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1.1 The special functions of mathematical physics arise in 
.solution of partial differential equations governing the behavi- 

-our of certain physical quantities. Probably the most frequently 
occuring equation of this type in physical sciences is laplace's 
equation

2
V y = 0 (1.1.1)

satisfied by a certain function describing a physical situation 
under discussion. This was mentioned by Laplace, the great French 
mathematician, in his memoir, published in 1785. Legendre, to whom 
Laplce had communicated his famous potential theorem,investigated 
the expansion of the simple term of potential in the form of an 
infinite series and was thus led some time in 1784, to tbe dlSeovery 
of Legendre Coefficients which were later on known as Legendre 
polynomials.

Bessel functions were first introduced by the mathema- 
-tical astronomer, F.w.Bessel in 1824, in the investigation of a 
perturbative function in dynamical astronomy. Thereafter, the fun- 
-ctions appeared in physical sciences almost as frequently as''the 
circular functions.

It is the hypergeometric series
1 + v + a (a + 1) b(b + l) X2 + a(a +1) (a+2) b(b+l) (b+2)..3

l.C A 1.2 C (c+1) 1.2.3.C (c+1) (c+2)
--- (1.1.2)

which defines the pypergeometric function ( a,b;c;x) . It was
GaussQyJwho made a detailed study of this function and published 
the work in 1876. The famous Gauss1' Theorem gives us the value of
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the function when ^ = 1 in terms of Gamma functions. The Gauss' hypear- 

-geometric series has been generalized in different ways by various 

mathematicians from time to time.

1.2 In this section we list some of the important and well

known polynomials, in the field of special functions, which have 

been studied by the mathematicians like R.P.Agarwal, W.A.Al-Salam, 

H.Bateman , P.E.Bedient, B.R.Bhosale, R.P.Boas, Jr. and R.C.Buck, 

Fred Brafman, L,Carlitz, D.J.Dickinson, Fasenmyer, E.D.Rainville, 

S.O.^icGj R R, Kh^cVfC^rj K.M.Pradhan, M.T.Shah, N.K.Thakare and 

B.K.Karande and several orher workers.

i t_egen;3rc polynomials defined by

fc/2]

W Lx) = pn'X>= \ !_1)K (yn-k (S X),i’2k
2 (1.2.1)

_ Kj ( n - 2k) I 
K = 0 * t

is a solution of the differential equation *« **
(l**x^) ^ Rx w’ {x)-t n(ndl') w (x) =0.

The hypergeometric forms of Pn (X) are

Cl.2.2)

?n (Xj =

211

= (~l)n

-n, n + l,f
1-X 

2

X

1 f

-=n, n+l; 

It

(1.2.3)

1+X (1.2.4)

"ht Wermi ta polynomials Hn (X) defined by the relation
; pi/21

, /wXn-2k
(1.2.5)

W(X) * Hn (y) = \ (-l)k nl(2X)n~2k

K> (n - 2k)I
K=0

satisfy the diffgpgyitial equation

4‘* (y) — 2XW(X) + 2n W(X) = 0. (1.2.6)
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The Hermits polynomials can also be defined as

-hn, .-hn-j*,Hi
Hn (X) = (2X) 2 0 (1.2.7)

’ X

The generalized JLaguerre or Sonine polynomials defined 
for n a non-negative integer as

(l +«Cw(x) « n
n|

'n 7 x <|(l.Z.3J 
!..■ + «( ;

■gatisfy the following differential equation

XW"(X) + ( Ifc^- X) W'(X) + n W(x) = 0.(1.2.9) 

When = 0 we get Laguerre or simple Laguerre polynomials

r-(X) - L(0n :x) . p
1 1 1>n

-n?
1? X

The Jacob.1 polynomials Pn (*>P)

(1.2\ 10)

X) may be defined by

W(X) = Pn^ ^ (X) U +2)
nl

n p-
2

■n, 1 +•<.+#+ n) 
1-K

1 +H; 2_
(1.2.11)

tf'hich satisfy the differential equation
(l-x2) W" (X) + jj* -(2 +c<+^) xQ W1 (5$

+ n ( l +©< + ^ + n) W (X)= 0. (1.2.12)

{3 = 0 the above polynomials reduce to begendre polynomials 

( 1.2.3), When cA = the Jacobi polynomials (1.2.11) reduce
to the Gegenbauer polynomials ^n 

(X)

Cn ^ defined by

C* p

2 1
-n, + n ?x
> + hi ~

On putting in (4 2.11;)-- we ,get

pn (-*s- (x) = iila 2
n |

■»«*» J
(1.2.13)

~1-~np n;
h 7 2

(1.2.14)



which reduce to^c.hebicheff polynomials of first kind defined as

(1.2.15)n <X> - jain wn
(-**5, -h) _

n (x) 2 1 -n, n;1-x
2

_^
In 1936 Bateniani while constructing inverse Laplace 

transforms introduced the polynomials
-n, n+l;Zn (X) = X (1.2.16)
1, 1?

which are called as Bateman's polynomials.
Khandekar 2t)J introduced generalized Rice's polynomials 

in the form.

Hn (a,b) X) (l+ak.
ITT 3 -n, n+a+b+i S

XT (1.2.17)l+a'6?

J#‘hich reduce to Rice's polynomials ^24J on putting a = b = 0.

shah |_3oJ defined the generalized Sister Celine's polyno­

mials by the relation

^ 1 (l+a).x 1----a
jn ^ i ht

—n/ n+a+b+1, a2#—#a ;
x

l+a# ^#b2/ ———/b^.7
(1.2.18)

Which reduce to Sister Celine's polynomials given by Fasenmyer
03 on putting a = b = 0,

Rainville j_22^ has studied the generalized Bessel poly- 

-nomials which are of the form

-n , 2V + n t
y+H , 1+b; b (1.2.19)

Bedient j~6j[ in his study of some polynomials associated 

with Appell's F2 and F^ functions introduced Bedient polynomials 
\y( . X) and Gn (<*( , |3 ; X ) defined by the relations
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Rn t $ t ^ • x ) <£), (2x)n 
—-

-^n +
- ♦

V', l-(3**n ;I11 I.—. _

(1.2.20)

and

Gn ;x)

(*>n (P)n <2*>n

n j ( «<+ p )

Sk ___1

1 -<-n, 1-|3 -n?

(1.2.21)

The Lornmel polynomials, defined by Watson are

R
(■1 ) 

X
n,y

<V.>n (2x>n . 2

-hn, -hn+h •

^ , - n, 1- ^-n;
X' (1.2.22)

Toscano [733J has defined the polynomials as

(a) 9(x) 2nS^x) = ------------- p+1
nl (a)

q+1

— n# /r-=^p *
.

X
• n a + n, P1 /-----, p ? !

(1.2,

1.3. Here we introduce generalized hypergeometric polynomials in

the form

(£-1) p
=. X r.; -

A' &, -n) i (v •: :a
UK *

p ti t-HV ! A(. A, ■< )., ' ‘ Cb^) ;
■ .
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00 s

1

ri =0

Tr Lv k hik+ ( 6 -1) n]u x
(1.3.1)

7\

k=0
=1^- ck+ jIT cj=0 -X Cv ki

where § , t n are non negative integers, tS (S ,b) stands

for the set of <5 parameters

b , b + 1 , h+2 ,_
5 6 &

b+ ^-i ;
<$

and (a,J = a., ,p — 1 P

1 - ht’n = Cal} n‘ (a2)n-'Cap)n-
i.= 1

' On specializing the parameters in (1.3.1) the following

wellknown polynomials are obtained as particular cases.

(i) By choosing 6=p=} = M = u = 1, q = 0, = 1„

a. = n * 1 in (1.3.1) we have

—n, n + 1 ;
P„(x) ;= 2 1 * X

1 ?
Pn (1 -2x) (1.3.2)

which: is Legendre polynomial (1.2.3).
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ii) Setting - p = 2, u = -1 and ^ = p = g = o , (1.3; l)

reduces to

—
-hn, -^n + h ;

Fn(x) = Xn 2 0 1
2 ■ V*>

—---------------  / X
2n

which are the Hermite polynomials (1.2.3),

(iii) On putting ^ - /{ = u = ju=l p = q = 0 and replacing 

o< by 1 +<Kin (1.3.1) , we get

F (x) n

-n?

i+<i
X

(1 +<0

LniU) (x) (1.3.4)

n

which are generalized Laguerre polynomials (1.2.8) and on further

choosing = o (1. 3.4) reduces

(1.2.10)

”1 n; ~

- yr.(x> r 1 ■■ ........... .x.
l ;

(Iv) On taking t.)-P *n

;-0IIti

. L.n(®} (x) = Ln(x) (1.3.5)

a1 = l +^|+ n

and replacing <=><Joy 1 +K.in (1.3*1), we get

Fn(x) __
•n, l+c<+JB+n ;

1+k;
- n

(l-H*) n (1 - 2x)
n

(1.3.6)
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which are the Jacobi polynomials (1.2.11). Further on putting
= {3 = 0/ (l.,3*6) reduces to the Ge^enbituer polynomials (1*2.43)

o/ - p-V-i. vc5 uo -j W e'vi b a pol u «<?->* f gJa ^ j. ^, i 3)

-n , 2^+n ; ~1

V + h t
Fn(x) = 2 x = n

(2)n

c (1 -2x) 
n • (1.3.7)

With °IC= |^= —^5 in (1.3.6) we have

Ffi(x) = 2
-n, n;

% t
x = Tn (1 -2x) (1.3.8)

which are the Tchebicheff polynomials of first kind (1.2.15).

(v) On taking q = u = )x =7\= q = 1, p = 2, a1 = n+ a + b+l/ 

a2 * ^*1 = 1 + a (1.3. l), we obtain

F W
-n, n+a+b+1, ^ f

= 3 2
1 + a* 5 ;

n[ H (a'b) 
_1__n
(l + a)

n

(^ l x)

(1.3.9)

which are generalized Rice's polynomials (1*2.17) and further on 

setting a — b = o, (1.3.9) reduces to Rice's polynomials.

(vi) In (1.3.-1) if we take S = A= u = p. =1, b^ = ^ 

a^ = n + a + b + 1, «(C= 1 + a / then we have

Cxi
V = p+1 q+1

-n, n+a+b+1, a,./---, a ;
Z P

l+a, >s, b2T-jbq t

•HiW.

n! ^a,b)/a2^.ap» 

n'1' ■>:-£,
(l+a). 1 1 X

q;



which are generalized' Sister Celine's polynomials (1.2*18) which
reduce to Sister Celine1s‘polynomials by further putting a = b=6*

• «. 4

(vii) By choosing S= p = q = A = u = ,u = 1,'*=?4- a^ = 2^+ n, 
b^ = 1 + b in (1.3.1) we get

' •' (.9)

P (x) 
n

—» -n , 2^ + n;

- 2 2 X
.A
V + h* 1 +b;

(1.3,11)

which are generalized Bessel polynomials (1.2.19).

(viii) On setting ,c?=-ju=2/p = q = A = u = 1, a1 = 
oC = "{ / b^ = 1 -j3-n in (1.3. l) we have

Fn(x) = x11

—
-^n/ -^n + h, N(-?> n

2
2 ^ , 1 -i^-n ;

X

n I R 1 x^
n

2"...^

(1.3.12)

and with $= - u = 2 , p = q ~"A = u = 1, a1 = 1 ~n, replacing

G*C by ( 1 n) , ^ = 1 -8 -n, (1.3.1) reduces to the form

F n
(x) nx

-hn, -hn +h, 1 

1 -c^-n, 1 - p-n ;

n I (°<+^)n G^'P ' x)

W)n(f)n2n
(1.3.13)
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where Rn ( P , Y ? x) ana Gn (-< .f,x) are Bedient polynomials 

(1.2.20) and (1.2.21) respectively.

(ix) Putting J = 

b9 = 1 -S)- n, (1.3.1) reduces to

qs&- = 2, >,= - u = 1, p = o, <=< = , b.. * -n.

Pn(x) = x11 2
-hn , -hn. + h ;

, - n, 1-V -ny

1_
2

... .1

R

(i >

n£L
an 2nn

(1.3.14)

(x }
where R^ ^ are Lommel polynomials (1.2.22).

(x) If we choose c) = /V = u = ju = 1 ; ©<(= a + n in (1.3.1)/ we get

(x)
n

— -n, a;L /-- / ap 7
---- ■

= P+1 q+1 X
a+n/ b1/-", bq 7

nl (a) S (x) • n n
T2iT n

( 1.3.15)

Where Sn(x0 are Toscano polynomials (1.2.23).

(xi) On setting = o in (1.3.1) we have the generalized hypergeo­

metric polynomials defined by Shah j^29~| in the form

= £+p

—

£(<S'-*m)/ (a ) 7
q

P M
ux

(bq);

(1.3.16)
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1*4. In the present work , an attempt has been made to study some 
properties of generalized hypergeometric polynomials (l.3.l)* In 
view of the general nature of the polynomials, the results derived 
by us will not only unify the known results but will also add some 
new results to the existing field of polynomials.

1.5. In this section we state the known results which we have used 
in our subsequent work.

(l) Results

( h )n (o^+n+ J (^-n+ Ij)
Re «) > - 1 ; (1.5.1)

o

and

o
m ^ n, where m and n are non-negative numbers.

(2) Results

(i) (•<) n = o< (<*+!) (*<+2) U<+n-l), (*<)0 = 1 ;

(ii) (cK)n_1<;
(-l)k (<*)„

( l -•<- n)^
(1.5.4)
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and its special case at <7'% = 1

(- n). (- „K I 1) h i
(n - k) j

(iii)

(a)nk - k
nk i1 , a + 1f j (■slt .*>.I j v £ rn /

i - 0

(1.5. .51

(1.5.6)

(iv) (a) -nk (-1) nk
^ (.l.- a +
i = 0 k n

(1.5.7)

(v) (■^-nk) = («=<) •nk ( c=< (1.5.8)

(3) Results |_19 j , Rodrigues formulae of even Q33 Herniii'.e 
polynomials

(i) H
(x;k)

2pk
_ Tt (z) (-*l)p (l+p) 2 e

2pk »
( 1 +p> p

aPj>

(1.5*3)

(ii)
(x;k)

H2pk+1
(z)

H2pk+1 (-l)p 2^2p+1^ (|)p ez dp[ez

dzp

(1.5.10)

where z 2kx r_
2k

-at
'■//
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(4) Orthogonality relations

(i) exp (- x2*) f ^

r— fc/O _ “t

i— 7~| 2 I-----,
= (-2?) L( 2p) I t 1(1+3)

pt c l + p)p

(ii) rOO
J
-90

2k-2 exp i 2kx(-x ) H (x;k)
2pk+l dx

(~8p> (1 +?)p+i (:p+1)! |( i-R)
’7 ~ZK

(5) Series manipulations

oo CQ

n=0 k=0

co tn/3
k=0

A (k,n-£}k),

(ii)
oo
V*

ikr
A (k,n)

oo

n=0 k=0

A (k, n

1.5.11)

1.5.12)

1.5.13)

(1.5.14)

X


