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1.1 Fractional calculus

In the study of' calculus we encounter the
differential operators d i .... <f and
one may think whether it^us necessary for^he order nn.‘

of differentiation to be always an' integer* 1 Why should
there not- be a d1/2

dxm
. JHToperator or d___ ■ t Qr even

dx
-i -i
d ^ in fact we know that d__ is nothing but
dx” dx”

i
an indefinite intergral, but fractional orders of diff-

' 1 , f
erentiahion are more mysterious because they'have no
•obvious geometric interpreation along the lines' of the
customary introduction to derivatives and integrals as
slopes and areas. Even great mathematicians like- Leibnitz

n
L‘Hospital and others tried to give the meaning to d ,

cbP-
when n is fraction. L*Hospital wrote a letter to Leibnitz 
asking about " What if n be l/2\w In 1695 Leibnitz .£* 1 _7

replied to L1Hospital "it will lead to a paradox, from

which one day useful consequences will be drawn." In
1697, Leibnitz r2 j discussed ^alli's infinite product

l/2for Tf and used the notation d'y to denote a deriv­
ative of order l/2. In 1819, Lacroix /” 3 7 in his



book developed a formula for fractional differentiation 
for the n*"*1 derivative of V111 by induction. Then he

formally replaced n with the fraction l/2, and together
l/2with the fact that p(l/2) = ( TT ) , he obtained

U.l) d y =, 2 (v)
1/9 1 / 9dv-1' £ ( IT )

The systematic studies seem to have been made
thin the beginning and middle of the 19 century by 

Liouville ' C tj, Riemann Z 5-7 and Holmgren r 6.-7.
Able f 7 ..7 was probably the first to give an application 
of fractional calculus. He used derivatives of arbitrary 
order to solve the tautochrone problem. The integral 
he worked with

f -1/2
(1.2) J ( x - t ) f(t)dt

0

is precisely of the same form that Riemann used to define 
fractional operators. The first major study of fractional 
calculus started with Liouville c 4 -7. He considered

J d~^2 V e2x, and solved some problems in mechanics

and geometry by using fractional operations.

In the present century remarkable contribu­
tions have been made to both theory and application of 
the fractional calculus. Weyl z~ 8 J, Hardy 7.



Hardy and Littlewood ^10,11.7, Kober /“l2 _7 and
Kuttner £ 13 _7 examined some rather special, but 
natural properties of fractional operators of functions 
belonging to 'Lebesgue and Lipschitz classes, Erdelyi
t 14,15,16 J and Osier /“ 17 -7 have given definations 
of fractional, "operators with respect to arbitrary functions

t 1 1and Pdfft l. 18 _7 used difference quotients to define 
generalized differentiation for operators f( D ), where 
D denotes differentiation and f is suitably restricted 
function, Riesz 19 _7 has developed a theory of 
fractional integration for functions of more than on® 
variable. Erdelyi £ 20,21 -7 has applied the fractional 
calculus to integral equations and Higgins £ 22 JJ
has used fractional integral operators to solve diffe­
rential equations, Prabhakar JZ. 23 _7 has studied some 
integral equations containing hypergeometric functions 
in two variables by using fractional integration.

1,11 Operators of fractional integration of one variable

Fractional integration is an immediate gene­
ralization of repeated integration. If the function 
-f( x ) is integrable in any interval say ( 0 , a ) 
where a > 0 , we define the first integral F^ ( x ) 
of f ( x ) by the formula



and the subsequent integrals by the recursion formula

x
(1*4) F ( x ) 

r+1
= i F ( t ) dt, r = 1,2

0

We can prove by induction that for any 

positive integer n
x.

(1,5) F
n+1

( x ) =1 f( x-t )n f ( t ) dt
4-1 ----  Jn» 0

Similarly we define an indefinate integral Fn (x) by 

the formulae

°o 00 *
(1.6) F^(x) = - j" f (t)dt, F*+1(x) = - . J Fr(t)dt,

X X
r = 1,2, .......

Again we can prove by induction that for any 

positive integer n

* ' 00
(1,7) Fn+l(X) = I f (t-xf f(t) dt

n» x
i

provided that f(x) is of such a nature that the integral 

exists. The Riemann - Lio^ville fractional integral is 

a generalization of the integral on the right hand side



of equation ( 1,5 ), 
The integral .

(1*8) Rd <ft ( t); x)
x

1 - f ( x-t)®"1 f (t) dt 
p(a) j

is convergent for a wide class of functions, f (t) if
r' i

Hea > 0,. The upper limit of integration x may be real 
or complex; in the latter case the path of integration 
is the straight line t » xs, o ^ s ^ 1. The integral

, Ireduces to the integral ( 1,5 ) in the,'Case when a =
j

n+1, a positive integer, so that when a is a positive
I

integer the integral ( 1.8 ) is a‘ repeated integral,
■

It is called the " Riemann-Liquville fractional integrali

of order a," 1

Hardy and Littlewood c 24 «.7considered the 
fractional integral

x a^1
(1.9) fa ( x) = f f (t) (x-t) 0 < -Rea < i

-co
while Love and Young 25 _7 considered the integral

(1.10)
J

fa (a,x) —--- f f(t) (x-t)
Ha) J

a

0-1

a ^ x 4 b, Reax)
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' *f (x) being integrable in f a, b ). " • P
• - • ,'i!? \ .

/ i" ■].The Weyl fractional integral^is a generalization 
of the integral on the right hand side of equation(1,7), ■ 
it is defined by the equation

(1.11) M - i t (t) dt, Re a > 0W„ {f(t);x{- =1 f
1 J ' ‘ p(a) )a

x , * • '
• ! I

A fractional integral closely related to Weyl1s has been 
Introduced by Love and Young £~ 25 _7 who considered
the intecral

(1.12) f„ (x#b) oc = 1
P«r>

r
+t

X

f (t) (t-x?^1 dt , Re a > 0

We adopt the convention that

(1.13) R0 = w0 = 1

where I denotes the identity operator.
The fractional integral operatorsas defined 

by Erdelyi'£ 15J are as follows

(1.14) Xx = -i— jf (x—t?~^f(t) dt

r<«)
I® f (x) ?= f (x)



(

(1.15) a

(1.16)

f (x) 

*»/«Ix f (x)

(1.17) y),a
Kx f (X)

= i
00r a"j (t-x)

P(a)
= f (x)

- Vi -a
= X ia x**
= x-v-“ x X

1 f

= X^K01

r«x> «/

-»j -a 
x f (x)X

00 -
■ i’ ( /, \ OC-tl(t-x)

r(a) X

' v . OC-1 V)(x-t) t'f(t)dt.

t-7-a
f (t) dt.

Fractional integral operators with respect to
may be defined for A > 0 by similer formulae by replacing 

&xby X . Thus we write

(1.18)

x
-V/tt, . -A r? -A a f a A a”11 A f Cx) = -?■- j (X -t ) tAV
^ P(a) J

0
A.f(t) d(t )

(1.19) K>'ff(x) -J^2 f(
' p(a) J

x
/ »

'It a n a
Here the function X I ' f is the 11 Riemann — Liouville"

integral of order a of t?f (t)While the function x“'V*'aF
' x

is the " Weyl- integral of order a.

Fractional Integration of the functions of 
two variables.
MO26 has developed fractional integration

QD

1.12
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for the functions of two variables on the line of Kober 

and Erdelyi and discussed some of their fundamental proper­
ties and simple identities.

Two 8f the fractional integral operators defined■ i
by Mourya ^26 ,p 173 _7# are as follows

X y
(1*20)

(1.21)

i“ f<x,y) «_i
p(a)f*8)

f (t#z) dt dz.

0
Kx Ky f (x,y)

fKcW)

u
0 0

Cto-1 0—1
(x-t) (y-z) X

00 00
//- ff—1 0—1

x) (z-y) X
X

(1.22)

f (t,z) dt dz,

J^l^-f( x,y) = f ( x,y), f (x,y) = f(x,y)

•)/* -»?-a -T-jS a 0 *) T,, v* f®x y I .1 x'yf(x.y)x jr • x y

x?yTKx k£ X y f (x,y)Vi. a % 0(1.23) k K' f (x.y) «x y
yi+a T+ 0 <x . T» 0Here the function X' y i ' rr £ ±s

" RLemann - Liouville" type double integrals of order *)
n _ .* -x 9#a

'and T of t1 zc f (t. z) with/the function X y K^.
T.0Ky f is Weyl type double integral. The function f (t.z)

is a complex valued function in the open Set D. We consider
it as a meromorphic function which can be summed up in *
/ origin (0,0) .while



terms of power series near the vicinities' of its poles.
Thus f (t, z) may be entire function of two variables with
essential singularities, (0,0) pr (00, CO), or (0,cP ) and
(00, 0 ). We may visualize the function f(t,z) is an analytic

2function in the connected open set D of complex field C ,
X, and y be its subsets such that all 16- X and z erY. Now

i i
the LebesQue integral-of the function f(t,z) in the unbounded• * 1 11
set D is denoted by ,ff f (t,z) dt dz. If f(t,z) is analytic

' P
in the rectangle D (o,00),(6,00)_/ then

1 00 00
ff f(t, z) dt dz = f J f (t, z) dt dz.
D ' - 00i

Further' j6 and V'' infinitely differentiable funct- 
f t %i

tions with 0 cj)(x) 1 > 6, V' (y) > 0, we write

rf, a r, $ -a
(1:24) Xd(x) V(y) f(x#y) = £>(yl?

Via)' f(0)

%p
X

X yr f <s-iJ J CdkK) - jtf(t)_7^ y) -Y(z)_70-1 X
0 0

C (u,z) d#,(t). d^(z).

(1.25) K
■» a

K'-#(x)
K'f'(y)

00 00
p(a j r(3)

(X—1

T
X

/ K* (t) - & (x)_7 - V" (y) J
X y

g-1
X
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“>?“a '■•-T-jS-
C* (t) -7 x TY'Cz) J f (t,z) d flT(t)dyfe).

1.13 Applications of fractional calculus
/

Many problems in the physical sciences can be 
expressed and solved succinctly by the use* of the fractional 
calculus. Fractional' calculus can be categorized as applica­
ble mathematics. The properties and theory of these fractional 
pperators are proper objects of study in their own right. 
Scientists and applied Mathematicians in the last decade,

I

found the fractional calculus useful in various fields.
* i •Within mathematics,!the subject makes contact with a very

I

large segment of classical analysis and provides a unifying 
theme for great many known, and some new, results. Applicati­
ons outside mathematics include such otherwise unrelated 
topics as, transmission line theory, chemical analysis of 
aqueous solutions, design of heat-flux meters/ rheology of 
soils, growth of intergranular grooves at metal surfaces, 
quantum mechanical calculations, electro-chemistry,general 
transport problems,diffusion, scatterihg theory and dissem­
ination of atmospheric pollutants. Virtually no area of 
classical analysis has been left untouched by the fractional
calculus



1.2 Dual Integral Equations
1.21 Defination :

The pair of equations
C1.26 ) CD

• 1 G (p) f (p)K (r,p) dp = g(r), 0 < r < 1

(1*27 )
0

CO .

f f (p) K(r,p) dp » h(r) , r >1.
*»/0

Where G(p), g(r), h(r), K(r,p) are given functions
of the variables indicated, and f(p) is to be found are known 
as 11 Duj*l integral equations." They arise in the solution of 
boundry-value problems in which the condition on one boundry'

k sis a "mixed" one and it is usually a simple matter to reduce 
this type of problem1 to the solution of such a pair of integral 
equations..

1*22 A Specific example of reduction of a physieal
problem to a pair of dual integral equations* 
as discussed by Titchmarsh Z~27,-P 334_7

Let v (r,z) be the potential of flat circular 
electrified disk of conducting material, its centre being 
at the origin, and its axis along the z-axis. The potential 
satisfies the differential equation

m RAi^',prn ubbafffiWIWAji UmvataU.'t. /.UUiAPM*



This is Laplace's equation in cylindrical 
coordinates. Let V (u,z) be Hansel transform of v (r,z), 
.that"is, ' t ' ■ ~

(D
^1.29) . V (u,z) = J'v (r, z) r JQ (ru) dr

Then clearly V (u,z) satisfies the Laplace's 
equation (1.28)
Since

8%

3Z2

•CD
^ rd d-u,

0 0D-/(«
s.’

,^v
0 •

-)Jo (mi) dr

and using integrations by part we have

Hence

00 2 on |/ r3_l_ ( ru) dr --/-&* /£„(»)
0 3r* 3- ^

ru j' (ru)J^<ar

a2v

9 z2
00 I

= TU J v ( J0( 0 *-
II -}

(ru) + ru Jq* (ru) C dr

Using Bessel1s equation.
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*roJn ( ru) + ru JQ(ru) = ur Jo

Thus
00

V = 2ud J V JQ (ru) r dr.

Thus we get

u V, using (1.29)

?*v_ = u2v '

3 z2
The solution of above differential equation is

t„ „ , \ ~UZ „ , N uzV = A(u) e + B (u) e

Using initial condition, B(u) = 0 
'•We have

V = A(u) e -uz

Now us.ing (1,29) and by Hankel theorem
00

, V f u A(u) e~ Jn (ru, du. y (r,z) = J u
0

‘Talcing the radius of the disk to be unity, the boundary 
conditions are V = const. ( z-0, 0 < r < 1)

3 v = 0 ( z = 0, r > 1)
3 z
writ ting u A(u) = f (u)

Hence f(u) must satisfy 
00
ff(u) J-(ru) du = g(r), 0 <r<l 
0

\
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OD
Jf (u) u J0 (ru) =s 0/ r > 1 
0
In above case g(r) is a constant/ and f (u) 

is to be found.
1.23 ‘ Survey

For potential problems with axial symmetry/
1

Tranter/ in 1950 £28_7 has Considered Bessel function of 
zero order as kernels. He considered! the dual equations.

t

00 i
(1.30) Jg(p) f (p) JQ (rp) dp = g|(r), o < r < 1.

0
00

(1.31) J f (p) jQ(rp) dp = 6, r> 1,
0

Where G(p!)/ g(r) are given functions of the* 
variables indicated !and f (p) is to be found. He has

i

considered the solution of above pair in series form as
00

' (1.32) ftp) = p1-k X J2m+K<P)
m=0

and used the result of Watsopa£"29/P401_7" 

so that the equation (1.31) is satisfied by this choice of 
f(p). By taking the coefficients a^ properly he has proved 
that the form of f(p) assumed in (1.32) also satisfies the 
equation £1.30). Thus he obtained the solution of above 
pair in series form. The solution given is a formal one 
and the difficult question of convergence is not considered.
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Again in 1951/ Tranter /"30_7 has considered 
the dual integral equations as s

. do
(1.33) J fc-f(t) J^Crt) dt = g(r)/. 0 <. r < 1.

0
00

(1.34) J f (t) Ju(rt) dt = F(r), r > X.
0

where g(r)* P(r) are prescribed functions of r 
and f(t) is a function of t to be found. By applying 
Harikel's inversion Z~27_7 theorem to equation (1.34) and
using the result of Watson, £" 29,. P 373_7 he obtained the 
solution of above pair. But his method is cumbersome.

Mitra Z“3 1_7 in his paper discussed the solution 
of a class of dual integral equations which appear in the 
formulation of electristatic and electromagnetic boundry- 
value problems possessing circular symmetry. He has discussed 
two classes of equations, out of which one admits a closed 
form solution. A Fredholm's equation of the second kind 
is derived for the second class and iterative means of 
solution are suggested.

Firstly, he considered the dual equations as s 
QD CD(1.35) /P°f(p) Jju.Cpr) dp = / H(p) J (pr) dp, 0 < r < i.

0 o ^
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CUD

(1.36) J* f (p) Jjy/pr) dp = 0, r > 0.

0

Where H(p) is a given function, a >-,1-2/4 ,'
i •

£ 0. His method of finding the soulution is similar to 

the method given by Tranter.

form.

(1.37)

As a first step, he assumes that f(p) is of the

f (p)

00
1-k NT* 

P L>
m=0

n , (P> / Km U2m+M +k
> 0

and on using Watson C29,P 401_7, the representa­

tion of f(p) in (1.37), automatically makes it satisfy 

equation (1.36).

Using the known result of the Bessel functions

and the result of Wilkins ^f””32_7t j-j@ obtained the solution 

of the above pair in closed form as

(1.38) f (p) M-X-cc/2= P H(p) -
M-X
P

00f r Jx(pr)

J H(t) 

0

1
-c/2
t (tr) dt.

dr x

Secondly, he considered the dual equations of

the type 

(1.39)

0 < r 1



IT

CD
(1.40) J f (p) (pr) dp * 0 r > 1.

0

Where T(p) is a known function and T(p) tends t~>

0 or to a constant for large positive valuesof P. Here also 

he considered the solution of (1.39) and (1.40) in series 

from as before. Putting the value- of f (p) fioom (1,37) 

in (1.39) and using Wilkin's result £"32 7 as before, and 
finally using Harikels formula <f28 _7 one can arrive at

v # >

the Fredholm's equation of second kind.,

The chief advantages of this method ever that 

of Tranter's are the following s

a) ‘ .The solution is obtained in a closed form rather

than a series form given by Tranter,

b) By this method he obtained a Fredhclu's equation

of second kind f'or the dual equations of class second,

where as Tranter's method involves the solution of an infinite
\

set of equations for this case.

(1.41)

(1.42)

In 1958, Noble /” 33 7 has considered the
CO*J t“2(X A(t) Ju(xt) dt = PW, O^x^l.

0
00
J A(t) J^xt) dt = G(x), X > 1.
0

pair.
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This pair with general value of a in the range -2 
< -® < 2 was considered by Noble, who reduced the problem to 
t&at of solving an integral equation, by the use of operator 
o f fractional integration. His analysis involves considerable

•v. »
manipulation and cannot be regarded as elementry.' In I960, 
Sneddon 34 _7 has given an elementry method of finding 

the solution of the pair(1.41) and (1.42), by using the 
operators of fractional integration. In 1961,Copson^-35i.7 
has given a simple and elegent solution of the pair(1,41) 

and (1.42) by a method which is a generalization of an 
n elementry method suggested by gneddon.

In 1961, Williams Z~36 _7 has considered the dual 

integral equations as,

a
Y f (y) J^Cxy) dy = G(x), 0 £ x ^ 1*

00
J f (y) Jju(xy) dy = F(x), X>I.

(1*44) o

He obtained the solution of above pair by a 

formal application of Mellin - transform.. The manipulation 
here is formally more simple because much ;of it can be 
absorbed in the calculation of Mellin —■ transform.

I
In 1962, Burlack £37_7 considered a pair of

(1.43) /0
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dual integral equations occuring in diffraction theory as

00
(1.45) J u’V“-M(u42) u ) ( xu ) du * f(x)#0$3^1.

0
00

(1.46) J' \j/(u) Jjj(xu) du = g(x), x > 1-.
0
He obtained the solution of above pair by using 

. Laplace -transform.

In 1962/ Erdelyi and Sneddon 38_7 obtained the 

solution of pair (1.43) and (1.44) by using fractional integral 
operators.

*
i

In 1964/ Buschman £~39 7 considered a pair of
dual integral equations as,

CD
(1.47) f ya j^(xy) f(y) dy = g(x)/ 0 < x < 1.

0
00
r 0

(1.48) J y Jy(xy) f (y) dy = h (x), x > 1.
0

He has defined fractional integral operators as.

(1.49)
ri,a,A 

i (x) = A
A GU*!

(x -l) X- -A>7 -A06 U(x-l)
f(a)

(1.50)
yj,a,A
k' (x) = A ’ A, 0C—1( 1—X ) AVx u (l—x).

r<«>
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Where U(x) is the Heaviside unit step function,
l

and proved that these integral operators with respect to 
AX can be written in the form of convolution, (1.98) and 
also he has identified these operators with the elements of 
algebra. He obtained the Mellin - transform of these

t

operators, and finally using these results in the convolution 
theorem(1.111) He has reduced the above pair to a single 
integral equation as 

CD
(1.51) . J yk Jx (xy) f (y) dy = F(x), 0 < x < 00

0
Where^X are related to oc, |3,M,u and F(x) to 

g(x) and h(x) .

A systematic treatment of this subject is given 
by Fox /„ 40 _/.

In 1965, he has considered the most general ^ase 
in which a dual integral equations contain H - functions as 
Kernels. These H - functions contain almost all special 
functions as perticular cases. He obtained the solution 
by inspection.

He considered the pair,
qjd
C f i \ f (u) du = g(x), 0 <-x< 1.(1.52) J H (ux M 1 . n j
o * *

I



f (u> du * h(x)/ x $• 1.|Vai >
J H ux L s n
'0 ' 1 P±> a± /(1,.53) •

f

Where g(x) and h(x) are given and f (x) is to be 
determined, and

r tv3! v( = A is a H -function of. .order

n, defined by

a.# a.
(1.54) H X

x x x
• n j = H X

al'al •••• (oth*an^

jS./a. •••• (jB # a », 1-1 x n n )j

= 1 n
2

C

4* sa^) 
P(g.-sa.)

* J- x

—S

Observe that the constants a:, i = l,2#...n 
are the same for both (£.52), and (1.53).

He has used the Parseval theorem, which states
that

If the Mellin - transform of M(u) is denoted* t
by M/“f (u)_7. That is M /“f (u)_7 = F (s) and if M /p(u)_7 

» P(s) then
0°
f* P (u) f (g.) du = J~P(s) p(l-s) ds.
0

(1.55)



Where the contour C is some straight line* 
Using the defination of Me11in-transform he 

obtained# 1

(1.56) M f (ux)_7 = x”s ,m £f (u),_7.

Where f (ux) is a function with u and x as a
parameter. Prom (1.55) and (1.56), he obtained i

,00
(1.57) J P (ux) f (u)du * 1 f P (s) X*"S f(1-s) ds.

0 2TTt J

This form of Parseval theorem has been used by Pox
Prom (1.54)

(1.58) M H (u
ai'

®i/ai
n n P“i + SQi^IT

i=l
P(j3i - ssi)

Using parseval theorem and (1.l»8) to (1.52) and 
(1.53), he obtained the following equations.

(1.59)
_1_ j n(r<V- s«i> -s
2TT w

i =1
n

nOBji-sc^)

_JL 
2TTi

(1.6q)
f TTl^Ki+SFj ]

1 C

P(l-s) ds = g(x)

'0 < x < 1.

* F,(l-s) ds = h(x), X>1.

Then he has defined two operators of fractional
integration as



(1*61) I / /*# £■ s m s W(x) ^7 = m__ x
rm

I (x —V ) v~ W(v)
0

’& -m/-kn-l

dv -

R £"vf,<c sm, sW(x) J?= m X
rc/>

i •~6 - ni;Y + m-1 
v i W(v) dv.

zo y-ljf (vm-xm) X

X

!i PUsing these operatbrs step by'step on (1.59) and (1.60),,
he obtained a single .equation with a common' Kernel as

(1.63)
2TTi

- ffr J j
i i 1

-S
x F(l-s) ds * K(x)

Where

(1.64) K(x) — £“^2 * * * * (x2./ *^7 * 0 < x <1.'

~ ^-”^2 • * • ,Rn 7 h(x)_7*• Jt X>1 .-
-1To solve (1.63) for f (x) = M /£*F(s) _7, he 

has used the generalized Fourier- jpransforp which consists 
of reciprocity

(1.65) tf(x)
Op

> J- P (ux) f (u) du.
0
00

(1.66) f (x) = f q(ux) #(u) du.
0

and the functional equation

(1.67) . P(s) Q(l-s) = 1 Where M ^~P (u)_/ =Pfe)

and M/"q(u)J? = Q(s) .
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Using, Parseval theorem to right hand side of (1.'65) 

and (1.66>, and using (1,67) he obtained i

(1.68) tf(x)
2TT i / P(s)' X r(l-s) ds.

(1.69) f (x) = K f -i2 TTi J Pf
-s

X
P(l-s) I(1-s) ds,

Where M (u)_7 = |(s)

Hence if P(s) and j6 (x) are known in (1,68) one can solve
Mfor f(x) - M / P(s)-7/ by means of equation (1,69)

By applying this idea to (1,63) he obtained the 

solution as, s
t

n - r(Mi “€^i+sQi)jl___ r r J
(1.70) f (x) =2 TTi J II ) r ,

C i=l L 1 ^

Where M /£*K(x) 7 - K(s).

r ^i^i-^.i) ■} X~SK(l-s)ds,

Again using Parseval theorem, (1,57) one can 
transform the integral of (1.70) sc that the equation takes 
the form

00
(1.71) f

(x) = / H Aixl 1 1 . n) K (u) du.

0 ' 1 “l+ai'ai >

Where K(x) is given by (1,64)



In 1967, Kesarwani £~41_7 has considered the dual 

integral equations with Meijers G functions as Kernels;

Co
(l.

j i b.... I
q

UU

•72) f Gp#qf(xy) j *1' ^ \ f(y) dy = g(x),0 «X<1.0 ^ f br.. b /
00
fm,n / A 

(1,73) }G ((xy)J p#q (
0 \

G r2/ * * *

oL^ t * • • d
f ly) dy = h(x),X >tl;

Using the method of Busohman jf 39,J he has shown
,1

that the above equations can be reducedlinto two others 

having the same Kernel. The problem of solving a single 

integral equation has been discussed by Kesarwani in a series 

of earlier paper 42j? In 1967; Saxena 43_7 has also
discussed the formal solution of certain dual integral 

equations involving H - functions. He has shown that by 

applications of fractional integration operators that the 

given integral equations can be reduced into two others with 

a common Kernel and the problem then reduces to that of 

solving one integral equation. In the first case the Kernels 

of transformed equt-ions involve the H-function, as a 

symmetrical Fourier Kernel given earlier by Fox Z 44_/ 
and the solution is then immediate. The second case deals 

with the solution of another pair of integral equations 
which are more general than one given by Fox Z 40J7



in which th© common kernel comes out to be generalized
Fourier Kernel studied by Fox / 40_? and solution can

* \

obtained by following his method. -In the first he considered 

a pair t
00

(1.74) / Hf'!^2q+m<*u) ftu) au - g(x), 0 <x < 1.

0©
(1.75) j (xu) f (u)du a h(x)', X > 1,.J 2p+n, 2q+n

0

Where g (x), h(x) are given and f (x) is to be found. Using 
the same technique as given by Fox 4'Oj? he!obtained the

. j
solution of above pair* In the second!case,.he considered 

a pair
00

(1.76) f,

J m#2j2p+m xu
0

= g(x) / 0 < x < 1.

® , cnl#4t)

41.77) fj n f 2p
0 { xu

2p+n
), (u)du

e

= #(x), x > 1.
Where g(x) (x) are given and f (x) is to be determined.



In 1969,' Saxena /""45_7 has obtained a formal solution 
of equations (1,43) , and (1^44) by using the technique of 
Mellin transform. Instead of Bessel's function as Kernel, 
he has used Watson's Kernel £46 _7

<

In 1970, Mourya £^26has developed fractional
•1integral operators for the function of two variables, on 

the line of Erdelyi and Kober /** 16_7, and discussed some of 
their fundamental properties and some identities. The algebra

i

of these operators • have been developed by Koranne £47_7 - 
and used in the solution of certain dual integral equations

i
of function of two'-variables. He has used Agarwals £^J 

function as Kernels,
In 1970, Dwivedi £ 49 _7 and in 1974,Saxena and 

Kumbhat ^50.7 have used fractional integral operators and 
the Mellin-transform theory to solve the d al integral 
equations with Kernels as H-functions,

‘ I

In 1974, Pathak £si£ has given a formal solution Of 
following pair of dual integral equations by a method based

t

on multiplying factor a nd Wiener-Hop f techniques as 
illustrated by Noble £52_7 for the Bessel function dual 
integral equations^
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OQ
Cl *-78) m,n

Hp#q xy
(bq/^q)

f (y) dy = u(x), 0 <x <1.

0
A

(1.79) 00

J
0

f(y) dy = v (x), x > 1.

where u (x) # v (x) are given functions and f(x) is 
i to determined.

1.3 The H-Eunctiohs s
1.31 The H-Functlon of one variable

F0x^44/53_7 introduced a general-function which 

is well-known as Fox's H-function or the H-Function. This 
function is defined and represented by means of the Mellin- 
Bames type of contour integral. A very general class of-t
Barnes integral was first_introduced by Dixon and Ferror 
CsU. Baraaksma jC55/has. studied this function in detail 

with reference to asymptotic expansion and analytic continu­
ation.

The H-function is defined and represented in the
following manner /Tb6^7m

(1.80) H^UVV' 2Tti - 8 (s) x" ds

ivhere i« (-1), x is not zero and is a complex number, and
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(1*81) 3^ «= exp fs Log 1x1 + i arg X_7
In which Log \X\ represents the natural logarithm

i

of tXL and arg X is riot necessarily the principal value.
An empty product is interpreted as unity. Also

m na.82) '8(s) * yy, pCbj-SjS ) yr P{1“aj + ajs }
j=i ___________ j=i______________

it v r^-v*j=m+l j=n+l

Where m, n, P, q, are nonnega-tive integers
* * »

satisfying 0 ^ n ^ P, 1^ m ^ <3 t aj (.j - 1/2 ...P )
and Pj. (3=. x,2/...q ) are assumed to be possitive quantities.

J l
Also aj ( j = 1/2 ...P ) and bj (1 j == 1,2 ....q) are
complex nqmber such that none of the points.

(1.83)
OV + X )

• J ■! >■ — *

«h u h = 1/2 •*»m 1 \ “■ 0^ 1*• • •

Which are the poles of P( b^- 8^ s) h = l,2..,m
, jand the points

(1.84)
a. - rj -1

a:1
i “ 1/2, .. .n,^=0., 1..

Which are the poles of pd-a^+a.^ s) coincide
with one another



that is
(1*85) a±( bh + \ 1)

For = 0,1,...., h = 1,2,...,m; i =l#2.,.n*
Further, the contour L runs from - i 00 to 4-1od 

such that the poles of r< bh- jS^s ), h = 1,2,. #m lie to' j
the right of L and !the poles of (. l-ai+ a^s ),i =1, 2...n 

lie to the left of 'L^such a contour is possible on account 
of (1.85). These ajssumptions will be adhered to throughout

ithe present work.

We state the following useful properties of the
H. -function,

m,n
(1.86) X H

p*q V j = P'5W<V K^®q V

If one of the (a^, a^* i -1,2,...a is equal -to 
one of the ( bjiSj) j » m+l,...q.

,Tor one of'the pa.irs ( a± , a*), i = n+l^.p, is equal to

one of the (bj „ 0j.)' j = 1,,.. .m _7

then H-function reduces to one of the lower order 
and n( or »") decrease by unity.

We give below one such reduction formulas



n

(1.87)
$*« « « *

(3p— i ^ ) » (
(bq-l/

ap , ^
1*1'?!* )

p—l,q—l X
'(a2 , a2), 

(bl ' h)’

1 ap ' %K

<Vl' ®q4 )
provided n $ 1 and q > m.

When CT.J = 8. ( i=l, . ..P,, J = l/a...q) then H-function“*■ J
reduces to the well known Meijer's G-function.

(1.88) rl/c (V
<V)

1#32 The H-function of two variables 
We shall define and represent the H-function of two variables 

57/P117J using the following notation ^f”58,P266-7 -

(1.89) H (x,y)

- HI
°'nlsm2'n2'm3'n3 fX

^>li^ls^2#cl2'P3#c23 \y

^®Pi' /APiJ'i ^i ^a 

_ , jS (\!k2h <*<13 ’ij-

-1
4 TT 2

Where
il*QO) *f(s-,t) =

f f £ (s,t) 62 (s) ©3(t) X& yh ds dt.
D1 L2

niTT P( l-a,+a- s + A.t) j=l J J J

rf r^-v^*) j\ rd-bj+8js+Bjt)
j*n1+l j=l
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mo ^(i*9io $2(s) r(i-ci+*s) itr(di~$is) '
j=i 3 3 j=i j j

n* r<cj-^s) -n2
j=r^+l j=mjKL J J

(1.92) 63(t) n3-jj pd-ej+Ejt)
j=l

m-s
it nw>
j=i

MS'*!-*!*' "n3 r^-w>
J“r^+i 1=m~+l

X and y are not equal to zero, 
is interpreted as,unity, pi#<2j/n.j and mj 
integers such that £ ni ^ ^0

and empty product 
are non-negative
, qj ^ mj ^ o

(j“l/2 ; i = 1,2,3). Also all the A's^'s^B's , jB'Sj/'sjS's
E’s and P's are assumed to be positive quantities.

The contour is in the s -plane and runs fT'om 
-i ooto + i ®, with loops, if necessary, to ensure that
the poles of P^j“<5j$ ) ( j=l,„..m^) lie to the right,

and the poles of p(l-Cj-i-Vj s ) ( j=l,2,....n2 ),
P(l-a. + a.s +Ajt) ( j =1,...!^) to the left of the 
countour. The contour L2 is in the ‘t-plane and runs from 
-iOOto + ioo, with loops, to ensure that the poles of 
r( fj-Ejt ) (j=l,...n3 ) lie to the right, and the poles 
of p( 1-ej + Ej t) (j=l,...n3) and p(l-aj-KXjS+Ajt) (j=l,2..n1)
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to the left of the contour.

Following the result of Braaksma /"~55,P278_7

it can. be shown that the function defined by (3*89 )is an 
\

analytic function of X and y if
(1-9S)
R = V* _ XT

L + 1, 1
. >i=i J J=1 J

P1 P3s r I a, + Z Ej

P-2
0.

3=1

(1.94) j=1 J j=l J

- £ Sj
j=l , 2

ql - q3
y b, - s »

< 0.

< 0
j=l j=l

Buschman /59 7 has given the' following conditions 
for the convergence of the double Mellin - Barnes integral

representing the extended H-function of1 .two variables :
* (1.95)

+ I>j -IvIfvIV0
j=l j=l j=m+l j=l jsr^+1

(1,97) |arg x) < 1/2 uTt , |arg y|< 1/2 VTr

(1-96) „ 3 ql ”3 q3 3 , P3V = - ^ ~
j^+1

We state the following useful property of tlje
t

H, —function of two variables.

If one of the ( ) (1=1,2,.. .n2) is equal

to the one of the(di, £±) (i= rrtf-l,...q2j ^hen the H- function

reduces to on® of the lower order, and similar other 

results. We give one of such reduction formulas!

*(1.95) U = - yr-3- ql q n2X:as~ h*3*1 Si~ *
3~ nl J-1 j=l j=m9+l j=l .

X V", * 0 .
j=n2+l J
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(1.98)
0,n1sm2#n2?m3,n3 ,x

H^•*lsP2'q2,p3/q3

= H
0,n1sm2/r^-l?m3/n3 /x

%'<3l!P-1'qfl!%'t!3VY

VVVVV' ‘VV
(^Vl\)!(%-1'Sg-i)' (ci'vi); (fqJpq^

(c2,y2>' ‘ (%'Ep3 ’’

(aq-^q“1); (fqfPq,)
q2 <¥ q3

1.4 Mellin -Convolution s

1.41 1 The Mellin -Convolution of one-variable
, 1

We know from Titchmarsh /”27,p 59_7 that if 
1 ■ i . ' •

f €r L ( O/CD' g ^ (0,CD ) then (f *g) (x) (r L* (0,00)/where 
(x) ~ q5’ u f (x/u) g(u) du.

Hence the set L1 (0,00) of complex-valued functions 
froms an algebra over the field of complex numbers with the 
usual defination of addition and scalar multiplication and 
the convolution (1.93) as the defination of product.1

„ we can show that . -t-he convolution (1.93) as the
defination of product is commutative.

00 -1Uow ( f * g) (x) - / u f (x/u) g (u) du1.

by putinc u = x/t
V .

we get (f * g) (x) » (g * f ) (x). I



Simple calculations show that the algebra is also
associative,

BUSCHMAN / 39 7 pointed out that if we defined
» r

06) iV'a'fx) =i/r(a) c x^l)0^1 X"AT3 “Aa u (x-i)

Where U(x) is the Heaviside unit .step function,

U(x) = f 0 , for x £ 0
L 1 , for x > 0

The fractional integral operator (1,18) can be written in 
the form of convolution (1.9$) •

(i.101) m { jt.a.K * f , (x)

Since, *using (1*99) we have
fl9'a'A*f ) (X)

00 1 7> „ a

- f u f(x/u) I7' * (u) du.
CD

rw a
JU f (x/u) (uAl) a~1 u~A17 "*ACC U (u-1) dx

Where U(u-1) =

CD

0 for u-1 < 0
1 for u-1 > 0

=_A. J u“1f (x/u) (u^l)0^1 u"AY) “Aa du> -

p«) 1
By putting t = x/u,

-Ah -Aa CD
. -4--------  f(xA.tA)^ tA1? £(t, d (tA

r <“> o
>i,a . . tj,a,Af (x) j Also I' (x) €r L* (0,® ) for Re a > 0,



t
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Re Y}> l/A -1

Similarily (1*19) can be written in the form

(1*102) f (x) - ( K^a>A * f ) (x) if

(1,1C|) def ine

K^a#A(x) sA/p^) (i*.xA) ~ XA>? U(l-x>
i

Which belongs to L' (0,00 ) for
' i i

Rea S- 0, Re’)> -l/A

Thus we can identify the fractional integral 
operators I s and, K s with the elements of algebra and 
hence we conclude that they associate end commute.

A direct computation in order to varify the 
commutativity of JTl?/a ^ j can also be carried 

out. However

do not commute unless A *= B, 
xI> a

and T
l B

1*42 The Mellin -Convolution of two variables

then (f
>

(1.104) (f ** g)

Prom Koranne /~if f,ge D/" (0,00 ), (0,00 7 
* * g) Gr V f(0tco)t (0,00)J7 Where 

00 CD
(xy) = J* J uV"1 -f (x/u,y/v ) g(u,v) du,dv.

0 0

Hence the set of complex - valued functions 

belonging to D / (0,00), (0,00) J7 f romp an algebra over



the field of complex numbers with usual defination of 
addition and scalar multiplication and (1.104) as one 
defination of the product.

Simple Calculations show that- this algebra is 
associative and commutative. We note that fractional 
integral (1.22) can be weitten in the form of a convolution
(1.105)

f(t*z)dt dz.
>?,a r,£=(I I * * f). (x,y)

Where we define a function

(1.1,06) I I (xjy)

1 (x-l)0-1 (y-1?-1 u(x-l)u(y-l).

f(a) r«*)
In which U denotes unit step function.

(y), a) > 0f (%0) > 0f So that we can identify these 
fractional integral operators with elements of algebra.
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Similarly

KV'a K?$f(x,y) = (#“ KT/0 * * f) (x,y)

Here we can define the function

Cl’#107) K%* iXfj)

* *7 (1-x)'“^u (1-x) y^C 1-y) 0“1li (1-y)
fCaJrOS)

Which belongs to D /£o#0D ), ;(Gf00)_7 for 

( 0,$) > 0, > -1

The equation (1.24)' can be expressed in the form
Cl. 108)
T*),a Tt0 . .^(x) ^(y) f<x.y>

t

CD 03 1 Of—1
_ f f z1 tif i / gf(x) ..A /jd(x) \ x-J J z(r(a) (w te;

frrir-(^->/'‘(!gS)'T" *

Jrf(x)
J2f(t)

dt dz.

This can be written as the convolution ‘product if,

Itf (x/t), ^(y) _ (y/z) and
y(z)

X # (x)
jrfCx) a, y T/TCy) = B.
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Hence if $ (x) = C X t *y(y) = C y ; then follows

(1.109) J?'a , _*?/a,A T,|B,B ' . jcW-I A I B f (x#y) = ( I " I < * * f) (x.x y
When (A,B) > 0

We define the function

y)

(1.110) ^'“'A IT^'B (X/y)

= .*.1° . (X*!)^1
r(a)f(P)

U (x-l). U (y—1) .

Since the operators correspond to functions of 
algebra for (a,^) > 0/ (T, B) ,>; 0, they commute and associate 
independently of the choice for A and B.- similar arguments
can also be applied to K^(x)

1*5 . The Mellin Transform s

Y<y>

1.51 The Mellin transform of operators of one variables

Let us denote F(s), the Mellin transform of f(x) 
by M (x)_7# that is

00
M ZTf (x)j7 «* F(s) f s—1(x) X dx

and regard s = <T+iT as complex variable. Undee certain 
conditions ./~28_^ f(x), the inverse Mellin transform of 
F(s) may be represented as an integral.

I
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m"Vf(s) 7 = f (x) = l/2Tfi
C+iOO

(J
C-iGD

~sP(s) X ds

' Associated with these transforms is the following
Convolution theorem 2^th 44^ P 60J7 if s= C+i/T ,xGf (x)and 
XGg(x) L1 (0, GO ).

Then
I

(1.111) P(s)G(s') ■= M /“(f * g) (x) J and ,
XC(f * g) (x)^- L' (0,00 ).

It has been proved by BUSCHMAN /“40_7 that

(1.112) m r^'a'A(x) J = Hi +Prs£*h Re a •> o.
f(l+^+ <Wa )R? s <A(Re?+i) x

(1.113) M fK (x)J7 = , .Re a >-0, Re s *-ARe>)

1.52 The Cellin' transform of operators of two variables;.

Let us denote F(s,t), the mellin- transform of 
f (x,y) by M £“ f (x,y)Jt that is

oo a)
M £Tf, (x,y)J7 = p(s,t) = ^ /f (x,y) Xs"1 y*-1 dx dy

and regard s=n£Si + i^ t * <5j + if , as

complex variables. Under the conditions /26#47 7 
f (x,y)# the inverse Mellin transform of P(s/t) may be repre­
sented as an integral
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M”1 / F(s,t) J7 « f (x#y) 1
(2Tfi.

C^+iCD

? fCi-i®

C2+i(Df F(s,t)X"Sy"SS
C2-i00

We have associated with this transform the following
convolution theorem,,!

% ^2 S c2If X y f(x,y) and X y'g <x,y)f.D /-0/00 )r (o,co)_7then

(^,.114) P(s,t) G(s,t) = M /*" (f * * g ) (x,y )_7 and

X y ^ (f * * g) (x,y) e D >£"<0,00), (0/OD )_7 
It has been proved by Koranne /“47_7 that 
(1,115) M 1*'°'^' IT'^B (X"y) 17 ■ ! -

= Td+^-s/A) ffd+^-t/B).
f (1+1) +tX-s/A)'f (It 'T+P-t/B)

I

Rp a $0, Re p>0, Re s<A (Re1} +1)/ Re t < B^Rel+1) 
(1.116) M /"K'a'A K*^^#/B (x,y) 7

= p(V)+s/a) r (t+ t/B) •
P (^ +a+s/A) p (T +£+t/B)

Re- a >o, R' S >0, Re s>-A Pa^Ret’^B Re T.

1.53 The.Mel1in - transform of the H-function of
i i

one variable. :
I - ,

The Mel1in-transform of the H-function follows 
from the defination of H-function,in the view of the well- 
known Mel1in inversion theorem,
We have!

3905
A '
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(1.117) M I h£'“ , ax;
L V v

0}j/£q)
-s m_tr r(bJ+^s)Tfr(i-aJ -“js)

J-1 j a 1
q p
jj P(l-bj-PjS) jj- p(aj'-KXj,s)
j=m+l j=n+l

Where a > 0, ^arg a} < m#n/p#q# are non negative
integers satisfying O^n^p, 1 m ^ q , cCj, (j=l,2...p)

end fiy (^=1,2 . ,.q) are assumed to be a positive quantities.

Also aj and bj

(1.118) - min
j m

are.complex numbers such that 

Re (bj/$j) < Re (s)1^n Re (1-a.j/a.j)

1.54 The Double Mellin Transform of the H-function of 
Two variables.

The result is a direct consequence of the defina- 
tion of H £"ax,by_7 function.

00 00
(l.il9) J. Jx=-1 yt-l H ^ ^

0 0
= a“s bt $ ^ (-s) <£^(“t)

Where Si (-s, t ) &2 ^3 ^ ^^ are 9iven by (1.90), (1.91)
(1,92) The conditions given by(1.93),(1.94),(1.95),(1.96) 
(1.97)are assumed to be satisfied, and
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- K min
1 0 $ m2

< Re (s) < \ min Re lmmC3
«fsi4n2 Yj

and
-M min

Ri < Ita (t) < V min1 ^ j ^ m3

Motivation of the work done s-

Dual Integral Equations involving many special
functions as Kernels have been tackled from time to time 
by various mathematicians like Tranter/Noble/Buschman; 
Saxena, Fox/Koranne1and others/ by using various techniques. 
This motivated us to study dual integral equations of one 
and two variables by choosing Kernels in a very general 
form and using the technique of fractional integral opera­
tors. This technique offers the convenience of converting 
dual*integral equations to a single integral equation. 
Various techniques are available in the literature to 
solve such single integral equation.


