3+ Let f be a transcendental meromorphic function

of finite order, then

lim SUP comcecee < nt{(l+g-q ©® (o)) eee (3.4)
where ﬂn(f) is a homogeneous differential polynomial of
degree n, not contairning f.

Proof : T(rm (f) ) =m (r, W (£)) + N(r, 7 (£f))

n (f) n
§ mr, =——g--) + m(r, £7) + N(r, 7 _(£))
f .

1l 1l
( sa(z) (£4) L.... g%y K ente, £
= PEER  atadd bbbt St +nir,
e fI"l + cee + 1.k r
+ N{(r, n (£) )
(k)
£ f
= m(r, Talz) ( -=) 1... ( ----))k)
£ £

+ m(r, £%) + N(r, 7_(£) )

£ (%)

fl
But m (r, T a(z)( --)11 R | -;-—— )lk ) = s(r,£f).
£

and so



78

T(r, m_(£)) € m(r,£7) + N(x, M (£) ) + S(r,£).

“

Now without any loss of generality let . (£f) consist of t
terms say % (f) = #,(f) + B,(f) + eoue. +4_(£) where
each ﬂi(f) {1€£41 <t) is a monomial in the derivatives of
- £ but not containing £ and of degree n.

And so
T(r, " (£) ) < m(r, £ + N(x, £3(£) ) + ....
eeet N(r, #y (£)) + S(r,f)
£ mnf) + (nN(5£) + Xn N (r,£)

+ (nN(r,€) + k, 0N (5E) ) + cuuues

+ (n N(r,£) + kg n N (r,£f) ) + s(r, £)

where k; is the highest derivatives in the corresponding
monomials ﬂi(f) (1 €£1i<t). Let g be the highest
derivative occurring in the homogeneous differential

polynomial (so that kl ky eee k¢ £ q)
Therefore
T(r,m (£f) ) < m(r, %) + t n N(r,£f) + tqn N (r,£)

¢ nm (r,£) + toN(r, £) + taqn N (r, £)

£ tnm (r,£f) + tn N(r,f) + tqn N (r, £)

= tn T(r,f) + tqn§ (r, £)

Now dividing by T(r,f) and taking limit superior of the

above inequality we get
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lim sUp ~eocmccee-- £ tn+tgn(l - O (o))

= tn+tgqn - tgqn & (oo)
Therefore

T(r, n,(£)
1im sup —eecmcee- £ ntl+qgq-q & (o) )

Proof of theorem 3,1 :

From lemma (3.1)

q
n 3 mir, a;,f) £ m(r, ~=eu- ) + s(r,£)
i=1 n_(£f)

Dividing by T(r,f) and taking limit inferior on both sides

as r —» oo it easily follows that

1l
m(r, ----- )

q () T(r, W (£)
n > 6(ay) £ lim sup ——ecewe- PR & T £ . R —

i=1 r = o T(r,nn (f£) ) ©r =—> o T(r, £)

T(r, ",(f)
= A(M (£), 0 ) lim inf =—c-eeemm -— .
T - 00 T(r, f)

Since above inequality is true for q > 2 letting g — @

we get
o) T(r, n,(f)
n Y 6 (a) g a(m (£), 0) lim inf —c-mcemcee

S i=1 r —» o T(x, £)

This proves (3.1)

' q
For the proof of (3.2) we add n Zl N(r,ai, f) to both
i=
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sides of result of Lemma 3.1 to get

q
nqT(r,£f) < T(r, M (f)) - N(r, =-w=- ) +n 3 N(r,ay,f)

+ S(r, £)
Dividing by T(r,f) to both the sides and taking limit

superior as r =5 o we obtain

1

r‘(rc ---- )

T(r, n (f) n_(f)

ng < 1lim SUp eecmcecmas - 1im Sup —----- B
r - oo T(rf) r - oo T(r,n,(£)
T(r, 7, (£)

- 1im inf —eee-Zol'4 n §E (1-8/24).
r => o T(r, £f) - i=1

Since a(n,(f), 0) > o by (3.1) multiplying by

A(nn(f), 0) and using (3.1) and lemma 3.2 we obtain

T(r,n,(£))
a(n, (£),0) nq < a(n (£),0) lim sup —--ece—--
r = o T(r, £)
N(r, I S )
n,(f)
- a(n (£),0) lim sup L. 00 seeceeecee- .
r = o : % . T(r,nn(f)
o lim inf eccccecaaa + (n ¥ (1-6(3y)))
r = oo T(r, f) i=)

And so
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a(m,(£), o)nqg g a(n (£),0) nt (1 + q-q @ (o) )

a
- (1 - 8(m,(£), 0) ) n iZl 6 (ag ) +

q
+ (n iz:i l - B(ai) ) a (nn(f)o o).

Thus

g
afn, (£), o) ng+ (1 =6 (M (£), 0)) n 3 G(ai )
i=]

gnt (1 +q-q@(w)) s (my (£), 0)

QO
+(n 15:1 (1 -68(ay) ) ) a (ny (£), 0)

from which it follows that

g
a(m_ (£), 0) ng+ (1 - §(n(£), 0) ) n 3 6(a; )

£ nt (14 - g @ (o)) a(n(£), ©) +

D
+ nga(n, (£), 0) -(n 12:1 §(ay)) a(m,(£),0)

Rearranging and letting q - o0 we get

| - ‘
(1 + atm(), ©) = 8(My(B), ) ) n > 8lay)

£n t(l + q-q @(o)) (almy(£), 0) )
which proves the theorem,

Theorem 3,2 ¢ If £(z) is a meromorphic function of finite

order with ® (0,£f) = ® (00, £) = 1 and nn(f) is a
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homogeneous differential polynomial in £ of degree n which
does not reduce to a constant then
T(r, R, (£) ) ~ n T(r, £) as r = oo

Proof ;: We have ® (0,f) =1 = ® (oo , £f)

g(ro"')

therefore @ (0,f) =1 = 1lim SUP —cocoeeacaa
r - QO T(rcf)

= 1

®(06;f)=1-1imsup ------- =1
r -»00 T (r, £)

Therefore § (r, -;- ) = s(r,£)
and 1.3 (r,f) = s(r,£)

and we know that from theorem 1 of [3]

n (1 - ma) £ lim inf —-ce-es & lim sup —ceceoa < n(l+ma)
r — o T(r,f) r— o 7(r,f)

N (r,£) + N (x, %)

where a = lim SUp wecemec—ccecccce- p—
r - 00 T(r, £)

Therefore ax = O

Therefore from above inequality we get
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T(r, nn(f))
Thus lim = «ceccccca- — = n,
r - 00 T(r, £)

Consequently T(r, n (f) )evn T(r,f) as r = ®
This completes the proof.

Before giving an application of theorem 3,2 we shall need

the following definition :

By a homogeneous differential polynomial of degree n

not containing £ we shall mean a finite sum of the form
1 1
mo(£) = Yalz) (£971 (g% 2., £k

where 1) + .;. + lk = n and a(z) is meromorphic function
satisfying T(r, a(z) ) = s(r,f).

We now give the application,

Theorem 3,3 3 If f£(z) is an entire function of finite order

with S 8(x, £) = 1 then
ax #£ oo

8 (00 nn(f) ) = ],
where N (f) is a non-zero homogeneous differential polynomial

of degree n not containing f£f.

q
Proof : set F(2) = )}  commmmccaca--
’u:l (f(Z) - (x,v )n

then as in the thesis of A.A. Mudalgi [8]
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q 1l
n 2. m(r, eeeeaa ) ¢ m (r,F) + o(1)
V=) £ - an
Fr (£)
= m (r, =e—ee- ) + 0 (1)
n,(£)
n, (£) 1
£ m(rx, f& . 5 ) + oy, —-em- )
V=]l (f-av ) nn(f)
+ 0(1)
1 1, 1
q (£) Yy lL L (glR)y K
= m(r, 3 a(2) —cmccmmcmccccrccncacae +
U=l (£ - a, )®
1l
+m (r, ———e- ) + 0(1)
n (£)
q b 11
€ 3> mir,a(z)) + m(r, ( =cee= ) ) + ..
V=] f-an
1l
esee + m(ro “‘"‘;"“"‘ ) + 0(1)
n, (£f)

Using Milloux's results and the fact that m(r,a(z) ¢ T(r,a(z))=

= S(r, £)
We obtain
q 1 1l
n Z m (r, ==—---- ) £ m (r —-ee- ) + s(x,£)
U=) f - [+ #3) nn(f)

Dividing by T(r,£f) and taking limit inferior we get
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1 1
n > m(r, —ecee=) m(r, ———--
u =} S 29 Kn(f)
lim inf S € lim inf —c----foolo
r —» oo T (r,f) r —> oo T(r,m (f)

q
Therefore n 3 6(a, .,f) & n §(o, ﬂn(f) )
V=]

q
Consequently Zl 8(ay, o£f) €6 (0, M (£) )
YVm

Making g ~>» oo we obtain

O
2 8lay f) < 8lo, my (£) )
V=]

Since the set {&(a,£) / 6(a, £) > 0} is countable it

follows that

P >
> 6 (a, LE) = 5(a, £)
V=] a # oo

And so

= 8(a£) & 8o, M (£) )
a # o

But by hypothesis ) 8§(ax, £) = 1
a # o

and so

1 €65, n, £) €1

Thus & (0, m, (f) ) = 1.
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our next theorem finds relation between deficient wvalues
of entire functions with that of its derivative. Thus we

prove :

Theorem 3,4 : If £(z) is an entire function of finite order

then
S sta, £) < 60, £
a ¥ o '
q 1l
Proof : Set F(z) = J  —=m-e- -- then by (7,33]
: u=l f(z)-ay '
q 1
Y m(r, ——mcae- - )< m(r, F(2) ) + o(1)
v=1 f(z)-ay
Ff£!
=m (£, ==== ) + 0 (1)
fl
£! 1
€ m(r, 2ece-- ) + m(r, -- ) +0(1)
f—av £!

1
= m (r, -- ) + o(T(r, f)

£
£(K)
= m(r, -f--:--f-zis- ) + o (T (x,£) )
(0 )

£ m(r, ==== ) + m (r, ~TkY Y+o(T(r, £))

£ £

1l
am(r, - ) + S(r,£') + o(T(x,£) )
£(K)

by Milloux's theorem.

Also since s(r,f') = s(r,f) it follows that
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q
Yy m(r, ——m--— ) s m(r, —aee- ) + s(r, £) ees (3.5)

Now dividing by T(r,f(k)) and taking limit inferior (3.5)

becomes
l .
Y m(r, —emmeee- m(r, =-=c )
v'=1 £(z)-ay £(K)
lim inf —eccmccnccrmeeree e $ lim inf —————— r)—(—-—
r=» 0O T(r, £) f —- T(r, £ ) )
Consequently

q
T 6 (a, , £) < 8o, £K
V=]

Making q — 00 we get

o0
S slay L£) < 8o, £5) )y,
V=]

since the set of values of a for which 6(a,f) > o0 is
countable, it now follows that

. 8(ay, .f) < &fo, £(k) ). This prove the theorem,
V¥

Remark : Putting k = 1 we obtain Theorem 4.6 of W.K.Hayman
[7. 104] . another result dealing with the Nevanlinna
characteristic of £ and the Nevanlinna characteristic of

f(k) is the following.

Theorem 3,5 : If f£(z) is a meromorphic function of finite

order, then
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T(r, £) 1
lim inf ——mmeoeee > e
I «» 00 T(r,f(k)) k+1

Proof : If £(z) is a meromorphic function of finite order
we have
T(r, £)

1im inf ecacewo - > -
r -+ o T(r, £') 2

Clearly N(r, £X) ) = N(r,£) + kK N (r, £)

< N(r,f) + X N (r, £)
Thus

N(r, £%) < (kx + 1) N(z, £) cee (3.6)

(k) ).

£(X)

m(r, £¥ ) am (£, ==e= . £)
£

£(%)

< m(r, ==== ) + m (r,f)
£

Now consider m(r, f

=m (r, £) + S (r,£f).

And so

m(r,£X) ) < (x + 1) m(r,£) + S(r, £) cee (3.7)
Therefore combining (3.6) and (3.7) we get
m(r, £ ) + n(r, £%) ) < (k1) T(r, 8) +5(x,£)

Thus

r(r, £%) ) < (k+l) T(r, £) + S(r, £)
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which in turn vields

T(r, £) 1l ‘
lim inf ecevewsowo- 2 m—e—— as required.
r—o T(r, £K) 7 k41

In the other direction we have

Theorem 3,6 : Let £(z) be a meromorphic function of order

3 ,(0 < @ < oo) Then

lim inf —----pcc - < o

Proof : It is known (See for e.g. [17])that

T(r,g) < Bg T(kr, g')

where kX > 1l andr> 0

(k-1)

Therefore T(r,f < A f(k-l) T(kxr, £(k)

aAlso

v(r, £%2) ) < a_, T(kr, £k-1)
= By 5 r(x? r, £X) )

where B, , 1is a constant depending on g(k-1) (o) f(k"z) (o).

In general

r(r, £%P) ) < B v $Pr, £ )

and

1

T (r, £* ) < Bl T (kk- r, f(k} ).
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T (r,£) < By T (k< r, £} )
=B, T (x r, f(k) )
where a = (k)k

Thus

T(r,f) ¢ By (a r)q(ar)

~ B, o3 r‘;(r)

= Bo o:g T(ro f(k) )

using proximate order for a sequence.

Therefore 1im inf commcccenea < 00 .
r -»> 00 T(r, £k )

This proves the theorem,
We next prove

Theorem 3,7 ¢+ Let £(z) be a non constant meromorphic

function, then

q
m(r, o) +n Y m(xr, p, ) < (n+1)T(r, £)-N; (r)+s(r, f)
U=l

where P(z) is a polynomial of degree n,

1
Ny(r) = (n+l) N(r,f) + N(r, === ) = N (r, £, )
Bn
g q 2
S(r) = m (r, === ) +m (r, 3. =om-om- SO
£0 v=1 (f-p, (z))°
3qg 1
+ ng log* == + n log 2 + 100 =eececcwa
6 | £1(0)]



91

where ‘dn is a monomial of degree n in derivative of £

but not containing £.

Proof : The construction of IP; - Pyl > 6 given below

is as in [11] which we give here for sake of completeness.

Let g be any positive integer > 2 and consider any q
Polynomials Py, 1< 41i <q and let Pjy € B(1l) where B(1)
be the set of all polynomials in z of degrees at most

1 > 0. Let A= (a;, a, «v0. ay) be the finite set of
coefficients associated with these g polynomials, the ai's
being distinct, Then for i ¥ j Py - Py is a polynomial
whose highest degree term is (a, - qp) :e:k or ay zk. Here
AN#upandog< k €1, a,  a € A . Therefore

) %

1Py -ij o~ la, - ap! rk or !Pi-ij rotast rk

as r — oco. Let § = Min {1t1a,0 , 1a, - ap‘l} Then for

11 <3 <£qg , we have iPi-leasfor rzr,

uniformly in 2

q 1
Set F(z) = S R
v =1 (£(z) =P, (2))°
.8
Suppose for some v , I£f(z) - P, (2)! < ;-- eee (3.8)
q

Then for p # v

lf(z)-Ppl .>, lpp,.pv; - lp, - £(2)]
5
7 6 = -
3 q
2
>/ - 6.
3
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Therefore for p # v

1 3 1

—————ememe P S P — cee (3.11)
| £(z) - P I 25 2g 1£(z) - P, (2)]

Consider
1
| F(2)] 3 emmmecccenn — - g ............
(f(z) -p, )P p Av (£(2)-p, )n

R ecrerccme—— - j{: ------------ -ee== Using(3.9)
| £(z)-P, I ® p Ao 279" 1£(z) - pyI"”
1 g=-1
S N P
| £(z) - p,I 1 2" "
1 1

J£(z) - P,1 ° 20

1
since 1 2 L + ——— for n 2 1 and
20 2t
q-1 q" 1
1 hndi et oddaadond >/ 1 - e .- d 1 - owoww
2R o0 20 of 2
q-1 1

hich gi l = egeea -—— .
which gives 25 s > >h

Hence
+ + 1
log IF(2)) > log =—c-eecce-- ~= = n log 2
'f(Z)-Pv‘ n .
q 1 : 1
= > log* ---------- - Ei log+ e e————— -
p=1 If(z)-P I e A If(z)-Ppln

- n log 2 con (3510)
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But since i ¥ v,

VE-P1 3 1P -Pyl - If -5
b 8 - 8/3q
(3g - 1)s
B eecmcee -
3q
1)
-3 ——
3q
we have
1 3q
logt —memmmmeee- < logt (=== ).
£ =P D
B
Therefore
1l 3
> log" =--e-- - & (q-1) log" ( --- )?
p #Y |€£ = P |
+ 3q
£ ng,log ( === )
5
Hence from (3.10) we have
+ d + 1 + 39
log | F(z2)] > Y 1log =—cce—ceee- = - nglog’ ==~ - n log 2
p=1 | £(2) - Pp. 6

Next we consider the case when

8
| £(z) - P,l > === forall v,
3q
Then we heve
logt —ecocomeeee - & logt (-—)"

I£(z) = Pyl P 8

L]

[

(3.11)
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and so

This shows that R.H.S, of (3.11) is negative. But L.H.S.
of (3.11) is non-negative and therefore (3.11) is trivially

true in this case and it is true in all cases.

Multiplying (3.11) both the sides by 1/2n and integra-

ting over [0, 2n] we get

q 1 + 34
m(r,F)),Zlm(r, ------- l-3)-nqlog --- « n log 2.
Vs (f-Pv ) )
And so
q + 34
m(c,F) > n » m(rP,, ) -ngqlog =----n log 2.
y=] 8
eee (3.12)
Thus
1 £°
m (r,F) = m (£, === «=- #_F ), which yielas
£D n
n
1 £°
m (r,F) < m (r, --= ) + m(r, === ) + m (r, ﬂn F) oo (3.13)
»
n

But from Nevanlinna's first fundamental theorem we have

T(r, £) = T(r, % ) + log | £(0) |

and so
£° B #n £0
m(r, === ) =m (r, === ) + N (r, === ) « N(r, === ) +
£0 £D
n n
£2 (0)
+ log , ----- ,
g (0)
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angd

1 n 1 1
m(r, -=- ) = T(r,f ) - N(r, == ) + log ==cee--
£ 4

Therefore (3.13) will finally vield

1
m(r,F) €& nT(r,£) - n N(r, £ ) + n log —=—-om
£ 1£¢O)
n n £
+ m(r, === ) + N (r, == ) « N(r, === )
fn fn ! n
£ (0)
+m (r, g, F) + log , ———— '
g, (0)

Combining this inequality with (3,12) gives
3q

n > m(r, P, ) - nq 1og+ e=~ - n log 2 < m(r,F)
o=l )

1 &n

£ n T(r, f) - nN (r. : ) + n 1log =e-e—= + m(r, -=-)
£ | £(0) 1 £
n £" £(0)
+ N(r, === ) = N(r, ==~ ) + m (r, § F) + log | -—-= I .
£" n £_(0)

Therefore

+ 3a
n % m(r, P, ) + m(r,f) < m(r,£f) + m(r,F)+ng log -g- +
=]

+ n log 2
1 ﬂn
£ nT(r,f) - n N(xr, =) + N(r, == )
£ £D
£7 g

- ¥(r, -~ )+m(r, ;g )+m(r.2!nF) +
n
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1 + 34
+ 10 —meme-- + T(r,£f) - N(r, f)+nqlog -~ +
g (o) 8
+ n log 2

Thus

q 1
n )y m{(r P, )+ m(r,f) < nT(r,£f) - n N(x, =)+N(r, 8 )
v =l : £ n

1 1 1
+ N(r, == ) =N(r, £7)=N(r, =-=)+log |=-e=m=
£1 n £,(0)

+ 3
+ T(r,£)-N{(r,£f) + ng log =-- + n log 2
)

n
+m (r, ey ) + m(r, g F)
1

n

And so

q
n ¥ m(r, P, ) + m(r,£f) £ (n+1)T(r, f) - {(n+l)N(r,f) -
Y=l :
1
- N(r, #) +N(r, == )} + s(r).

n
which finally yields

q
m(r,£) + n > m(r, P, ) £ (n+1)T(r, £)- N, (r)+ 5(r)

u=]
1l
where N, (r) = (n+l) N(r,f) + N(r, --- ) = N(x, ﬂn )
n
q B
and S(r) = m(r, — ) +m (r, z: ....... E----ﬁ_) +
£7 v=l (f-P, (2))
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+ 39 1
+ ng log =-- + nlog 2 + log =v---
)

Remark : If P, (z) 1is constant and n=1 then we get
theorem 2.1 of Hayman [7, 3i] .

We now give proofs of two theorems stated without proof

by R. Parthasarathy [12]

Theorem 3.8 3 Let f(2z) be an entire function of order

R (0 < R oo ) for which

log M(r, £)
lim Sup --'q"— ***** - = (! ° [ ] (3014)
r - o0 r’ L(r)
N(r, 1/f)
and lim sup --ce——-- = g, eee (3.15)

r - o0 r° L(r)

Let v (z) be a homogeneous differential polynomial of
degree p > 1 with all the coefficients a(z) entire. Then

for every complex number w except possibly for w = 0

ﬁ (r, wo v ) o
lim sup -’-6 ----- m— >/ P ( - - ﬂ ) s (3.16)
r = o r' L(r) h(g )

n (I’, W, V¥ ) 4
lim Sup > e - - - >/ q P ( - B ) se e (3. 17)
r = 3 L(n) h(%)
and § (0, £) + © (w.v ) < 1 eee (3.18)

2,1/2
1+(1+ Q°)

where h(Q ) = {q+ (1+ qz )1/2} {-_"7% ....... } , 8>0

Proof : Let & > O be given. Then by (3.15) we have



98

]

N(r, %)( (B +€ ) r’ L(r) for all r» r,. Also

by (3.14)

log M(r,£f) > (r - ¢ )rq L(r) for a sequence of r - .
Using Lemma 3.1 and the fact that £(z) is entire, we obtain
P {1+ 0(1)} T(r£) < PN(r, % ) + N (T,w, + )

< pP(g +€)rS L(r) + N (r,w, ¥ )

for all r > ro.

Also for » > 1
A= 1
T(r,£) ) =-==== logM (rA ., £).
A+ 1

Thus we have for a sequence of r - oo

b P | b o o

T(r,f) > (ax - € ) :—:-I ( e ) L( -:\'-)
.and _ L( ;\:_-)

————————— - e - o on + O A - E - - - v - -

r L(r) P A+l L(r)
-P(B +E ).
L (x/n )
Since —e-==- —— = lasr - o we get
L(r)
N(r, w, v ) 1 A =1

1im SUp  megemeoeoe ) —-cee ( cece- ) Pa -PB.
r = oo rd L(r) A A+l

‘ 1 A=1
The maximum value of X ( «=<-- ) is easily seen to be

A+ 1
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1l
~-=-=== and hence
h(g)
ﬁ (ro w,e WV ) x
lim sUp cemccccee-- 2 P ( ccomm -B ).
r - @ r? L(r) h(%)

from Lemma 1 of [12] we have

-1; (ro w,¥ ) ﬁ (r, Wo )
lim sup B Wadeends - > lim sup it Sttt
r = 00 r’ L{r) r - r’ L(r)
Therefore
n(r, W, ¥ )
1im sup S et 2 9P ( cacee o g )
r — oo r’ L(r) h(8)

N(x, 1/f) N (r, w, v )
P {1+0(1)} < P —emmm-u . F  mmme—e———— -— .
T(r, f) T(r, £)
Since ¥ (z) is entire N(r, ¥/w ) = 0 and by lemma 2

of [12]

m(r, ¥/w) < m(r, Yoo ) + m(r,£° )
wfp

= S(r,f) + pm (r, £)

-

Hence by T(r, ¥ /w ) < {P +0(1)} T(r,£)

Thus we have for all r > rj

P {1+0(1)} < P coomemeu- + P cevcencnca- (1+0(1))

Letting r «—» oo we get
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N(xr, 1/f) N{r,w, v )
PL P lim sup ewwec—e- - + P lim SUup weccccaa- -
r - T(r, £) r - o T(r,¥)

And so
P< P (l-8(0,f))+P(l~- @ (w, ¥) ), whichon
simplification yields

8§ (0, £) + @(w, ¥v) £ 1.

This completes the proof.

Theorem 3,9 : Let £(z) be a meromorphic function of order

§ (0 < Q< oo) for which
lir SUp wwmec—ee = 3 ees (3.19)

and lim SUp  ecemcccmccnccccce e = b, eee (3.20)
r —» oo r’ L(r)

Let ¥V (z) be a homogeneous differential polynomial of
degree P ( 21 ) in £. Then for every complex number w,
except possibly for w= 0

N (r, wo ¥ )

lim sup ~gw--ecewe=-- > P (a - b)
r —» 00 r’> L(r)

1im SUp  ~eeqom—e ceee= Y P 8 (a-b)
r - 00 rd L(r)

and §(0, £) +§, ® (0o, £) + (ktl) ® (w, ¥ ) < k+1+%

where k is the order of the highest derivative occurring

in ¥ (2).
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Proof : We have from (3.20), given € >0 with 0 < Iwi< @

1o 1 g
- N(rof)+N(r.-E)<(b+g)r L(r)
P

for all r 2 ry .

Theorem 3.10 : Let f(z) be a meromorphic function and nn(f)

be a homogeneous differential polynomial of degree n.

‘T(ro nl’l(f)
Let wwececaa- e- =) @ as r = 0o where « 2> n then
T(r, £)
1 04
0 (0, f) £ 1+ = = «=-
m pmn

where m is the highest derivative occurring in nn(f) and p

is the number of terms in 7, (£).

Proof :

Let wececccecea. -9 @ as r -» oo where a > n.

T(I‘,f)
Mo (£) n
Now m(r, W (f) ) = m(r, —eee—- <) +m (r,f ) ees (3.23)
fn
And so
1l l
n,(£f) sa(z)(f*) 1.... (f(k) ) k
m (r, -Ea-—-) =m (r, -'-----*;I;-';ia’:‘:::’;i)—(-—**- )
P £ 1,
£ Y m(r,a(z) ) +m(r, (===) & ) + ceeceeen
1l £
g0

e s e m(rl ( - - - ) )
£
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T fe £n f(k)

P
Y lymir, == ) + 1m(r, == ) + ...+ly, m(r, «-=)
101 £ 2 £ k £

+ S{r, £)

Since m(r, a(z)) € T(r,a(z) = s(r, £f).

And so using Milloux's theorem it follows that

m(E)  p
m(rl ""'a"'"’")\< Z lls(l‘,f) + 12 S(r'f) + eese +l‘k S(r'f)
£ 1l ,
= np S(r,£)
= s(r, £).
Therefore

m(r, ®_ (£)) < m(r, £7 ) + S(r,£) by (3.23)
= nm (r,f) + s(r,£)

Thus

m(r, ", (f) ) £ Pom (r,£) + s(r,f) ceo (3.24)

aAlso

N(r,m_(£) ) = N(r, zalz) (g9 ez . (g00)1k

P

= > N(r, a(z)) + 1y N(x, £') + .....,
1

enest lk N(r) f(k) )
P -
N(r, n(£) )¢ £ 17 (N(r,£) + N (r, £)) + 1, (N(r, £) +
1

+ 2N (5, £)) + 13 (N(r, £) + k N(r, £))+s(x, £)

Since N(r, a(z) ) £ T(r,a(z) ) = s(r,£f)

and so
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NGz M) & T (¥ Lp 4 eees ) N(BH)+1) R (56 +
+ 2L, N (5, ) + «o.. +kly § (£, £)45(r, £)

n N(r, £) + LkN (5, £) + 1, k § (5, €) + ...

72N
~ Mo

LN + lk )(ﬁ (rlf)

P -
==)1: nN (r,f) + n kX N (r,£f) + s(r,f)
= p n N(r,£f) + pnm N (r,f) + s(r,£f)

where p denotes the number of terms in the homogeneous
differential polynomial and m is the highest derivative of
differential polynomial and 11 + 1l + evee + 1. = n and
where n is the degree of differential polynomial.
Therefore

N (x, nn(f) ) < Pn N (r,f) + pnm N (r, £)

That is

N(r, Hn(f) ) < Pn (N (r,f) + m N (x,£) ). ees (3.25)

Combining (3.24) and (3.25) we get

T(r, 7 (£f) ) < P n T(r, £f) + P nm N (r,£) + s(r,£).

Since T(r, n (£)) / T(r,f) = a it follows that

« T(r,f) < Pn T(r,£) + Pnm N (r,£f) + s(r, £)

(e - Pn) T(r,f) < pom N (r,f) + s(r, £f) eee (3.26)

Dividing (3.26) by T(r,£f) and taking limit superior we get
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(¢ = Pn) £ 1lim SUp ecmccmcaaea + lim sup —e---
r = o T (r, £) r -» o T(r £f)

Thus

(d =Pn) € Pm (1 - @ (o0, £f) )
Consequently ,

Pnm @ (oo, £) € Pnm+ Pn - «.

And so

¢ 4

- wewews g

Pmn

® (o9,f) € 1+

= N

Remark : Ifm=1, n=1 and P = 1 then nn(f) = £' and

so ©® (o, £f) € 2 - x which is theorem 3 of S.K.Singh and
V.N.Kulkarni [17]

We finally end the Chapter by giving some application of

Nevanlinna theory to differential equations.

Theorem 3.11 : The differential equation

a; (2) (£(2) ) p (£) + 7, (£) =0 .ee (3.27)

where a; (z) 7.‘ 0 and 1 £ Xk < n has no transcendental mero-
morphic solution f£f(z) satisfying N(r,f) = 3(r, f) where
Tk (f) is a non-zero homogeneous differential polynomial
of degree n - kX and P(f) is any non-zero differential
polynomial and a(z) are meromorphic functions satisfying

T(r,a (2) ) = s(r,£).

Proof :Suppose there exists a transcendental meromorphic
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function f satisfying (3.27) such that N(r,f) = S(r,f) then

(£)

Hence by lemma (3.5)

m(r, P(f) ) = s(x, £f).

1 1
Also N(r, P(f) ) =N (r, xa(z)(£) 0 (£ L., (g0t
= S(r,£f).
Therefore
T(ra P(f) ) = s(rif) L3RI ] (3.28)

Also from (3.27) we get

And hence by Nevanlinna's first fundamental theorem
n T(r, £) < T(xr, n, , (£) ) +T(r,P(£f)) + T(r,a;) + o(1)
= T(r, N, (£) ) + s(r,£) by (3.28)
Also since N(r,f) = S(r,£f) we have
T(r, Ry x(f) = m(xr, = _, (£f) ) + S(r,£)
1

1
Talz) ()0 (£ L., (¢]),yx

+ m(r, £2%) + s(z, £)
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. £ £
= m(r, Ta(z) ( == )71 ., ( =ce=)
£ £

1
Xy

+m (r, £2°% ) + s(r, £)

f'
€ m(r, a(z) ) + llm (£, == ) + eoen
f

(0

+ lkm(r. -w-= )} + m(r, fn‘k) + S(r, £)
b 4

= m(r, fn"k

) + 8 (r,£)
T(r, 7 _ (£) ) € (n-k) m(x,£) + s(r,£)
= (n-k) T(r,£f) + s(r, £)

n T(r,£f) < (n-k) T(r,£f) + s(r, f)

This is a contradiction. Hence the theorem

Remark : Putting P(f) = £ and X = 1 we obtain theorem 3

of G.P.Barker and A.P.Singh [1].
We have then on using lemma 4

{P + o(1)} T(r,£) < P(b ~r»€)rQ L{r) + ﬁ(r.w, v (z))

for all r> )

on dividing by r3 L(r) and letting r —» co and using (3.21)

we get

{p+0(1)} T(r,£)
lim SUP —vcwmcwmca- — o e o o -« 1lim sup P(b+e ) +
r —=» oo rd L(r) X -» 00

ﬁ (ro W, \P(Z) )
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and so

§P+0(1)} a < P(b +¢) + 1im SUD ecccmmmmmmmaoa .
r - o r31 (r)

which yields

N (r, wo, v (2))
Pa § Pb + lim sup ———

r —> 0o r? L(r)

Thus

from Lemma 1 of [12] we have

5 (rl w, ¥ ) ﬁ (r, w, ¥ )
1lim SUp wemcmcae- - o z lim sup ---.Q -------- oo (3.22)
r —>» w r’ L(r) r — @ r° L(x)

combining (3.21) and (3.22) we get

ﬁ (ro w, ¥ )

T (r, ee———— ) € P(k+l) T (r,f) + S(r,£)
Also by lemma 4 of [12] we have

P T(r,£f) < P N(r, 1/£) + N (r,f) + N (r,w, ¥ (2))+ S(r,£)

And so
(r, 1/f) N (r, £) LN (r,w, ¥ (2)
P<P ecomomcea- + e + {P(k+1)+o(1)} --------- — .
T(x, f) T(r, f) T(xr, w, ¥ )
T(I‘, w, ¥ )
. mememom—— + 0(1)
T (ro £)

Letting r - o0 we get
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P<P [1-58(0,6)] + [1- @o, £)] +
+ (P(k+1)) (1 = @ (w, ¥ (z) )
which on simplification yields

1
5 (0, £) +§ ® (oo, £) + (k#l) O (w, ¥ (z) )< kil + = .
P

Lemma 3.3 Let ¥ (z) be a homogeneous differential polynimial

of degree P in the meromorphic function £(z) then

PT(x, £) < PN(z, »’fﬁ y +N (0,£) +8 (r, 1, ¥ 4+ s(r,6)
w

Proof : Working as in theorem 3.2 of Hayman [7, 57] we get

l - - 1
m (L, ——-——- ) < N (£,£) + 8 (, =emmmmm ) = Ny (r, —=-= ) +
¥ (2) | = (o)
...... - v
w
+ s(r, £f) ,
Also 1
PT (r,£) = T(r, £ ) = T(r, 5~ ) *+ o)
ML, 257 ) + N(r, Y ) + 0o(1)
v(z)/w 1
€ m(r, eeccenaa. ) + m(r, —eceeae- ) +
£ W (2)

+ PN(x, 1/£f) + o(1).
and so

1
PT(r,f) < m(r, R ) + PN(r, 1/£) + S(r,£)
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VY (2)/w
since m (r, ——ceeemeceea ) = s(r,£f).
£P
Thus
- - 1
PT(r,£) € PN(r, 2 ) + § (r,€) + N (£, —mamgemmm- ) -
£ (2 ,
w
1
- NO (ro “‘4‘;""‘ ) + s(rof)
( =2<)
, w
1
since N (r, e-eeeee-e=) 2 0, it follows that
( v/w)?

PT(r,£) < PN(r, 1/£) + N (r,f) + N (r, w, ¥ (2) ) + S(r,£)

which completes the Lemma.

Note 3

(1) p(f) # o0 is essential, since, if P(f) = 0 then there
exists transcendental solutions of (3.27) satisfying

N(r,f) = S(r,f). For example consider £f(z) = eZ ana

Mpel (£) =M, (f) = £ - £ = e* - e® = 0.
Thus e® is a solution of (3.27) and N(r,e%) = 0 = s(r, f).

(i1) Also the condition N(r,£f) = S(r,f) in the above

theorem is essential,

Since consider the equation 2f3 - (f* + £) + 0, that is
2f2 f - (£ + £) = 0 then the above has f(z) = sec z as

its solution and clearly N(r,f) # s(r,f)

(111) (£)® - (£)™ = 0 for any function f trivially shows

that k should be greater than or equal to 1 in our theorem.,
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G.P.Barker and A.P.Singh in [1] have proved the following

theorem.

Theorem : No transcendental meromorphic function with
N(x,f) = S(r,f) can satisfy an equation al(z)(f(z))np(f)+
a,(z)p(£f) + &3 = 0 where a; (z) # 0, n is positive integer

and P(f) is a monomial of degree > 1.

It looks reasonable to except that the above theorem
should hold for homogeneous differential polynomials also
instead of only monomials. But as the number of terms in a
differential polynomial though finite, may be large, we
have not been able to prove this result. However, if we put
a restrictions on the number of terms in a homogeneous

differential polynomial then we have the following theorem

Theorem 3.12 ¢ No transcendental meromorphic function £ with

N(r,f) = s(r,f) can satisfy an equation of the form
a, (2) (£(2))7 m () + ap(2)m (£) + a3 (2) =0, ... (3.29)

n 2 1, where a)(2) g 0 and M (f) is a non-zero bomogeneous
differential polynomial of degree k having p terms, where

p & K satisfy the relation (p - 1)k < n.

For the proof of the above theorem we shall need the

following lemmas of [1]

Lemma 3.4 : If £ is meromorphic and not constant in the

plane, if g(z) = £(2))" + Pn-l (£), whgre Pn—l (f) is a
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differential polynomial of degree almost n-l in £ and if

N(r,£) + N(r, 1/g) = s(r,£) then g(z) = (h(z))",

hi(z) = £(2) + 1 a(z) and (h (2) )“"1 a(z) is obtained by
n

substituting h(z) for £(z), h'(z) for £'(2) etc. in terms

of degree n-l in Pn_l'(f).

Lemma 3.5 : If f£(z) is meromorphic and transcendental in

the plane and that (£(z))™ P(z) = Q(z) where P(2), Q(z) are
differential polynomials in £(z) and degree of Q(z) is
atmost n. Then m(r, P(z) ) = S(r,f) as r ~» oo

Proof of theorem 3,12 :

Case (i) we first consider the case n 2 2 suppose (3.31)

holds clearly a3:¢‘ O, for otherwise either £ is a relational

or T(r,f) = sS{r,£f) and both of which are not possible,

Now from (3.31) we get

a 63
(6)° + D S --= = G(z) say
al al nk (f)
Then (
a, m £)
N(r, L) = N(r, ~2--Feell) = S(r. ).
G as

Also N(r.f) = S(rof)o

Therefore by Lemma (3.4)

G = (£)P
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which yields a, = 0. Thus equation (3.29) becomes

n a3
()P m(£) = - -
a

and hence T(r, (£)? nk(f) ) = s(r, £). eee (3.30)
Now let £ (f) = £ m  (f)

P 1l
= £D {L; (5)10 (et ... ey it]

1l P 1l 1 1l
Therefore -jiﬁ = e {Z (£) ° (£*) .. (£5) t} .
3 2 (f) 1l
Thus t
1l 1l ) o £' 1 b 3 1l
--.‘E- 2 cwwmw %Z ( - ) 1 es o0 ( - ) t}
£ot g (f) 1 £ £

Applying Nevanlinna's first fundamental theorem and that

T(r, #) = S(r,f) we obtain

) (t)
P £ £
1l £ 4

Using Milloux's theorem [ 7, 55] it now follows that

P £ £(t)
(ntk) T(r, £)'¢ 3 1) N(r, == ) + o0 + 1 N(r, =-=-) +
1 £ £

+ S(r,£f).

But N(r,f) = s(r,£f) and so
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(t)
£
N(r, «=-=) < N(r, f(t) ) + N(r, i )
£ £
£ (t+1) N(xr, £) + N(r, % )
1
= N(r, s ). + s(r, £)
Therefore

1 1
(k) T(r,£) < {1, n(r, PR ASRELI R N C )} +s(r, £)

Mo Mo

(1, + 1, + ooo + 13 N(x, % )+S(x, £)

1
- }‘l? (k= 1)) N(r, 2) +5(5,0)

= p(k = 1) N(r, T ) + S(z,£)
£
Thus
(n+k)T(r, £) < plk-1)) T(r,£f) + s(r,£)
£ pk T(r,£f) + S(r,£)

This is a contradiction since n + k > pk.

Case (ii) : we now consider the case n = 1. when n = 1,
the hypothesis implies p = 1 and so M. (£) becomes a
monomial, This particular case has been considered by

G.P.Barker and A.P.Singh. We give their proof for sake of

completeness.
32
Let F = £ + =
i |

then 7, (£) = g(F) where Q(F) is a differential polynomial
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-a
in F. Then (3.31) can be written as FQ(f) = --3

3
and hence by Lemma (3.5)

m(rc Q(F) ) = S(raf) = S(raf)
N(r, Q(F) ) = s(r, £)

Now N(r, Q(FP) ) = N(r, n (£f) )

1l 1l
= N(r, Sa(z)(e) ... (£{8))°¢

< N(r, a(z) ) + N(&, (£)10)+ ....

.s +N(r, (f(t))lt

= N(r, a(z)) + lON(r,f) + cesoes
ese lt N(r,f)

= S(r,f) + S(r.f) *tees + S(r'f)

and so

N(r, Q(F) ) = S(r,f). Also

m(r, Q(F) ) = s(r, £)

Therefore

T(r, Q(F) ) = s(r,£)

from which it follows that

T(r,f) = s(r, f)

This is a contradiction. This proves the theorem,

o0o



