
CHAPTER- III

THE CLASS OF EXACT SOLUTIONS FOR
FERROFLUID SPACE-TIME
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1. INTRODUCTION

The imposition of the constraint of spherical 
symmetry in solving Einstein's field equations or Einstein* 
Maxwell field equations associated with relativistically 
moving objects, play a vital role in developing cosmological 
models. Moreover to obtain the particular types of models 
for given relativistic fluid distributions, some extra 
geometrical restrictions like isometry or self similarity 
are used by Eardley (1974), Cahill and Taub (1971), Wilson 
(1986).

In case of anisotropic distributions of matter 
involving viscous effects, the vibal geometrical restrictions 
like conformal symmetry are utilized in obtaining the 
appropriate mathematical models by the researchers like 
Penrose (1965)# Garf inkle and Tlan (1987), Eardley et al 
(1986), Surve and Asgekar (1987) and Aherkar and Asgekar 
(1990). It is proved that conformal symmetry fits to static 
spherically symmetric distributions of matter (Herrera et al 
(1983)). Further the spherically symmetric distributions of 
matter Including viscous effects is considered by Carot and 
Mas (1986). If a rotational fluid space-time admits a time­
like conformal vector then the vortex lines are material 
curves in the fluid (Ehlers et al (1986) ). It is shown by 
Dugal (1990) that the study of relativistic fluids under

•SvB’r'''r.’^su«»r
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metric symmetries is relevant to the radiation like viscous 
fluid friednan-Rdbertson-walker model with the conformal 
collineation symmetry vector parallel to its tilted velocity 
vector.

Our aim is to obtain a class of spherically symmetric 
space-time models compatible with the ferrofluid distribution 
admitting conformal symmetry.

The Einstein's field equations for spherically 
symmetric space-time filled with the ferrofluid admitting 
co-moving frame are formulated in Section 2. In Section 3 
Maxwell equations are solved under the spherically symmetric 
background and the values of the magnetic permeability ? 
and the magnitude of the magnetic field are obtained as 
the functions of r. Sections 4 and 5 deal with the space- 
time admitting conformal symmetry. The system of Einstein's 
field equations is integrated to find the values of conformal 
potential y . Thus a class of models consistent with the 
ferrofluid space-time admitting conformal symmetry is 
developed. Some particular cases like p * 0 and ^ * 3p are 
discussed in Section 6. Also the values of kinematical 
parameters have worked out with reference to the derived 
model.
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THE COMPONENTS OF EINSTEIN'S TENSOR :

We can easily workout the following components of 
Einstein's tensor for the spherically symmetric line
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Now by utilizing these values (2.6) to (2,8) of the 

components in the Einstein's field equations (I.(5.1) ) 

we get the following three differential equations pertaining 

to the ferrofluid
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1 , 2A'

KP » — x (--
a Ar

) “ 1
3 ... (2.10)

1 a" a' B' 1 a' b'
kV m [---------+---(------- ) ] ... (2.11)

a A AB r A B '

K 9
1 2B... ( ...
Bz Br ... (2.12)

3. DEDUCTIONS FROM MAXWELL EQUATIONS

We recall the set of Maxwell equations (II. (2.9)and) 
(2.11) ) as in the form

[ 1»( uV* - u¥ ) ];b - 0 ;

i#®’# *>b < u®^ - u^ ) + Ku®^ - uV )#b - 0. ... (3.1)

One of these equations for the value a » 1 is given by 

Rfb (uV - ubHX ) + v[uXH^b + u*b H^- ubb H1 -

“ °* ••• <3*2>

But by the choice we have

1 2 3 2 3 4u » u - u - H ■ H * H * 0.

Hence the equation (3.2) reduces to

-1>,bUbH1 + - H1,bOb - 0 ;
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i.«.. -fftnhi1 + vu1f jH1 - - h1,^4 - o ,

i.e., -»|4u4H* + * [ u1,!* u4^1] H1 - HU6,^1 - 

- t> [ H1 4 + H1^1 ] u4 - 0. , 

i.«.. -1>,4 «V + 0 - PH1,,*,, - W1 ,4 »4 - 0 ,

i.e., 4u4hX - mV b* M*4u4 - 0 t 

V , ub.h H1 A

i.e., --- + —- 0. ... (3.3)
1* U4 H1

Now by using the standard formula

»b>b * ~Jr~ (yr*1^ *b } > *•• (3#4>

and imposing the constraint

V - *(r) ... (3*5)

We can write the equation (3.3) as

ot

"7?? H1
(3.6)

An immediate integral of (3.6) provides

log (u4 y^g ) + log H* ■ log f2

where f is a function of r.



41

This implies that

H U4V^i ’ ... (3.7)

Similarly by putting a « 4 in equation (3.1) and remembering 
that the only non-zero components are u4 and H* we get

* jU4!!1 + llU^jH1 + *U4Hb;b - 1»H4>4 U4 - 0 f ... (3.8)

1 • © e#

xU4H^ + 11 [u^jH1 + u4f^f4 ] H1 + ♦

-»t H% ♦ H1 f^4 ]»4 - 0.

Since H4 * 0 and | 4 ■ 0 } the above equation redaces to

* jU4!!1 + Hu4# jH1 + ihi4!^ b» 0.

This after simplification provides
* i ®\ i «b,b

+ .. + .... * 0.
1» u*

This gives an easy solution in the form

^ -g » 0Z t 0 is arbitrary constant,

So that we get the value of V ;

J2

s/~g u4H*

9595
A
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f
... (3.9)

[vide equation (3.7) ]

Further we have

i *e..
H.

Hi

*11 W

i.e., H,

2 x —B ~t—"••****Vu y-g

- sr

. :( *.* gj_j * - B and
.2

HJ l4^=? )

... (3.10)
( * * u4 >/-g * Br2 )

So we can find out the magnitude of the magnetic field by 
equations (3.7) and (3.10) as

H ■ - H.H1 ,

i.e.. ... (3.11)

Further we can calculate the value of WH by using the
equations (3.9) and (3.11)

t2 f2wr ... (3.12)

Thus the spherical symmetry described by the line element 
(2.1) under the selection of co-moving system has provided 
the values of the variable magnetic permeability given by
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equation (3.9) and the magnitude of the magnetic field 

H2(r) given by equation (3.11) via Maxwell field equations*

4. CONFORMAL SYMMETRY

The space-time is said to admit a conformal symmetry 

group if the metric potentials satisfy the conditions

£<Jab-Y9«b , ... (4.1)
A

where Y is a scalar function of co-ordinates.

If the space-time metric (2*1) satisfies the conditions 

(4.1) then we try to solve the system for getting the metric 

potentials in terms of the unknown scalar function Y . In 

doing so we start with a conformal killing equations (4*1) 

which can be written in explicit form

9ij.k xk + «lk Alm Y«u• —<4-2>

Now if we choose the arbitrary vector field X in the form

x « K (r)----- , ... (4.3)
^r

then we write equation (4.2) as

<>11,1 X* + 2«11 X\l - Y«ll* ••• <4-4>

This with the metric potential value given by (2.2) 

yields a relation
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B' A'

B A
Jf
2A

(4.5)

Also from equations (2.2), (4.2) and (4.3) we derive 

2A ■ ry •

Hence the equations (4.5) and (4.6) then provides a 
differential equation 

b' K i
B A r

This gives a solution of the form

(4.6)

(4.7)

BA ■ rn

where n is the arbitrary constant of integration.

... (4.8)

Consequently from equation (4.6) we write the value of B 
in terms of y as follows:

2n
B ... (4.9)

Further the equation (4.2) for the values i * j ■ 4 by 
utilizing equations (2.2), (4.3) implies

2A# A - y A f 
2A/

i.e •# A (4.10)
[vide equation (4.6)]

Integrating this system gives a solution with X as the 
arbitrary constant

A B 4r. ... (4.11)
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2K*>

2KPH

Y *
TT " 'nr i

2.. .Y2
2 2 n4r‘

!- + YY
2n2 r

2 yy
"“5 +
r nr

• • • (4.19)

... (4.20)

Also by using the value of equation (4.20) in equation

(4.18) we get
i i 3yf' „2K o * — C 3. ... (4.21)

' r r 2n2

Thus we have obtained a system of differential equations
(4.19) , (4.20) and (4.21) for the space-time of the ferro- 

magnetofluid admitting conformal isometry.

5. SYSTEM INTEGRALS

In solving the above system of differential equations
(4.19), (4.20) and (4.21) we make use of the equation (4.20)

2with the value of PH given by the equation (3.12) and write
j - i., 202 f2 YY 2 y

2n2 r 4n2r2 r2 (5.1)

This can be simplified and written as
, 2 V 2 4nVf2

2 yy--- - - --- 5—
4n"

r r*
By making use of a substitution

dT 
dr

y 2 * y 2 y y

... (5.2)

... (5.3)

in equation (5.2) yields a linear equation in the form



47

dr 2 4n202f2 4n2

dr * r
... (5.4)

By solving this linear equation we get the integral providing
2the value of Y through the relation

ys y2 * 4n202r2 Jr“5f2 dr + 2n2 + cxr? ... (5.5)

Further if we restrict the value of f2 with the constraint 

equation

f2 * r^ X (X is function of r) ... (5.6)

then the integral (5.5) gets reduced to a simpler version

y2 - 4n202r2X + 2n2 + cxr2 (5.7)

2Thus with this value of y a class of spherically 

symmetric mathematical models describing the space-time of 

ferrofluid admitting a conformal group of motion is exhibited 

by the metric form

ds"
4n(l2r2) dt2 - ( —- ) dr2 - r2(d82+ Sin2« d«2).
Y ... (5.8)

NOTE 1 : By substituting the value of y2 (5.7) in the 

equations (4.19) to (4.21) we write the values of ^ f j> and 
PH2 in context of the model (5.8) as follows s

To Find The Value of )? t We recall the equation (4.19)
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2K{> Y
2 2 nr

i + Jilt!.
r2 2n2r ... (5.9)

Also from the value of y2 (5.7) we get 

YY « 2n202r ^ + 4n202r\ + c^r . ... (5.10)

Hence equations (5.9) and (5.10) will give the value of p 
in the form

(2_
p « 3|T k +

2r4

3ci 0*r \
4n2 2 ... (5.11)

To Find V s We recall the equation (4.21)

* s - 3c ; - “3“2n“

This by the substitution of the value 
(5.10) generates the result

from equation

o ■ - 30* A - | 02r k - ---- + —-
\ 2 4«2 o-2

3cl
... (5.12)

4^ 2r'

Further the value of WHr is provided by equations (4.20)

(5.7) and (5.10) in the form

W2 * 02 rk ... (5.13)

6. SOME PARTICULAR CASES

we include in this section two particular cases t
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(a) Ferromacmeto dast : This matter distribution is 
characterized by a dynamical condition

Ip * o. ... (6.D

(b) RADIATION DOMINATED MODEL * We take the characterizing 
feature of the ferrofluid space-time which is radiation 
dominating, through the dynamical restriction

^ * 3b ... (6.2)
THEOREM 1 : For static ferrofluid spheres admitting 
conformal motiohs

o C1n + ~ .jp = 0 ■£>

PROOF t We recall the equation (4.19)

t> Y2 + jV . ± >
2n2r2 4n2r 2r2

Hence if * 0 we get

y2 YV 1
2n2r2 4n2r 2r'i2r2 i»2r o.2 3

i. e.. / y2 4n2
2 yy + 4 --- - ---

r r

... (6.3)

... (6.4)

This differential equation has an immediate integral

... (6.5)y2 * n2 + -i- T r4

where c^ is constant of integration. 
Here the proof is complete.
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Cl
NOTE 2 s If we put V* * n£ + -- in equations (4.20)

■" 1 ' r*

and (4.21) then we get

1

2r2

1
—— + , , 
2r2 2nzr®

2n2r6

3cl

... (6.6)

... (6.7)

THEOREM 2 : If the ferrofluid admitting conformal motions 

satisfies a equation of state ^ * 3fc> / then

. ,2 4 2 C1* 2 n + •
1 3 r2

PROOF s If we use the equation of state ^ * 3J> then the 

equations (4.19) and (4.21) give rise to a differential 

equation

2r‘

3VV
4n2r

3 y
2n2r

3yy
2-2 4n2r 2r

... (6.8)

This after simplification becomes
e 2

2 Y* - ~
3r

2YY *1 Y 0.

The immediate integral of (6.9) yields

v2 ■ i "2 ♦ ~2 •

... (6.9)

... (6.10)

This is the required necessary condition of the theorem.

NOTE 3 s If we put this value of V|>2 given by (6.10) in
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the equations (4.19) to (4.21) then we get

.. (6.11)

1 3cx
(6.12)^ 2r2 4n2r* 1

m2 *
3r2 n2r*

(6.13)

CONCLUSIONS * we have studied the space-time of ferrofluid 

under the geometrical restrictions (i) static and spherically 

symmetric metric form ; (ii) A group of conformal motions.

The set of Maxwell equations under the condition of

co-rooving system has helped in obtaining the values of

variable magnetic permeability and scalar magnitude of

magnetic field. The conditions of conformal symmetry are

used to derive the metric potential values and thereby
2providing the values of unknown potential y through 

Einstein field equations. The physically meaningful constra­

ints are put on the spacetime structure and respective 

system of equation is solved in Section (6).

Thus we have succeeded in providing a class of space- 

time model associated with the ferrofluid distribution under 

the geometrical restriction known as the conformal symmetry

group
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© * 0 *

( • * B ■ where n is constant 
• T

and Y is function of r)

2. ACCELERATION »

•au u*;bub )

(by definition)
... (6.16)

(u* „ + u= bb* > '>b b»b- <«*b*

“c ) “b >
. .aA • ©•# xi »*, b »b + uC“b rs (6.17)
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For a * 1

.1u

i«e.* A

i.e.#

. .1i.e., u

Ab“b+ uC»b »

0 + fTT* «4u4 . ( * * only u4 is existing )
144 • •

fZ1 <“4>2 ,'44

1 ^ 2 12
... — (a j < -V f
2B2 dr A

t 4.1 . > ■ •—i 1 ^ .. 2>
( »« ■ S S- (A )

.1A • ® * # W

Hence u*

2AA ,
-—- • -- ; by Tolman page 254 )

2B2 A2

B2A
(6.18)

Also we get

.2 .3u * u .4e » 0. ... (6.19)

(* * only vr is existing and 

*4 ,4 ..4 A r-4 .4 .4u\4 + IT: u*u*

0 + 0).

Hence 4* *
2 *BZA

(6.20)

Therefore we get

«*ua « n1^ - g1,(n1)2
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*33 » 0 , A( * * u^ - 0 ■ u3 and (^3"* * 0 )

* 0 4
( * * u2 * 0 * u3 and » 0 )

^24 * 0 ; ^ u2 “ 0 ; u4; 2 " 0 an<5 [^4 * 0).

*43 ■°> < *.® u4,3 * 0, “3 ’ 0 , riT4-0-liT4)

*14 - 5 t "4 - “4 JIT 4 ] ( V* »! - 0 )

i.e.# 614 - ; [ a' - A. (2AA )] ( • -u4 - i )
2 2A2 • A

i**” ^14 - i (a' - a' )
2 f

*14 * 0 ,
Hence 6Z *• 6*h ^ * °* ••• <6*24>

4. ROTATION TENSOR COMPONENTS *

wab ■ \ fu«,b - »b,« 5 - S "S. - »««b,e 1-

... (6.25)
(by definition)

By using f 4 ■ 1 ‘4 u_ a “ 0 uau ■ 1 andlab fba t a>4 / a

u4 is existing f we get
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