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asking about " What if n be 1/21" In 1695 Leibnifz./ 1 _7

1.1 Fractional calculus

N

! In the study of calculus we encounter the

" differential operators d _ é? 1,000 & and

L4

dx' 2 n(
one may think whether it .s negéssary ford¥h§ order n

of differentiation to be always an” integery¢ ' Why should

there not-be a d1/2 operator or 4 Z , or even
ax , P 4

-1 ~ . -1

a3 In fact we know that 4 is nothing but

el : o

an indefinate intergral, but fractional orders of diff-

[} '

s
erentiation are more mysterious because they have no

obvious geometric interpreation along the lines of the
customary introduction to derivatives and integrals as
slopes anc areas., Even great mathematicians like- Leihnitz

n
L'Hospital and others tried to give the meaning to 4 _,

when n is fraction, L'Hospital wrote a letter to Leibnitz

-~

replied to L'Hospital "Tt will lead to a paradox, from
which one day useful consequences will be drawn." In

16?7, Leibnitz 4“2 _7 discussed walli's infinite product

for T and used the notation dléz to denote a derive

ative of order 1/2. In 1819, Lacroix £~53 ;7 in his

s



*

book developed a formula for fractional differentiation

for the nt! derivative of V" by induction. Then he

formally replaced n with the fraction 1/2, and together

1/2 N .
with the fact that [%(1/2) = (7T7) / , he obtained
1/2
(1.1) &2 - 2wV

avl/2 ?T;T;I?z

The systematic studies seem to have been made
in the beginning and middle of the 19th century by
Liouville 'é- 4'_7, Riemann £ 5 .7 and Holmgrenfzr'styﬂ

Able Z‘ 7 _7 was probably the first to give an application
of fractional calculus. He used derivatives of arbitrary
order to solve the tautochrone problem, The integral

he worked with

(1.2) (x~-t) £ (t) at

is precisely of the same form that Riemann used to define
fractional operators. The first major study of fractional

calculus started with Liouville / 4 _7. He considered

i(dl/z )? ezx, and solved some problems in mechanics
w72

and geometry by using fractional operations,

In the present century remarkable contribue
tions have been made to both theory and application of

the fractional calculus, Weyl /- 8 _7, Hardy [/ 9 _7:



Hardy and Littlewood /10,11.7, Kober /=12 .7 and

Kuttner £~13 _7 examined some rather special, but

natural properties of fractional operators of functions
belonging to ‘Lebesgue and Lipschitz classes, Erdelyi
{14,15,16 7 and Osler £ 17 .7 have given definations
of fractional Operators with respect to arbitrary functions
and Pd;t;£~ 18 _7 used difference quotients to define
generalized differentiation for operators £( D ), whe;e

D denotes differentiation and £ is suitably restricted

functioni. Riesz £ 19 ./ has developed a theory of
fractional integration for functions of more than one
variable. Erdelyi [ 20,27 ./ has applied the fractional

)

calculus to integral equations and Higgins / 22 _7

has used fractional integral operators to solve diffe=
rential equations, Prabhakar /- 23 _7 has studied some
integral equations containing hypergeometyic functions

in two variables by using fractiornal integration.

1.11 Operators of fractional integration of one variable

Fractsdhal integration is an immediate gene-
ralization of repeated integration. If the function
-£( x ) is integrable in any interval say ( 0 , a )
where a > 0, we define the first integral F;( x)

of £ ( x ) by the formula



b4
(1.3) Fl(x)=jf(t)dt

0
and the subsequent integrals by the recursion formula

X
(1.4) Fr"('lx ) o= _{)Fr( £) dt, T = 1,2 seees

We can prove by induction that for any

positive integeér n

) , x.
(1.5) F(x) = 1 j<x.t>nf'(t)dt
n+l _—
ni 0

*
Similarly we define an indefinate integral F, (x) by

the formulae

* ® * P
(1.6) Fyx) == _ff (t)dt, Fr+1(X) = -,f F_(t}at,
x x

r = 1‘2‘ sesecssne

Again we can prove by induction that for any

positive integer n -
* o n
(1,7) P ® = 2 [ e £e) ae
nt X

provided that £(x) is of such a nature that the integral

exists, The Riemann -~ LiotYville fractional integral is

-

a generalization of the integral on the right hand side



of equation ( 1,5 ).

The integral .
x 1
(1.8) Rg (£ ( +); x§ = 1 - j (x=0)"1 £ (&) at
o - () J

is convergent for a wide class of funct;ons,f (t) if
Red'> O.. The upper limit of integratign X-%ay be real
or complex; in the latter case the pééﬁ of integration
is the\straight line t = xs, 0 £ 5 £ 1. Thé integral
reduces to the integral ( 1.5:) in the;case when a =
n+l, a positive integer, so thét when o is é positive
integer the integrél ( 1.8 ) is a repeated integralﬂ

It is called the " Riemann-Liocuville fnactiénal integral

of order a,”

Hardy and Littlewood /£ 24 _7considered the

fractional integral

-

X a-1
(1.9) fq (%) = f £ (t) (x~-t) ar, 0 < Re® < L
-0

while Love and Young /~ 25 _7 considered the integral

+ ) X
(1.10) £, (ax) = _1 £8) Geot) &L
/ (@) f x dt,
a

a £x £b, RRaX0



i t oot
£ (x) being integrable in ( a, b ). ‘fﬂ
afh s
T g
The Weyl fractional integraliiis a generalization

R . il '

of the integral on the right hand side of equation(1,7), -
it is defined by the eguation

L
(1.11) - @ 1
* W {f(t):x}‘ = 1 { (tnx?- £f(t) dt, Re a0 > 0
[ —-—"1(“) .l

———

X g 0o !

1
N 1

A fractional integral closely related ?o Weyl's has been

introduced by Love and Young Z” 25 _7 who considered

the intecral

b
(1,12) f; (x,b) = 1 { £(t) (t—x?jldt', Re @ » 0
{Y(a) ; ‘ :

We adopt the convention that

¥

Rop =1+ Wy =1

(1.,13)

where I denotes the i&entity operator,
The fractional integral operatorsas defined
by Erdelyi‘[_15_7 are as follows

X
(1.14) Ig £x) =1 jf (x=t)"1E (£) at

(o)

0,
12 f x) = £(x)
X



@

a a-1
(1,15) Bx £6) = 1 [ (e £0) at
() x
KO £(x) = £(x)
",Q -y -
(1,16) I £(x) = X 7 If: x7 £(x)
X
= x77 '“_1__ f’(x—t)m"1 £ £ (t)at.
Moy 5
(1.17) "o v_Q -'? —a
Ke £x) = XK X £(x)
- i
= x" f(t-x)aql t-vy-af(t) at.
(o) x

Fractional integral operators with respect to XA

H

may be defined for A > 0 by similer formulae by replacing

x.by XA. Thus we write

X

v, -AR —Aq A a1

(1.18) IXA f(x) = X Jf X -t") tA.'I‘f (t) d(tA)

[*(a) 0

N a P A A O=1 -AY -Aq

(1.19) k£ =xT [ (@M A A a6
X . P(a) J

Here the function X Ix f is the " Riemann - Liouville"

- a
integral of order a of tnf(t)r While the function X nKn' £
x

is the " Weyl- integral of order «q,

1,12 Fractional Integration of the functions of

twO variables.

Ntmjﬁd £ 26 ;7 has developed fractional integration




for the functions of two variables on the line of Kober
and Erdelyi and discussed some of their fundamental proper-

ties and simple identities,

) 4

Two OF tl'}cla fractional integral operators defined

by Mourya [2'6,p 173 _7, are as follows ¢

X vy
B C(v-l B"'l
(1.20) 1 I f(x,y) =1 ' j(x—t) (y=2z) X
Y (o[ XBY
0 O
£(t,z) dt dz, -
® oo
. K Y f(x,y) = f [ (t-x) (z—y) X
P(cBRfB) Xy
£(t,2) at daz,
0.,0. 0 o
KKy £0xy) = £0x79), 1 I, £0,y) = £0,y)
(1.22) 10T, £ly) =X 1=c 1;‘, 15 x1 v (x,v)
T, 8 e -T-P
(1423) K)-;,ch' f(x,y) = YTF; x® X Y £ (x,y)
X ¥ Y
Here the function x e ; * P I:\q,tx J{}'{B £f s
x

" Riemann - Liocuville" type double integrdls of order )
-T 3
‘and T of £ 2T £ (t,2) w:r.th/the function X )7 Ke

T.B
ISI‘ f 1is Weyl type double integral. The function £ (t,z)

is a complex valued function in the open Set D, We consider
i‘i as a meromorphic function which can be summed up in

/ origin (0,0),while



terms of power series near the vicini:ti'esl' of its poles,

Thus £(t,z) may be entire function of two variables with
essential singularities, (0,0) pr (00,®), or (0, ) and

(00, 0 ). We may visualize the function £(t,z) is an analytic
function in the connected open set D of complex field Cz,

X, and y be its subsets such that all teX and zeY. Now
the Lebes%ue intgg;r.a;Eof the function £ (-|t',z) in the unbounded

set D is denoted‘bﬁr ff £ (t,z) dt dz. If £(t,2z) is analytic
+ D ‘.(

in the rectangle D_[(o,OO) (6,00)-7 tﬁen
‘ 8:1]

£(t,z) dt dz = _{ f £(t,z) dt dz.
If I

Further 2)' and ¥ infinitely: dlfferentlable functe-
o

tions with 5?’ ¢(x) 2 0, ¥ (y) >0, we ngrn.te

o

%o T,B —* B
(1.24) Tg (x) I\P(y) £ (x,y) [’xf(x)' 7 /-\P(Y.)} X
{"(a? T (B)

-1

y
f [ Ax) - 4)_ 7 [\i/(y) -y(z)_ 7 X
0

ot\-...—-\N

[;z;(t)./)7 (%) 7 £(z,z) & zf(t). ay(z).
a “T,B _ ¥ . T
(1.25) Km7 K £ Gay) /j.fé{)] [y ]
g(=) Y (y) = '
GRS i (:))
o1 B-1

Léw) -8 07 [ v 7y

Kt—g



—72—(1 '..__T_B-
£8 @) 7 x{v@ 7 £ (t,2) 4 F(t)aviz).

1,13 Applications of fractionel calculus

Many probleﬁs in the physiqal sciences can be
expressed and solved~§uccinctly by the use: of\the fractional
calculus, Fractional calculus can he categorized as applica=
ble mathematics. The properties and thedry of these fractional
pperators are prope? objects of study in their own right,
Scientists and applied Mathematicians in the last decade,
found the fractiona}cglnulususeful in various fields,

Within mathematics,:the subject makes contact with a very
large segment of cléssical analysis and provides a unifying
theme for great many known, and some new, results., Applicati-
ons outside mathematics include such otherwise unrelated
topics as, transmission line theory, chemical analysis of
aqueous solutions, design of heat-flux meters, rheology of
soils, growth of intérgranular grooves at metal surfaces,
quantum mechanical calculations, electro-chemistry,general
transport pfoblems,diffusion, scatterihg theory and dissem-
ination of atmospheric pollutants. Virtually no area of

classical analysis has been left untouched by the fractional

calculus.

19
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1.2 Dual Integral Equations
1.21 Defination :

The pair of equations

-

1.é§) @
/G(p) £(P)K (r,p) dp = g(r), 0 <r <1
o .
1.27? o
f £ (p) II<(I-‘.rp) dp = h(r), r >l.
0

wiere G(p), g(r), h(r), K(r,p) are given functions
of the variables inéicatedq and £(p) is to be found are known
as "™ Dugl integral équations." They arise in the solution of
boundr&-value problems in which the condition on one boundry'
is a "mixed" one and it is usually a simple matter to reduce
this type of problem to the solution of such a pair of integral

equations..

1.22 A Specific example of reduction of a physiagal

problem +to a pair of dual integral equations,

as discussed by Titchmarsh / 27,P 334_7

Let v (r,z) be the potential of flat circular
electrified disk of conducting material, its centre being
at the origin, and its axis along the z-axis. The potential

satisfies the differential equation

{AFR. RALARRLY™ mrandewAs [1BRAT
- SMIVAN Uinivensl: ¥, JUliiafiem

11



(128)  B% LA dv., v _,
dr? T or 02

This is Laplace's equation in cylindrical
coordinat=ss, Let V (u,z) be Hankel transform of v (r,z),
.that"is, ., LT

®

|
(1.29) « V (u,2) =d(; (r,2z) r 3y (ru) dr
b !
Then clearly V (u,z) satisfies the Laplace's

equatton (1,28)

Since

“[ rd ¥ Jo (ru) ar = - Qv T (ru) +
0 2 - D:r °
33? J )

Hence
a2 . w0 t »
——-Y-i- = -u f v {Jotru) +me(m)} dr
a:z 0

Using Bessel's equation,

12
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L u
JO ( ru) + ru Jo(ru) = Ur J0 (ru)

Thus [
2 ) oy :
E}v=u fVJo(ru)rdr.
D 22
Z
0
2 .
=u v, using (1,29)
2 1}
Thus we get 9 \ = u2V

d 22

Tﬁe solution of above differential equation is

’ ~uz uz
v = Au) e + B (u) e

Using initial condition, B(u) = 0
-We have

. VvV = A(ua) e”uZ

Now using {(1.29) and hy Hankel theorem
N y u Au) e 2 g.(ru, du
v (roz) = f 0 ! ¢
0
‘Paking the radius of the disk to be unity, the boundary

conditions are V = const. ( 2z=0, 0 < r < 1)

dv = 0 (z=0,r2>1)
oz

writting u A(u)

£ (u)

Hence f (u) must satisfy
Q@

_(f(u) Jo(ru) du
0

gl(r), 0 <r<l



®
pr(u) u Jp (ru) =0, r>1
0

In above case g(r) is a constant, and £ (u)

is to be found.

1.23 ' Survey .
For potential problems with axial symmetry,

Tranter, in 1950 / 28_7 has Considered Bessel function of

zero order as kernela. He considered|the dual equations.

00 ' :
1300 fe®) £ ® 5, () @ = glr), o <¥ <1
0 (]
0 .
(1.31) f £(p) J,(rp) dp = &6, r> 1,
0

Where G(p), g(r) are given functions of the.
variables indicated and f(p) is to be found, He has

|
considered the solution of above pair in series form as

. 00
1=k :
(1.32) . £(@) = p 2% o
=

and used the result of ﬁatson£729,P401_7
so that tﬁe equation (1.31) is satisfied by this choice of
f(p). By taking the coefficients a  properly he has proved
that the form of £(p) assumed in (1.32) also satisfies the
equation (1.,30). Thus he obtained the solution of above
pair in series form. The solution given is a formal one

and the difficult question of convergence is not considered.

14
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Again in 1951, Tranter 1730~7 has considered
the dual integral equations as :
. 00

(1,33) [ ££(8) gu(ct) @t = g(x),.0 ¢ x < L.
. ; .

00
(1.34) ff(t) Ju(rt) dt =F{r), r > 1.
b .

where g(r), F(r) are presefibed_functions of r

and £(t) is a function of t to be found. By applying
Hankel's inversion [ 27.7 theorem to equation (1.34) and

using the result of Watson, [” 29, P 373_2 he obtained the

solution of above pair. But his method is cumbersome,

Mitra / 31_7 in his paper discussed the solution
of a class of dual integral equations which appear in the
formulation of electristatic ané electromagnetic boundry-
value problems poésessing circular symmetry. He has discussed
two classes of equations, out of which one admits a closed
form solution, A Fredholm's equation of the second kind
is derived for the second class and iterative means of

solution are suggested,

Firstly, he considered the dual equations as :

® Q
(1.35) 6fp°‘f(p) Julpr) dp = {H(p) Jplpr) dp, 0 < r <1,



16

()
(1.36) [ £ g0 @ =0, T xo0.
0
Where H(p) is a given function, 0 >=l-2M ,°
M 2 0., His method of finding the soulution is similar to

the method given by Tranter.

As a first step, he assumes that £(p) is of the

form.

@
1=k )
_ (p) , K >0
(1,37) £(p) =P ;Eg Ch JomiM 4% ,

and on using Watson £ 29,P 401_7, the representa-
tion of £(p) in (1.37), automatically makes it satisfy
equation (1.36).

Using the known result of the Bessel functions

and the result of Wilkins £ 32_7, he obtained the solution

of the above pair in closed form as

Me—a/2 M\ 4
(1.38) - £(p) =P H(p)- P f r J, (pr) dr x
1
, @ ~-a/2
fH(t) t T (tr) dt.
0

Secondly, he considered the dual equations of

the type.
) 00

00)

f % 1+ 7)) 7 E (p) J,(pr) dp =f.H(P) X
0

gu(pr) dp, O <r 1.

(1.39)
0
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@®

(1.40) _[ £(®) Iy (pr) dp =0 r > 1.
; 0

Where T(p) is a known function and T(p) tends t»
0 or to a cénstant for large positive vaiuesof P, Here also
he considered the solution of (1.39) and (1.40) in series
from as before. Putting.the value of £(p) foom (1,37)
in (1.39) and using Wilkin's result £ 32_/ as before, and

finally using Hankels formula é728_7 one can arrive at

the Fredholm's equation of second kind,

The chief advantages of this method aver that

of Tranter'"s are the following :

a) * The solution is obtained in a closed form rather

than a series form given by Tranter,

b) By this method he obtained a Fredhclu's equation
of second kind for the dual equetions of class second,
where as Tranter's method involves the solution of an infinite

i

set of equations for this case.

In 1958, Noble / 33 _7 has considered the pair.

Cov

(1.41) f £72% ae) J,(xt) dt = F(x), 0 &x g 1.
0

00
(1.42) .f.A(é) Ju(xt) dt = Gx), x > 1.
0




; This pair with general value of a in the range =2
< & ¢ 2 was considered by Noble, who reduced the problem to
that of solving an integral equation, by the use of operator
o £ fractional integration. His analysis involves considerable
ﬁ;nipulation and cannot be regarded as elementry., _In 1960,
Sneddon.gr34 _7 has given an elementry method of finding
the solution of the pair(1.41) and (1.42), by using the
operatorSof fractional integration. In 1961,Copsonlf35;7'
has given a simple and elegent solution of the pair(l.41)
and (1.42) by a method which is a generalization of anv

elementry method suggested by gneddon,

!

In 1961, Williams / 36 _7 has considered the dual

integral eguations as,

@

* o

(1,43) 3 Y £(y) g,(xy) &y =¢C(x), 0 ¢ x & 1=
@

(1.44) o

He obtained the solution of above pair by a

formal application of Mellin -~ transform. The'manipulation
here is formally more simple because much of it can be

absorbed in the calculation of Mellin -~ transforme

§
In 1962, Burlack 4?37_7 considered a pair of

i8



dual integral equgtions occuring in diffraction theory as

L

@
(1.45) f u-y~u(u72-k2) w(u) g, (xu) du = £(x),0ex4l.
0
00
(1.46) [ V() JyGxu) @u = g&x), x > L.
0

He obtained the solution of above pair by using

. Laplace ~transform.,

-

In 1962, Erdelyi and Sneddon / 38_7 obtained the

sclution of pair (1.43) and (1,44) by using fractional integral
operators,

In 1964, Buschman / 39_7 considered a pair of

dual integral equations as,

@®
(e [ v¥ 56w £6) ay = g, 0 <x < L.
0
00
Jf 8
5 (1.48) ¥ g,(xy) £ (¥y) dy =h (x), x > 1.
i s 0
He has defined fractional integral operators as,
n,0,A A =1 _2av ~Ac
(1.49) I (x) = _A gx -1) X% " U(x=1).
T (o) '
e LA " a1 a
(1.50) K ) =2 (1= 0Ty (1),

()

19
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Where U(x) is the Hegviside unit step function,
and proved that these integral operators with respect to
XA can be written in the form of convolution, (1.98) and
also he hes identified these operators with Ehe elements of
algebra, He obtained the Mellin = transform of these
operators, aﬁd finally using these results in the convolution

theorem(1.111) He has reduced the above pair to a single

integral equation as

©
(1.51), Jr'yk Iy (xy) £(y) @y = F(x), 0 €« x < OO
0

Wherek,A\ are related to «,B,M,¥ and F(x) to

g(x) and h(x).

A systematic treatment of this subject is given

by Fox / 49 _/,

In 1965, he has considered the most general rase
in which a dual integral equations contain H -« functions as
Kernels. These H ~ functions contain almost all special
functions as perticular cases. He obtained the solution

by inspection.

He considered the pair,

@
a,a, f(u) qu = g(x), 0 <.x< 1,
(1.52),{ H(uxlﬂl; h} :
o Bips



?‘ Mye %4 f(u) au =hx), x 21
H ux! : n) u = AR/, X .
(1,53) 0 | Pye 3y

1

Where g(x) and h(x) are giwen and f£(x) is tobe

determined, and

ai, a.

H (X * . n) is a H -function of .order
Biray
n, defined by
agray 101737 eeo. (Q,,2))
(L.5e)  F (X{si.ai ’n) A T T T

= __1___ j-ﬁ- [‘«(ai +3a;) |- e
2 Tf'i A X d80
e o] A F (Bi-sai)

1

Observe that the constants a:, 1= 1,2,4een

are the same for both (}.52) and (1.53).

a

He has used the Parsevetl theorem, which states

that :

If the Mellin - transform of #(u) is denoted

by M{£(u)_7, That is M L £()_/ = F (s) and 1f M /B(u) 7

= P(s) then
0

1
(.ssy [ P @ £@) au = _{—P(S) F(1-s) ds.
0 : .

21



Where the contour C is some straight line,

' Using the defination of Mellin-transform he

obtained, '

(1.56) MLEux) 7 = x°u/f£@)_7.

Where f(ux) is a function with uw and X as a

parameter. From (1,55) and (1.56), he obtained :
QO .
@50 [ o) g = 1 fp (s) X §(1-8) ds.

0 >R & c

This form of Parseval theorem has been used by Fox.

From 11.54)

. a.,a, n (a; + )
(1.58) M HH Vot n) ey %

11. rYB - say)

Bi,a

Using parseval theorem and (1..8) to (1.52) and

(1.53), he obtained the following equations,

j r(a T osny %8 i
; 2171 F(1-s) ds = g(x),
(1.59) F'(Bi“sa ) L
\ i =1
"0 € x < 1,
Ayt -5 E

L f Wf"' o< } X P.(1-s) ds = h(x), Xxl.

24 '
(1.60) ¢ fYH ~s6;) '

Then he has defined two operators of fractional

integration as :



¥
ot
N

- =& =my-+m-1
(1'61) I .(f&E ¢ m 3 W(X) __7 =m_ X X
F(v)

X
Y-1

.[(xm;vm? v wiv) dv-

0

o

R ['/: € 3m, sW(x) _7= m XE " (Vm_xm)f-l x

o ry) |
—-€ - mY + mel ‘.: ,
v ! W(v) av,. "

.
] # - .
Using thesze operatgors‘ step by step on (1,59) and (1.60),

'
i . .

equation with a ‘commor Kernel as
| y o p

- 1 m . 5. . -S i '
(1.63) —— TT{ Pfalﬁﬁl)} X F(l-s) ds ='K(x)
2T dsa o

he obtained a single

Where

11 [12 “"Inl‘. (X)_7' -:;‘7.) 0 ¢« x <1,
=R, '[Rz cesoRy [‘h(x)_')’- ..7, X>1 o
To solve (1.63) for £(x) = Mt LF(s) 7, he

has used the generali}zed Fourier=- gransforﬁx which consists

of reciprocity

00
(1.65) B = Plwx) £(u) au.
0

00
(1.66) f(x) = _{' q(ux) #£(u) du,
0

and the functional equation
(1.67) . P(s) Q(1-s) =1 Wwhere M / P (u)_/ =Pés)

and M/ qlu) 7 = Qls).



Using, Parseval theorem to right hand side of (1,65)

and (1.,66), and using (1,67) he obtained :

(1.68) H(x) = —= fP(s)vX-s F(1-s) ds.
27T 3
T
-5
(1.69) £(x) = &= f 1 X §(1-s) ds.
2TT% Z P(l-s)

Where M /'8 (u)_7 = .§(s)

Hence if P(s) and 4 (x) are known in (1.68) one can solve

-1 -~ .
for £(x) = M "/ F(S9_7, by means of equation (1.69)

By applying this idea to (1,63) he obtained the

solution as, :

1 = ¢
(1.70)  £(x) =371 f’ﬂ i

C i=1

(M, -a,+sa,) -
%y l}x Sk (1-s)ds.

[ (a;+a,~sa;)

Where M /LK) 7= K(s).

Again using Parseval theorem, (1,57) one can
transform the integral of (1.70) sc that the equation takes

the form
@

M.=a.,a
(1.71) £ (x) =‘!.H (ﬁx’ 1727 . n) K (u) du,

Where K(x) is given by (1,64)

2d



In 1967, Kesarwani £ 41_7 has considered the dual

integral equations with Meijers G functions as Kernels;

by

0o
m,n A tece
o P.q \ byees b/
aq
. 00 ‘
m,n
(1°73)~{;P;q /%xy)A Gy, eeeCp fiy) dy = h(x),X > 1;
0 k\ dy s ..sdq ;

Using the method of Buschmankég39_7 he has shown
that the above equations can be reducedﬁinto two others
having the same Kernel. The problem of solving a'single
integral equation has been discussed bleesarwani in a series
of earlier paper [F42,Z In 1967, Saxeda Z_43_7 has also
discussed the formal solution of certain dual integral
equations involving H - functions, He has shown that by
applications of fractional integration operators that the
given integral equations can be reduced into two others with
a common Karnel and the problem then reduces to that of
solving one integral equation. In the first case the Keénels
of transformed equt .ions involve the H«~function, as a
symmetrical Fourier Kernel given earlier by Fox £ 44_/
and the solution is then immediate. The second case deals
with the solution of another pair of integral equations

which are more general than one given by Fox 1-40_7



in which thé common Kernel comes out to be generalized

Fourier Kernel studied by Fox £ 40_/ and solution can
* {

obtained by following his method. JIn the first he considered

a pair .
m ‘
(1.74) fagéﬁ;';qum(xu) £(u) du =gx), 0 <x <1
(D -
(1.75)] Hggﬁ;fzq_’_n (xu) £(u)du = h(x), X > 1,.
A ,

Where g(x), h(x) are given and £(x) is to be found, Using
' ; |
the same technique as given by Fox / 40_7 helobtained the

. o
solution of above pair., In the second!case, .he considered

a pair
®
(1-oz ‘ Ak)
i
(1.76) Hr’;’r; -
o w 2y, (1- Sl,a s (1-Bk,Ak (u)du
g(x), 0 <x <1, '
® Hy.5y) . I \
0, XU
. fﬂi,zp+n A § s

6

= ﬁ(X)l x > 1. N
Where g(x) 8 (x) are given and £(x) is to be determined.

26



In 1969, Saxena / 45_7 has obtained a formal solution
of equations (1,43) .and (1;44) by using the technique of
Mellin transform, Instead of Bessel's function as Kernel,

he has used Watson's Kernel 4?46_7

In 1970, Mgurya 1756;7‘has developed fractional
integral operatogs for the function of'two variables, on
the line of Erdelyi and Kober 4~16_7; and discussed some of
their fundamental properties and some identities. The algebra
of these operators{héve been developed By Koranne 4747,7‘
and used in the so%ution of certain dual integral equations
of function of two'variables. He has used Agarwals [-48_7
function as Kernels. _

In 1970, Dwivedi £ 49_7 and in 1974,Saxena and
Kumbhat 4-50_7 havehused fractional integral operators and
the Mellin~transform theory to solve the d al iﬁtegral
equations with Kernelg as H~functions,

In 1974, Pathqk 4?51_7 haé.given a formal sclution 0Of
following pair‘of dual integral equations by a method based
on multiplying factor a nd Wiener~Hop f techniques as
illustrated by Noble / 52_7 for the Bessel function dual

integral equations,

27
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00)
(1.78) - m,n : (%,a )
- H Xy P £ (y) ay = u(x), 0 <x <1.
P.d | g8y
a O ! l o
(1.79) 04]
NGRS
dTihif(XY ? 15 fly) dy =v (x), x > 1,
Fel (da(“g@k)
0

where u(x), v(x) are given functions and £(x) is

» to determined,

1,3 ' The H~Functiochs :

1,31 The H~Function of one variable

Fox/44,53_/ introduced a genc.al .functién which
is well-known as Fox's H~function or the HeFunction. This
functioﬁ is defined and represented by means of the Melline
Barnes type of contour integral., A very general class of-
Barnes integral was first introduced by Dixon and Ferror
Z754,7. Baraaksma 17557has.studied this function in detail
with reference to asymptotic expansion and analytic continu-
ation, / ‘

The H=function is defined and represented in the

following manne€ Zf%sj?l
m,n c
_(1,80) Hp'q(xl%’p ) = A f e (s) x° as
r 4
where i= (~1), x is not zero and is a complex number, and

d
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(1.81) X = exp / s Log {X{ + 1 arg X_7

In which Log {X! represents the natural logarithm
of X} and arg X is not necessarily the principal value,

An empty product is interpreted as unity. Also

(1.82) B (s) = 'ﬁ’ r(bj-BJ.s ) ﬁ' r'(l-aj + ajs )

=1 - =1
q ' P

T [CCa-by+ Bys ) TJT [Mlay=%ys )

J=m+1 j=n+1

Where m, n, P, g, are nonnega-tive integers

sétisfying OEngP 1¢m £q, @, (3 = 1,2 oo.P )
and Bj-- { %= 1,2,...% ) are assumed to be possitive quantities,

s
Also ay (j=1,2 ¢o.P ) and b, (.3 = 1,2 ....q) are

complex nufber such that none of the point.e.

3

by + A )° '
(1?83) S = ‘B"h 2 h = 1(2 ofom 17\ = O;loc-.

Which are the poles of {"( b~ 8 s)h =1,2..em

J

and the points

ai..\’]..]_ .
(1‘84) S = S —————-— i = 1’2' an .n,‘?:o., 1..
Q.

1

Which are the poles of ["(1l-a;+0; 5) caincide

”

with one another.
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that is
(1.85) .ai( by +N# By(a;~%- 1)
For ?\.’Y)= O‘:lloao.l h = 1;2l.oo.m7 i =112-0Dn0

Further{ the contour L runs from - i 00 o +im
such that the pole% of [7( by~ Bys ), h=1,2,..m lie to
the right of L and 'the poles of f%(-l-ai+ ais ),i =1, 2...n
lie to the left ofiL,such a contour is possible on account
of (1.85), These %ssumptions will be adhered to throughout

the present work,

We state'the following useful properties of the

l
H, ~function, ' {

(1.86) X" ("f > Gp)) = pcq()‘{(zp:k;p@r% )

s

If one of the (ai, al. i=1,2,...n is equzl to
. one of the ( by,sBy) j = mi1,,..q.

Z_or one of the pa}rs ( a; . ai): i =n+l,.:.p¢ is equal to
one of the (bj' B;)'j = 1,000em _/

then H~-function reduces to one of the lower osrder

L

. H
i,eP,q and n( or'm) decrease by unity,

We give below one such reduction formulas



i

(1,87) H“P é{ {(3101) eeecelapy Bg)s(ay . )
M op8y) seeii oy, Bea), (0181)

s D=1
X
%—Lq—l (

provided n 1 and g > m,

p

.(az P az)lcoo-o.( a 7] ap) )
(bl 2 .Bl)’......(bq-ll Bq_l

When 0; = Bj ( i=1, ...P,.Jd =1,....9) then H-function

reduces to the well known Meijer's G-function,

A

(1,88) }f;"g (x;( “p “p))= 1 ghen (Xl/c‘ (ap))

P.q
(vg . 8/ 2 (k)

1,32 The H~function of two variables

We shall define and represent the H-~function of two wvariables

{ 57,P117_7 using the following notation / 58,P266_7 .

(1.89) H (x,y)
O’n SMh,NaiMaN X ( ) 3 (C st
1°72472200377°3 a‘_p "ap 7p P lYp )i(e E_ 7,
_H 1 1 ~1 A N
- pllq]_:PZqu;pBIqB v
(b ) ¢ (4 ) (f
a, P, 1y’ 8 3¢ 1)

]

-1 .
2 — f[ g (s,t) 8, (s) O3(t) X* y° as at.

4 T2
Ly Iy
Ny
Where T« l=ay+a; s + A, t)
(1490) g(s, ) = I=1

ﬁ [ (ay=a, s-A,t) ’Tr(l-b j+Bs+B, t)

j—nl +1
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\ _ 2 2 ,
(1,91) &, (s) j‘gl P(1-c;+¥]s) jE:L [(ay-8;8)

TY r(c -YS) T’Z r(l-d 1-3 s)
—qfl j=m#l

(1.92) €,(¢) = T r(l-.e +E ) ﬂ [(g,-F t)

j=1 j=1

“~

T\3 e, -Ejt) TT? [ (1mf 47, )
j=m

=ngt1
J=ny 5+

X and y are not equal to zero, and empty product

is interpreted as,unity, P;,q;,%; and my 8r€ non-negative

integers such that Pi 2 n

(j=1,2 H

E's and

i=1,2,3). Also all the A's a's B's , B's,Y'ss$’s

F!'s 2re assumed to be positive quantities.

The contour L; is in the s -plane and runs f£rom

-i oto + i @M, with loops, if necessary, to ensure that

the poles of F(dj-c?js ) (j=l,...m,) lie to the right,

and the poles of f‘(l—cj—:- Yj s ) ( j=1,2,..._.n2 ).

f"(l--a__j + a.s +Ajt) (3 ==1,...;n1) to the left of the

countour,

=~i0to +

J
The contour L, is in the t-~plane and runs from

ioo, with loops, to ensure that the poles of

F( fJ.-FJ-t ) (j=1,...n3 ) lie to the'right, and the poles

of {*( 1-e,

J

+ By t) (3=1,...n3) andr(l-‘-ajmjs+ Agt) (j=1,2..n4)



-

to the l=ft of the contour.
Following the result of Braaksma / 55,P278_7

it can. be shown that the function defined by (1,89)}s an

anaiytic function of X and y if

(1 43) Py

R o=y ] 2
“)j . o + 7':1 v Z: le lgj < 0.
Gy a3
(194)32A+zl Ej"jlej‘jZ:l 7y OO
ve Buschman /59 _7 has given the:following conditions

for the ccnvergence of the double Mellin -~ Barnes integral

representing the extended H~function of itwo variables :
* (1.95)

(1.96) dq

VT S:A - L3 +ZjZFJ+ZE TEN’

- J=n;tl =1 j=1 J-mfl j=1 J*gf&

(1,97) Jarg x} < 1/2 UM, |arg yt< 1/2 VT

We state the following usefui property of the

i
H, ~function of two variables.

If one of the ( Cy,¥ ) (i=1,2,...n2) is equal

to the one of the(d;, & ;) (i= 321"-5q2) then the H- function

reduces to one of the lower order, and similar other

results., We give one of such reduction formulas:

&

: o
*(1,95) 9 )
v=- TEf' gy Byt Yy 85 - j? 8 *'}E V3
j=ng+l = j=1 J‘m2+1
P,
= Z\(j;éo.
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(1.98)

0 sNq2My,NoiMa, Ny o

(api p,Apg (c ,y’ ); (ep ,E )
P1fy:P5,9,1P5.9;5 | o

1 P3
(b BB )z (a. 1,gq D4 Gy )1 (B, )

U9y e a3 g5
_ HO,nlsmz,rza-lzma,,n?3 (aplaplAp) (c in),..(c qﬁ&)g(eE;E 3)
s Bpa;:p-1.051liB e G\ Y (s By 1B )3 a S'q-l) (Fqe¥q,
1?% Mellin -CénQOlution H

1.41 ' The Mellin =Convolution of one‘variable

We know from Titchmarsh /[ 27,p 59 7 that if

feL (0, co\ g 6—L (0,® ) then (£ *g) (x) e L' (0,00),where

S
(lrg@(f *g) &) = 5 U £ (xfu) g(u) du.

Hence the set L' (0,0) of complex~velued functions
froms an algebra over the field of complex numbers wlith the
usual defination of addition and scalar multiplication and
the convolution (1.93) as the defination of product.

) we can show that . the convolution (1.99) as the
defination of product is commutative, |

now ( £ * g) (x) = gu-%(x/ﬁ) g (u) du,
by putinc u = x/t -

we get (£ * g) (x) = (g *f ) (x).



Simple calculations show that the algebra is also

associative,

BUSCHMAN Z 39_7 pointed out that if we defined

- L4

(+100) 7 %Ry =a/r(@) (X @ AT TR G (k1)

Where U(x) is the Heaviside unit step function,

o
0 for x € 0 .
U(x)={ f S L

i1 , forx >0

P
[

The fractional integral operator (1.18) can be written in
||

the form of convolution (1.94).

5 (48
(1.101) IZi ‘f(x)l= ( 1A gy (x)

Since, using (1,99) we have
(Mg ) o
= -f w e (/e) TR (w) au.
0 @ '

_ -1 1 AV
= A U ez (BT gAY ARG o e1) ax
fYF) 0 J

0 for u-1 < 0
Where U(u-l) =

1 foru-l1 >0

®
- a fu_lf(x/u) wPa1) @1 B Aa

L du, -
() 1
By putding t = x/u,
-AY) -Aa @
A
= -2 f (x -.-tA)or"1 £7 £(1) a (tA)
™ (a) 0
- Iﬂ:&

A f(x)/ Also Iq'abA (x) & L' (0,M) for Re o » O,

3%



Re > 1/A -1

Similarily (1.,19) can be written in the form

St S
(1,102) XA £x) = (KPP 4 £ ) (x) if

(1,103) “we define

. L« 20cY
%P 0) = a/r@ =) X! u(1exd

Which belongs to L' (0,®) for

Rea 2 0, ReM> «1/a

Thus we can identify the fractional integral
rl .
operators I‘s and K s with the elem2nts of algebra and

hence we conclude that they associate and commute,

A direct computation in order to varify the
o .
commutativity of [°T1'% ri% _7 can also be carried

out. However

M , 0 .
l”): and T V)‘ L do not commute unless A = B,
A i B
X x
1,42 The Mellin ~Convolution of two variables

( From Koranne /[ 47.7, if £,9e D/ (0,®),(0,00_7
then (£ , , 9) & D /(0,0), (0,00)_.7 Where

(1.204) o 2
€3 g Gy = [ [ ey ) glav) awav,
0 0

Hence the set of complex .w3lved functions

belonging to D (__(O,CO ), (0,®) _7 fromgan algebra over

A}
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the field of complex numbers with usual defination of
addition and scalar multiplication and (1.104) as one

defination of the product.

Simple #slculations show that this algebra is
associative and commutative., We note that fractional

integral (1.,22) can be weitten in the form of a convolution

(1,105) :

90 T,R ® 00 | '
I I £(x,y) = f f £ 2'1[ 1/{"(0&)'(x/t3.\? ¢
x Y 0 0 '

x/t-17"1 U(x/e-1 ):i [1/}"'(3) (y/z')";B (y/z-1 ? ~1y (y/z—l')‘} X

f(t,z)dt dz.

c T,B
=1 7P e o), (x,v)

Where we define a function

mn, 0 T, B
(1.,1206) I I (x:7)
R N -1 :
= 1 g7t )% gl U,
(@) T (B)
In which U denotes unit step function,

a T,B :
Also Ir" I & D £{0,0),10,0)_7 for

m.a) >0, (T,B) » 0, So that we can identify these

fractional integral operators with elements of algebra.

3



Similarly

e TB

, * * £) (XJY)

T, 8

Here we can define the :Eunction

(13107) . % LR
= __1
T@r®

Which belongs to D gto,qn),i(?,po)_7 for

x7 (1—x)1m-1U (1-x)y’r(l'-y) BulUj (1=y)

'(%B)>o,tmff>~1

The equation (1.24)° can be expressed in the form

(1,108) )
e T,
T6x) Tyly) TOey)

" -1 -“N-a

® o
= el =1 1 Bx) B (x) X
‘{ { c [r'(a) 40 1) | )

B(t)
4 (x) )J B~1 -T-6
‘JGL"“ -1 N viy) | Yz X .
#x) [f‘ (8 ( V(=) 1) .(wm

i
U(ﬂ(z) - ( 2 (t) ) ¥
(Z) 1)} f(t,Z) t Z-(_'-t.s-_ (IZY/(i)) dt dz.

This can be written as the convolution 'product if,

£x) - g (x/v), ¥(x) (y/2) a
Z(t) v(z - Y&/e =

g _ , s N
B(x) © Y Yy



Hence if 4 (x) = C xA, yy) =¢C yB : then follows

‘ ',(I T B ¢ ’ ’
(1.109) I:P{A Iyg f,y) = (TP%R TTBB Y b 5 6y

+

When (A,B) 2> O

We define the function

(1.110) .%a ;TE,B (x,7)

- SR ot o RS
a

U (x~1). U(y-1).
Since the operators correspond to functions of

algebra for (a,9) > 0, (T,B) > 0, they commute and associate

independéntly of the choice for A and Bs Similar argumentS

can also be applied to Kgig) K;is)
1.5 .  The Mellin Transform :
1,51 The Mellin transform of operators of one variable:

Let us denote F(s), the Mellin transform of f (x)

by M L £(x)_7, that is .
-]

M LE®)T = Fls) =ff(x) x>~ Lax

. 0
and regard s = & +1T as complex variable, Undeg certain

conditions 1”28_z f(x), the inverse Mellin transform of

F(s) may be representgd as an integral.
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C+i00
M-l[F(S) 7 =£kx =127y J/ F(s) X = as.
C=i®
) ' Associated with ‘these :transfoms is the following

sonvolution theorem [ 2\'7)th 44‘}P 60._7 If s= C+iT ,iccf (x)and
x%g(x) & L'(0,0).

Then
(1,111) F(s)G(s) =M /[ (f * g) (x) ./ and | -

L
.

xS(f * g) x)€ L'(0,0).

It has been proved by BUSCHMAN / 40_7 that

(1.112) M LGBy 7 2 LAY -s/A). Re a > 0,
C(14+7+ Ceg/A )R? s <A(Req+L) \

0, A
(1.113) M /K (x). 7 =["(1 +s/n)
() +0+s/A)

i, Rea 2.0, Re s 2-2ARe’)

1,52 The Mellin transform of operators of two var.iables: .

L&t us dehote F(s,t), the mellin- transform of
f.(X,Y) bY M [ f(x,,y).], that is

MLf, (x,9).7

o0 1
F(S't) = g ff(X;Y) XS- Yt-‘l dax dy
0

and regard s=.¢] + i"['1 t =0, + i’T’z , as
complex variables., Under the conditions /3g 417
f(x,y), the inverse Mellin transform of F(s,t) may be repre-

sented as an integral



a1

C1+iM C,+i®

1
(20,5 j( J{” F(Sct)x-sy-gs dt
Cy=i0 C,=i00 '

Y [ F(s,t) 7 = £(x,y) =

t

We have associated with this transform the following
convolution theoremq: - '

=) - 9%
If X Y f(X,Y) and X Y g(X,Y)G-D /"O‘m)' (O,(I)) 7 then

(1.114) F(s,t) G(s,t) =M /[ (£ * ¥ g ) (x,¥ )_7 and

‘1 %2 -~

Xy (f**g) (x,yJ& D / (0,0),(0,0)_7
It has been proved by Koranne / 47_7 that
(1,115) m /- 12 % R TBB oy 7

¢ '

—

= [(1+%) -s/2) {1(1+T ~t/B),
(14 +a~s/2)[ (1 + T+B-t/B)

'
¥

i
Re @ 20, Re p>0, Ra s<A (Re] +1), pe t < B(ReT+1)

(1,116) M[K"a'A krEB”B (x,y) 7

- C(M+s/8) [ (T+ t/B) -
" (}+a+s/A) [ (T +p+t/B)

R. @ 0, RT B >0, Re s>A Rel,Re £t >wB Re T,

1,53 The Mellin - transform of the H-function of

one variable. :

The Mellin~transform of the H-function follows
from the defination of H~function,in the view of the well-
known Mellin inversion theorem,

We have:

Qgistny}j
3905 Buyi



(1.117) M y .0 l (3, + o)
L%‘q ax{ (Ry + Bq)
-8

- m . n
": a ﬂ—l r(bj+BjS) W‘r(l-aj -CLjS)

q P

J=m+1 J=n+1

2
integers satisfying 0 ¢ n ¢ p,¥&mgq, aj,(j=1,2...p)

Where a > O, ;arg a} <'§JIV m,n,pP,d, are non negative

-

and ﬁj, (3=1,2 ...q) are assumed to be a positive quantities.

Also aj and bj are ,complex numbers such that

(1.118) = min po by/8) < Re (), 7 Re(1-a;/ay)
1g fg i ’ $<
1,54 The Double Mellin Transform of the H=function of

Two variables.

The result is a direct consequence of the defina=

tion of H / ax,by_7 function.

0 0 1
(1.119) fs IXS- Y:t-l H ax;by ‘ ax dy
0O 0

= a% £% Fleg-t), § (-5) Gf-t)

Where £ (s, t ) @2(3 ). &3(1:) are given by (1,90),(1.91)
(1,92) The conditions given by (1,93), (1.94), (1,95), (1,96)

(1.97)are assumed to be satisfied, and
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= A min Re ( dj ) < Re (8) < A min R® 1-c;
1y smy g, R .
j jed Snz 'Y_]
and
-~ min
- £
. R i ) < Re (t) < M min REe l-e.
tsismg ¥ gy - F7
. J

MOt;vation of the work done :=

Dual Integfal Equations involving many special
fﬁnctiong as Kernels have been tackled from time to time

by various mathematicians like Tranter,Noble,Buschman,

Saxena, Fox,Koranne' and others, by using various techniques. |

This motivated us to study dual integral equations of one
and two variables by choosing Kernels in a very general
form and using the technique of fractional integral opera-
tors, This technique offers the convenience of converting
dual: integral equations to a single integral equation,
Various technigques are available in the literature to

solve such single integral equation,
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