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1.1 The special functions of mathematical physics arise in
'%@ezﬁolution of partial differential equations governing the behavi-
—our of certain physical quantities. Probably the most frequentlﬁ
cccuring equation of this type in physical sciences is iaplace’s

equation

2
AV \f/ = 0 (1.1.1)

satisfied by a certain function\+/ describing a physical situation
under discussion. This was mentioned by Laplace, the great French
mathematician, in his memoir, published in 1785. Legendre, to whom
Laplce had communicated his famous potential theorem, investigated
the expansion of the simple term of potential in the form of an
infinite series and was thus led some time in 1784, to the aiScevery
of Legendre Coefficients which were later on known as Legendre

polyncials.

Bessel functions were first introduced by the mathema=-
~tical astronomer, F.W.Bessel in 1824, in the investigation of a
perturbative function in dynamical astronomy. Thereafter, the fun-
~ctions appeared in physical sciences @lmost as frequently as’fhe

circular functions.

It is the hypergeometric series

a {a+ 1) blb+ g X% + ala +1) (a+2) blb+i) (b+2),

2.b X +
1.C 1.2 C(c*lf, 1.2.3.C (c+1) (c+2)
4 - - | | | (1.1.2)

1+

which defines the pypergeometric function ZE: ( a,b;ecix). It was
Gaussf{j7 } who made a detailed study of this function and published

the work in 1876. The famous Gauss Theorem gives us the value of
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the function whei: x = 1 in terms of Gamma functions, The Gauss' hyper-
~geometric sericc has been generalized in different ways by various

mathematicians from time to time,

1.2 In this section we list some of the important and well
known polynomials, in the field of special functions, which have
been studied by the mathematicians like R.P.Agarwal, W.A.,Al-Salam,
H.Batemezu , P.E.Bedient, B.R.Bh8§ale, R.P.Boas, Jr. and R,C,Buck,
Fred Brafmean, L.Carlitz, D.J.Dickinson, Fasenmyer, E.D.Rainville,
SJ0.Rite, R R, Khdndekar; K.M.Pradhan, M.T.Shah, N.K,Thakare and

B.K.,Karande ard scveral other workers.

The legendr~ polynomials defined by

/7]
Vo) = P’ﬂbo: \ (-1)K (5) n-k (2 X) nizwk (1.2.1)

K| (n = 2k)§
K=20"* 4

is a scolutinn of the 4ifferential equation

(2 i2c?) W"'L,};)} ax W )+ nln*) w (x) =0, (1,2.2)

The hypergeoretric forms of Pn (X) are

Pn (X = I 15 (1.2.3)
oy
. nt+l;
= (1" F y o LX) (1.2.9)
2
The H@rmite_polynomlals Hn (X) defined by the relation
[n/2]
W(X) = Ho (») = 0F aext L
k! (n =~ 21! )
K=0

satisfy the differential equation

'\id"‘i' (Y) — X WHX) + 2n W(X) = 0. (1.2.6)
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The Hermite polynomials can also be defined as

“ B e B S
Hn (X) = (2X) 210 1 I (1.2.7)
—— w24

:’vx"’iJ

The generdlized lLaguerre or Sonine polmomials defined

for n a non-negative integer as

&), (1 +ed i ’
W(x) - Lr() )(‘X)'-" ____-___ f (1.2¢81°
1.+ ;

gatisfy the following differential equation
XWX + (14 - X WX + n WX) = 0,(1.2.9)

Whenof = 0 we get Laguerre or simple Laguerre polynomials

(O\ ¢ - » ._:‘n;' :
](x) e E {‘1. XJ (1.2310)

. s . (4, B) - :
The Jacebi polynomials Pn '8) may be defined by

e

- -v' e a— .
W(X) = § )<x) =y ~n, 1 +%+@+ 0y
n; 2411 1-%
‘ . 1+, 2
(1.2.11)

whish satisfy the differential equation

(1-x?%) W (%) + [{3 - (2 +eX +3) %j W
+n(1+€+8 +n) W (X=0, (1.2.12)

Whep of = [3 = 0 the above polynomials reduce to Legendre polynomials

{ 1.2.3). When K= p j}i the Jacobi polynomials (1. 2 11) reduce

o the RN C T
O the Gegenbauer polynomials n defined by

Cp (2\}) f— T
n X --—-—-? e F [-n. 23+ a Pyx | (1.2.13)
.‘. L’ + 354 ZJ

On putting  o{ = @ =y in .(1.,2 11) we. get

,« ----- e

Pn (-;i: ~%) (X) = ( Eﬂ/ ng ] (1 2 14)
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which reduce to“fchebicheff polynomials of first kind defined as

_ _ | = ~
- (X) _ _n! (=, %) _ |=n, n;
—r“ —_Wn i @ 2|1 : X1 (1.2.15)
v 2 2 e i

o

In 1936 B‘atei"h“‘an[._?‘lwhile constructing inverse Laplace

transforms introduced the polynomials

em— gt

zn (X) = L—nl a+ls oy | (1.2.16)
212

-

which are called as Batéman's polynomials,

Khandekar EZO] introduced generalized Rice's polynomials

in the form,

Tr—— g

mn (2/P) (.67 x) = ”;a - 32 -n'n+a+b+1§c"' (1.2.17)
. } 1+a"’ 1‘ ‘- ‘

Wtich reduce to Rice's polynomials szél] on putting a = b = 0.

Shah [303 defined the generalized Sister Celine's polyno-

mials by the relation

£ "

"'ﬁl n+a+b+1, az' --n'ap’

(1+a)
b3 SIS + ; : . X
‘n-t. }3"(‘ %«i’i ~£+al /thzt "'""'tbq7 —
(1.2.18)

Which reduce te Sister Celine's polynomials given by Fasenmyer

[16] on putting a = b = O,

Rainville {_22_] has studied the generalized Bessel poly-

-~nomials which are of the form

() : . 2¥+ n;
yn = 2 ﬁb% i, :-1 (1.2.19)

w—

Bedient {;63 in his study of some polynomials associated
with Appell's F, and F5 functions introduced Bedient polynomials

>\x$ \B\,Y‘,’ X) and Gn («, ﬁ ; X ) defined by the relations
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(5)
Y T
- (1.2,20)

B \Nix) = (Ply (20F
nyo

*

and _ ﬁ
- _ '*_ 7 _
| L) (B, (20 kel 1L =B -n;
- . & , 1
G, (P ix) = — ‘ 2
‘ ,ni ( o+ }3 ) 3o X
l 1 *"(—n; 1"'48 -7
(1.2.21)
The Lommel polynomials defined by Watson ~§4:} are
Gy .

(x)

L

Toscano [r33j has defined the polynomials as

— e s .
-'_“ =iis 1 If""""!.id P ’ , "
(@) 5 T * : ;
— ptl | g+l x | (1,2,23)
ni (a)n
_‘-a + n, Bl o=t Bq H a:
R =t O

1.3. Here we introduce gédetalizéﬁVhypergeometric polyhomials in

the

FE#XQ

farm
— FACE; ws e
G- S -
pr8lun AR XY, ). s |
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S= 1

=1 é_mi) (a)—Jk R (8 =1)n}
i=0 O '

'ﬂl (°‘”+J) f—(b] |

(1.3.1)

where 8 A, C’( ., h are non negative integers, A(é ,b) stands

for the set of (S oarameters

-}9‘ ’ b + 1 2 b+2 b — - b+é ""'1 ;
e ) S )
and (ap) = e 3y a---a oy

BaTZLX = —fr‘:-l-“l (air) n (.al) n (‘;1‘2)'5_,” '(ap) n

‘.:"; On s;éeé-iélizing the parameters in (1.3.1) the following

wellknown polynomials are obtained as particular cases,

(1) By choosing & =p =d=M= u =1, qg=0, K =1,

n *ylwin (1.3.1) we have

a

1
S -n, n+ 1 ; | REET
Fn(x) = 211 x{ = P (1 =2x) (1.3.2)
1 ‘—}

which is Legendre polynomial (1.2.3),




ii) Setting 6—;’_‘; « =2, u==1and A=p = q,.,:,: o, (1.3:1)

reduceg to
I | B0, -dn+ ; .
F () = x" 2[o0 ' = = H_(x)
s = (1.3.3)
| B 2

which are the Hermite polynomials (1.2,3),

(iii) On putting cS= A= u= n=1 , P = a= 0 and replacing

K by 14+Kin (1.3.1) , we get

-n;:
Fn(x) = 4 E X = nl Ln(w() (%) (1.3.4)
| 1+ § (1 +9)

2

which are géneralized Laguerre polynomials (1.2.8) and on further

choosinge{ = 0 (1.3.4) reduces to simple Laguerre polynomials

] (&) ()
Fole op gfq o TRRCEEL S Bt Ly 0 (k=L (1.3.5)
(iv) On taking 5= p=A=u=m=1, q= 0, a; =1 +ed+ B+ n

and replaci‘r'ig K by 1 +=<in (1.3.1), we get

e

| — | -n, 1#X+PBan ;T
F ) ey
n = 211 b ot
RS
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which are the Jacobi polynomials (1.2.11). Further on puttihg

p (1q3 6) reduces to the ééﬁﬁﬁggéﬁi polynOmlals (iy2.d3)
o(’ %\’QC uw ‘—H\Q WQMBQM,% !7(; jnmﬁiql&u 2-13)

| 2y+n : _
Fo(x) = N Y (1 can
n* T -~ - n v (1.3.7)
g -(2),-))‘;!

With c(:(&-_-'-l;-~ in (1.3.6) we have

:.— =D, n; “_’
1 ) X | =
b s

;,u

T (1 -2%) (1.3.8)

Fn(x) = 2

which are the Tchebicheff polynomials of first kind (1.2.15).

(v) Ontakingg--u = 31 =;‘\=q=1,p=2, a1=n+a+b+1,

a, =g,c><=5'; b, = 1+ a in (1.3.1), we obtain

~n, n+a+b+1,'§ 3 '

F (x) = 3 ; - nl H (a,b) (g :j{ P39
. 1+ a, (3 (1 + a)n

(1.3.9)

which are generalized Rice's polynomials (1:2.17) and further on

setting a = b = 0, (1.3.9) reduces to Rice's polynomials,

al'=n+a+b+1,fd(=1+a,thenwehave
(x). — -n, mnratb+1l, azl"*: apl’ nt .(a,b) a2,- ap;
Fn = p+l | g+l XK= e x
» 1+a, %, bz-;*5bq ;W _ (1+a)n- b . g
&t —_— . i' :P’QA 2’ kY



(9)‘

which are geperalized Sister Celine's polynomials (1.2.18) whi¢h

reduce to Sister Cﬁel%ne"s:‘polynoﬁiials by further putting a = b=0,
N 1

(vii) By ch'oosjing 8: P =g =A=u =’).1 = 1,%%+ X, a; = 2¥ + n,

b, =1+ b in (1.3.1) we get

p (X o 5, . Xy = yn(X) (1.3.11)

which are generalized Bessel polynomials (1.2.19).

{(viii) On setting ., 5: -u=2,p=4g=A=u=1; a, ="‘ﬁ;
o(:‘vr s by =1 +Pp-n in (1.3.1) we have |

| An!an’s,Y“; %)

(py, 2"

~e

(1.3.12)

q ;.,’A= u = 1, ay = 1 -04-—?: -0, replading

]

and with5=-u= 2., p
X by ( 1 =~ n), b, =1 .-;3'—-1'1, (1.3.1) reduces to the form

—

—%nl "12n +;2l 1 ""K"’Sa"n;

B

(x) _ .n T
Fn = X 3 352_ %

1 -k-n, 1 -P-n;

~L
2

(=< SB : x)
| (+P) G ‘ |
. X Pla ©n (1.3.13)

(<), () 2" ’
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where R, (ﬁ,v\; x) and G, (=< ,@ ; X ) are Bedient polynomials

(1.2.20) and (1.2.21) respectively.,

L

(ix) Puttingé: ==au=2, A==-u=1,p 0.°<=j) obl,="'nl

by = 1 -Y=-n, (1.3.1) reduces to

“sno, <En+ ko (;-1<)
Fn(X) = x* 23 7] = Ry
')), - 1, 1-‘))-‘1'1; (y)n , 2
(1.3,14)
&)
where an are Lommel polynomials (1.2.22).
[

(x) If we choose 0= \=u= au =1 ;= a+ n in (1.3.1),we get

- n!(a)n Sn(X)
a+n, b.,” "7 b. ; I - (237n

( 1.3.15)

where Sn(xﬁ are Toscano polynomials (1.2.23).

(xi) On setting A= o in (1.3.1) we have the generalized hypergeo-

metric polynomials defined bv Shah [:29j in the form

= (A, () T
XM

— p
Fm(X) = x(a'l)m S+p | g u

. (.bq)‘ :

(1.3.16)

l
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1;4; In the present work , an attempt has been made to study some
properties of generalized hypefgeometric polynomials (1.3.1)s In
view of the general nature of the polynomials, thé results derived
by us will not only unify the known results but will also add some

new results to the existing field of polynomials,

1.5 In this section we state the known results which we have used

in our subsequent work,

(1) Results [iéj

1 L
f‘ (1=-x) * Tn(2x—1) ax =

o “/z)nf(;*“*% [(<-n+ 3

R, (=€) D =1 ; (1.5.1)

e

1 -3 ";5 m 2 A = ]
(b) OS x ¢ (1=x) En (2% - 1):{53{ = 3. n%o ; (1.5.2)

and

1 L
(c) f X% (1-x)T2 Tn(2x-1) Tm(2x-1) dx = 0; (1.5.3)
(o]

m # n, where m and n are non~negative numbers,

(2) Results [?é]

(1) () = X (Ah+1) (K+2) ..u (obn=1), (o) = 1 ;

X
(=17 (=)

(1 ki n)k

(11) (=) (1.5.4)

n-k
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and its special case at K= 1

- % b
(= n)k - ol
e — (1.50.5l.
(n - k)i : '
(iid) )
' nk K=l a + i
(a)nk = k 'f lo (""E_"+n ; (1.5.6)
i =
. _ - nk .
(iv) (a)_nk = (ni) T , ? (1.5.7)
- - a + i
K T &=,

i=20

() e [ =% (1.5.8)

{3) Results [;éj ;, Rodrigues formulae of even M3 034 Harmitre

I

(v) {T« ~nk)

pelyndémials

-

Y - —
(xt:%) . (2) (-‘l)p (1+p)p Z:ﬂ e dp Le"z Zp"'BAJ.
. . -y

(1) Hyx = Hyk =
C1+8) 4P
(1.5.9)
(x:k) (z) 35
(1) Hygeq = Hogr (<P (%) (3), & [ 2 ép“*i}
= — ’
a,p
(1.5.10)
2k 1
where Z =X ¢ - ﬁ =k
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(4) Orthogonality relations L19]

(1)

(% oxen 2k (x3k) 12
j X7 exp (= xT) ‘Hzpkx' dx
e C/RY ——f

2 y
= (=2B LszB | (1 +B)

pi (1+f3)p

(ii) ‘fco»zk_z (=x2¥) . (x:k)'"]2 a
T e o [T ] e
68@) (1+,.:.:)D_]L1 Qw&”l?hﬂﬁ)
(1-B),

(5) Series manipulations }2%}

J
)
il

(1.5.11)

(1.5.12)

(1.5.13)



