CHAPTER--III

THE CLASS OF EXACT SOLUTIONS FOR
FERROFLUID SPACE~-TIME
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1. INTRODUCTION

The imposition of the constraint of spherical
symmetry in solving Einstein‘s field equations or Einstein-
Maxwell field equations assoclated with relativistically
moving objects, play a vital role in developing cosmological
models., Moreover to obtain the particular types of models
for given relativistic fluid distributions, some extra
geometrical restrictions like isometry or self similarity
are used by Eardley (1974), Cahill and Taub (1971), Wilson
(1986) .

In case of anisotropic distributions of matter
involving viscous effects, the vibal geometrical restrictions
like conformal symmetry are utilized in obtaining the
appropriate mathematical models by the researchers like
Penrose (1965), Garfinkle and Tlan (1987), EBardley et al
(1986), Surve and Asgekar (1987) and Aherkar and Asgekar
(1990) . It is proved that conformal symmetry fits to static
spherically symmetric distributicns of matter (Herrera et al
(1983) ) . Further the spherically symmetric distributions of
matter including viscous effects is considered by Carot and
Mas (1986), If a rotational fluid space~time admits a time-
lixe conformal wvector then the vortex lines are material
curves in the fluid (Ehlers et al (1986) ). It is shown by
Dugal (1990) that the study of relativistic fluids under
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metric symmetries is relevant to the radiation like viscous
£fluid friedman-Robertson-Walker model with the conformal
collineation symmetry vector parallel to its tilted velocity
vector.

our aim is to obtain a class of spherically symmetric
space~time models compatible with the ferrofluid distribution

admitting conformal symmetry,

The Einstein’s field equations for spherically
symmetric space-time filled with the ferrofluid admitting
co~moving frame are formulated in Section 2. In Section 3
Maxwell equations are solved under the spherically symmetric
background and the values of the magnetic permeability ®
and the magnitude of the magnetic field are obtained as
the functions of r. Secticns 4 and S deal with the space-
time adnitting conformal symmetry. The system of Einstein's
field ecuations is integrated to find the values of conformal
potential Y . Thus a class of models consistent with the
ferrofluid space-time adnitting conformal symmetry is
developed. Some particular cases like p = 0 and e = 3p are
discussed in Section 6. Also the values of kinematical
parameters have worked out with reference to the derived

model,
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2., SPHERICALLY SYMMETRIC LINE ELEMENT

wWe start with a spherically symmetric metric written

in tems of Schwarzschild co-ordinates as

as? = A2(r)at? - B2(r)ar? - r2(a 62 + sinZe 4 §2).
[ N I 3 (2.1)

The metric potentials are given by

a%(r) ).
[ N ] (2.2)

gap = dlag. (-Bz(r), -rz, - r?sin @ ’

We prefer to choose co-moving system so that the time-like

flow vector is taken as
ud = ut 53 . eee (2.3)

The spherical symmetry with this choice of flow vector
under the orthogonality relation uaﬁa = 0 , Gemands that

H‘g(ﬂl,o,o,o). ees (2.4)

Hence the unitary character of the flow vector u2 yieldas
with the help of ecuation (2.1)

u I% . se e (205)

THE COMPONENTS OF EINSTEIN'S TENSOR

We can easily workout the following components of

Einstein's tensor for the spherically symmetric line
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element (2.1).

4

1_.1 1! 1 1 2 1 1
Gy TSR] = 3 Rg, = =3= ( ==== 4 === ) = =z= .., (2.6)
1=717279 © 032 Ar £ 2 !
/i ) ’
1 A AB
2 2 1 2 3
G. = R, -=Rgo=QC) = [ - +
2= T2 27%2 T3 g2t , AB
1 A B’
+ - - ( amasen ar  Menan ) ] o900 (207,
o A B 4
y.:3 1
4 4 1 _4a 1 1
4 4 2 4 32 Br rz t2
e (2.8)

(Here prime denote differentiation with respect to r)

The components of the stress energy tensor T, given by
equation (I. (4.1) ) under the choice of edquations (2.3)

and (2.4)
1 1 2 _
Tl = e p + 3 PH = - P ’ ;
- )
Tgtl‘gi"p-%ﬂﬁzﬁ P , ; sse (209)
s 2 - )
Tymot; M= e )

Now by utilizing these values (2.6) to (2.8) of the
components in the Einstein's field equations (IX.(5.1) )

we get the following three differential equations pertaining
to the ferrofluid
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1 2x 1l 1
KP = 2 ( + 2 ) - "'5"" ) PR (2010)
B Ar r r
1 ' AP 1 A B
K = s [ - .-t (====-)1] ... (2.11)
B A AB r A B ’
1 y::) 1 1
B oo - e - bk ) + e ° see (2012)
KR B2  Br r? T |

3. DEDUCTIONS FROM MAXWELL EQUATIONS

We recall the set of Maxwell equations (II, (2.9)and)
(2.11) ) as in the form

[ B u‘Hb""ubHa) ])b

i.Q., F,b (uaﬂb - ubHa ) + F(u‘ﬂb Ll ubHa ),b Z O, gee (3.1)
One of these equations for the value a = 1 is given by

:b (ulﬁb -u H ) + v'[ulﬂ?b + "ib HP- ul:b Hl -

ubﬂl’b] = O, see (302)

But by the choice we have

ultuz-usaﬂznﬂ:’aﬁ‘-o.

Hence the equation (3.2) reduces to

- sbY H + ttu]' Hb llu ;bH - Hl,bub = 0
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t.e., v qutnl 4 pul (0l - P et - nl et a0
o 6
1.300 -F’4u4ﬂl + n [ u1’1+ u‘ ‘1 1] Hl - F“ ’bﬁl -

-v[H1‘4+H1ﬁ’r1]u4 =0 ,

4.1 1Db 1 4

4.1 1Db 1l 4
1030‘ ‘p' 4‘1 H® - BH u ’b" F‘H' 4“ = 0 ’
b 1
» u H 4
1.9.. ""2 + tb + 'I" = 0., Xy (303)
n u H
Now by using the standard formula
1 d
b b
u = (/_-_g‘ u ) eoe (3.4)
tb =g bxb ’
and imposing the constraint
B=wn eee (3.5)
We can write the equation (3.3) as
o —
4 + --)i“‘ =0 , s oo (3.6)
v -g u H

An immediate integral of (3.€) provides

log (ut V=g ) + log Hl = log £2 ,

where £ is a function of r.
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This implies that

1 £ ¢
H 2 weccccces see 3.7)
ut / -g
Similarly by putting a = 4 in equation (3.1) and remembering

that the only non-zero components are u‘ and Hl we get

4.1 4 .1 4> _ .4 4
v.’lul-l + B ,{H +Fu!~l’b BH ;4 U -0,... (3.8)

i.e.,
4
\1’1!1431 + 8 [u" lﬂl + u‘(;; + Bu Hb
4 1 4 1. 4
v.[n.‘-ra [“'14 Ju®* = o,
4 4
Since H" = 0 and | a1 = 0, the above equation reduces to

4.1 4 1l 4
ﬂlun +1lu‘1!-‘l +ﬂuﬂb,b

[ 4
This after simplification provides
4 b

5 o 1

This gives an easy solution in the fom
pudnl vV -g = 62 y g is arbitrary constant,

So that we get the value of ¥ ,

”2
P wecacew -

,—-—.g o4ud
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1.3.' = ‘2- / se e (309)
[vide equation (3.7) ]

Further we have

1l
Hy=oan -,
i.e. 2
'a--az ;f (*.* g =-8> ang
1 a r—-_q f2
ut -g
- Bf2
1.9.. Hl = ‘;5'- eeoe (3010)

( ’.' ut V=g = Byl )

So we can find out the magnitude of the magnetic field by
equations (3.7) and (3,10) as

H® - Hlﬂl ’
2 £t
1-9.; H & oew - soe (3011)
P

Further we can calculate the value of ﬁﬂz by using the

equations (3.9) and (3.11)
2 .2
2 I f

vH = - o o . oee (3.12)
rl

Thus the spherical symmetry described by the line element

(2.1) under the selection of co-moving system has provided
the values of the variable magnetic permeability 8 given by
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equation (3.9) and the magnitude of the magnetic field
H2(r) given by equation (3.11) via Maxwell field equations.

4, CONFORMAL SYMMETRY

The space-time is said to adnit a conformal symmetry
group if the metric potentials satisfy the conditions

-IX= gab ‘\\Jgab ’ ee e (‘“1)
where \‘) is a scalar function of co-ordinates,

If the space-time metric (2.1) satisfies the conditions
(4.1) then we try to solve the system for getting the metric
potentials in terms of the unknown scalar function Y . In
doing so we start with a conformal killing equations (4.1)
which can be written in explicit form

k x :
gij.k X + gkj X P 1 + gik x):'j - Yqijo eee(d.2)
Now if we choose the arbitrary vector field X in the form

'i = A (r) -;- ’ s e (".3)
dr

then we write equation (4.2) as

1 1
gll.l X* + 2911 X .1 = \Ygllo s (404)

This with the metric potential value given by (2,2)

yields a relation
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B’ X
-——- ¢ oee - -

B A 2A

L ] L N ) (4‘5)
Also from equations (2.2), (4.2) and (4.3) we derive

A =ry . oo (4.6)

Hence the equations (4.5) and (4.6) then provides a

differential equation

|

B A

——— o wme = -%— - LR (4¢7)
B A

7

This gives a solution of the fomm

BA = ’ oo (4.8)
where n is the arbitrary constant of integration.

Consequently from equation (4.6) we write the value of B
in tems of Y as follows:
2n

B £ wee

L LR ] (4.9)

Further the ecquation (4.2) for the values i = § = 4 by
utilizing equations (2.2), (4.3) implies

22 A= YA
2x

1.304 —— = "\ﬁ" fad 2- . ese (4010)
A A r

[ vide equation (4.6)]

Integrating this system gives a solution with | as the
arbitrary constant

A= Jr. oo (4.11)
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Thus we have cbtained the values of metric potential (2.1)
as given by equations (4.9) and (4.11)
2n

B M wee

3 A= Ar. ese (4012)

Now by making use of these values we rewrite the field

equations (2.12) to (2.14) interms of potential Y as

follows :
3 2 1 1
KP B woome ( - ) LT T 14 sse (‘013)
2n2 r2 r:
2 2 1
K? = - v - [ - o + --2-— ; ave (401‘)
4n2  ry r
2 /
- 1 2y 1
Ke=-=3"- L[ +-=-]. eso (4.15)
ré 4n2  ry r?

These equations can be put in explicit form by introducing

the valuesP-p-éNiz,l;-p-l-%!mzand §-Q§mz,
2
3Y 1 1
K - - H | womems - - e eeo .
(p - 5 #r® ) e ( ") 3 (4.16)
2 ’
1l 2 Y 2 Y 1
K(b + = BH®) = + =—= ] eee (4.17)
2 4n2 [ b o r2 ’
vy
K( Q + & “Hz ) - i- - - o o [ [T, + oip ]...‘ (4.18)
2 r2 4n2 ry r

The addition and the substraction of equations (4.16) and

2

(4.17) gives the values of p and BPH® in terms of potential

as follows :
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v2 o2 Yy

ZKP M wmmmon o wmwe o - v = - y ...(4.19)
nzr3 rz 2n r
2 [
2
m(nnz - - -.2.-5- + --2 + --‘ti P see (‘020)
nr r n°r

Also by using the value of equation (4,20) in equation
(4.18) we get

{
X g .%[ 1 XY 1. cee (4.21)

Thus we have obtained a system of differential equations
(4,19), (4.20) and (4.21) for the space-time of the ferro-
magnetofluid admitting conformal isometry.

5. SYSTEM INTEGRALS

In solving the above system of differential equations
(4.19), (4.20) and (4.21) we make use of the equation (4.20)

with the value of ﬂHz given by the equation (3.12) and write
2e2  yy 2v?

..... B evwmwmo - L L LT T T S Y

. eee (S5.1)
r 2n2 r 4n r2 rz

This can be simplified and written as

, 2y 2 4n2gg2 an?
2 - wmomes B @ Seomewemes - ememen PR (5.2)
Y'Y " -3 =

By making use of a substitution
V2ey 2yy = (5.3)
= hatentend )] es e -
¢ ar

in equation (5.2) yields a linear equation in the form
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a an%¢2£2  an?
—— - ow Y = Sammmames - ooe eve (504)

ar r r3 r

By solving this linear equation we get the integral providing

the value of VY 2 through the relation

Y

"

\1)2 = 4n2¢2r2 fr’sfz ar + 2n2 + clrg eee (5.5)

Further if we restrict the value of fz with the constraint

equation

£2 = > A , (X 1is function of r) vee (5.6)

then the integral (5.5) gets reduced to a simpler version
Yz = 4n2ﬂ2r2}\ + 2!12 + C1r2 . eee (507)

Thus with this value of VY 2 a class of spherically
symmetric mathematical models descriting the space-time of
ferrofluid adnitting a conformal group of motion is exhibited
by the metric form

2
an
as? = (12r?) a2 - ( == ar? - r2(a82+ sine 4 62).

ees (5.8)
NOTE 1 : By substituting the value of Y2 (5.7) in the

equations (4.19) to (4.21) we write the values of Q,P and
#H? in context of the model (5.8) as follows :

To Find The Value of P : We recall the equation (4.19)
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2 1
2Kp = -senem e o ul -+ -jJE\lJ— . cee (5.9)
n2r? r2 2n°r

Alsc from the value of \Jz (5.7) we get
!
YY = 2n2¢2r X + 4n?#%rA + cjr . ... (5.10)

Hence equations (5.9) and (5.10) will give the value of b

in the form

) 1 3  #ir X
p = 3” A + -~ - + - + bk ot ekl ol P see (5.11)
2r2 4n2 2

To Find @ : we recall the equation (4.21)

/
1, 1 3YY
2K 2 - - o e -
=3l ¢ 2n2 ]
This by the substitution of the value from equation

(5.10) generates the result

3c 1
2 4n 2r

Purther the value of BH2 is provided by equations (4.20) ,
(5.7) and (5.10) in the form

!
wH? = @2 £ . ces (5.13)
6. SOME PARTICULAR CASES

We include in this section two particular cases ;
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(a) Ferromagneto dust : This matter distribution is
characterized by a dynamical condition

p = 0. see (6.1)

(b) RADIATION DOMINATED MODEL : We take the characterizing
feature of the ferrofluid space-time which is radiation

dominating, through the dynamical restriction
Q = 3b L] o00 (602)

THEOREM 1 : For static ferrofluid spheres adnitting

conformal motiohs

1
= ) ==> 2 = 2 -
b Y nc + o

PROOF : We recall the equation (4.19)

2 f 1
2n2r? 4n’r 2r? R

Hence if b = 0 we get

v2 ooywy'

2n2r2 4n2r 2r2

1.0., .
' 2 4n?
2\"‘1’ + 4 -;" b -;' - es e (604)

This differential equation has an immediate integral
21
Yz = n2 + -Z' }] s (6.5)
r

where ¢y is constant of integration.

Here the proof is complete.
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1

2, - in equations (4.20)

NOTE 2 : If we put \Yz = n

and (4.21) then we get

1 3¢y
puz = arenan - 00-2-13 ) ese (606)
2r2 2n‘r
1l 3 ( )
B e + PR es s 6.7
R 2r2 2n2r ‘

»

THEOREM 2 31 If the ferrofluid admitting conformal motions p

satisfies a equation of state Q"= 3p‘,then

Lo
\\’2 = é nz + "’}‘ .
3 22

PROOF : If we use the equation of state Q= 3p then the

equations (4.19) and (4.21) give rise to a differential -
equation
/ 2 [
1 3y 3y? o oayy 3
- e - e - ~-§-§ 4 - e o - - o--a- . eoe (6.8)
2r? 4n?r 2n°r 4n2r 2r
This after simplification becomes
s 2 2. 8112
2\1)‘1) + - Y bt -—— = 0, sese (609)
r 3r

The immediate integral of (6.9) yields

2_4 2.9
\-\/ = 3 n- + rz Py seoe (6010)

This is the required necessary condition of the theorem,

NOTE 3 : If we put this value of ﬁJz given by (6.10) in
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the equations (4.19) to (4.21) then we get

1 &1 (6.11)
PUE A A
1 3cy (6.12
Q = -2-;5 + z;i;z ) eve - )
1l c
PH2 = eme = ==al e (6.13)
3r2 n2r4

CONCLUSIONS : We have studied the space-time of ferrofluid
under the geometrical restrictions (i) static and spherically

symmetric metric form , (1i) A group of conformal moticns.

The set of Maxwell equations under the condition of
co~moving system has helped in obtaining the values of
variable magnetic permeabilityzand scalar magnitude of
magnetic field, The conditions of conformal symmetry are
used to derive the metric potential values and thereby
providing the values of unknown potential \Vz through
Einstein field ecuations, The physically meaningful constra-
ints are put on the spacetime strucfure and respective

system of equation is solved in Section (6).

Thus we have succeedeéd in providing a class of space-
time model associated with the ferrofluid distribution under
the geometrical restriction known as the conformal symmetry

group.
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NOTE : The values of Kinematical parameters :

1. Expansion Scalar (1) :

= ua’a ses (6014)
! ( * * by definition)
1 )
1.6, 8= —oc ---- (u?/=g) ,
J=g  ¥x2
1 2
103. 0 B —wmm- - ( u4 J::é )
' R .
( * ®*only u® is existing)
1 3 1
2
iaeo 0 B ewew - ( = ABYX ) o -
* ABrz a{ A 7 ( '0’.‘ ’.g = mrz )
1 d )
1030. O = comne we- (Br ) ’
aBr? 3t
ioeo‘ e = 0 [ ane (6015)

( **"B = ?{t? where n is constant
and \!l is function of r)

2, ACCELERATION :

«Q
u = ua’bub ? see (6016)

(by definition)

aa“(na'b“‘“c:cha ) WP, ‘u"bub-(ua,b-i-

L4

+uc{:'ba)ub)

e 8 a
tee, G =ud WP+ u® [ cee (6.17)
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.1 1
u 'ulyb “b"' r:b “cub 1

1l 1l 4.4 .« o 4
j.e., & =0+ [;: utu® ( only u* is existing )

L

1 1 4,2
1.e..&-f:;(u) ,

a 1 9 1,2
i,e.,, u = ;E -S; (a™) «( "'g) ,
( o‘o 0 a and 44 282 Br (A )

i,e,, u = e S S by Tolman page 254 )

Hence U = e=- ese (6.,18)

Also we get

u su =u =0, ese (6,19)

(’.' only uwt s existing and

o4 4 4 4 4.4
u =u’ gu o+ r;4 u'u
=0+0).
Al
HenCC ﬁa = 6.1 = -'5" ' oo (6.20)
BYA
Therefore we get
s e '10 01
Wy = 4G = gy, (82

b
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A
.a. 2
i.e, U Uy, =& ~ ( it )
) a AB !
1l
o0 D e 2n
lr -
Y
., y* oo (6.21)
i.e,, u U, = = =cce=,
’ a 4n2r?

3. SHEAR TENSOR COMPORENTS :

1l 1l
6ap = 3 [ Ua,p + Ypya ] - 3 [uaycuuy, + uaub,cuc ] +

1
+ - 9 h ° oo (6022)
3" eb (by definition)
Since @ = 0 and only u, is existing and u®u, = 1, U, 4= 0
H
we finad

4

1 1 4
6ab = 2 [“a:b + Upsa ] -, an T 2 ( a4 Bt

+u {;‘ ]. eeo (6.23)

Clearly

a
ba=0

and

€20, ( *“u =0=uyana [;*=0

Ref. Tolman p. 254 )
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6 = 0
13 - Y ‘
(‘u1-0=u3and ‘13 = 0)
6,, =0
23 ! ("‘u2-0=u3and [;3'4-0)
6y = O (** u,=0 u ,=0and [, % =0
4 ! . 2 } 4;2 24 ¢

¢ 4 4
643'01 (‘. “4,3801 u3.0,} r;; -O.G—;)

614"% [“4 - U, rl—:‘] (’.‘ ul'O)
’ 1
1.3.. 614 = % [ A - Ao ‘}'5 (ZM )] s ( ‘..u4 = x )

1 .,
i.e., 65,4 =5 & A

Hence
62 = 6° 6, = 0. vee (6.24)

4. ROTATION TENSOR COMPONENTS :

1l 1l c
“ab = 3 [uatb = Ypsa ]- 2 [‘_’a:c ufy, = uauy,, . u 1.
“ee (6.25)
(by definition)

4 4 a
By using [;; - 'ba , u,'480’uua=1 and

uw! is existing we get
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1 . 1 ot 4
Wab"z'[“a.b’“b.a]"'i[“a bt - lae W]l
eee (6.26)
"11 '0,
H12'0 ’ (.‘.ul-O'nz)
Wy3=0 , (°° u =0m=nuy)
W23‘°,(...u2'0.“3)
. o - 4
Wag =0 ,(*"uy=0,uy =0, - =0)
o » 4
g3 =0, (77937 0,u370, T3 "=0)
We, = & q -u r‘"‘ (*°* u - 0)
41 2 4,1 4 114 y 1,4
i.e.,
1l ’ 1 ’
w41-5[A-A'531(2M)] ,
f.e., W, =32 (A -4
sT e 41 2 Y
i.e., ﬂ41-0 ’
Hence
Wz - Wabwab = Oo eoee (6027)
62 0
Thus relative anisotropy =« = «== = 0, eee (6.28)
Q Q

This proves that the flow of the ferrofluid admitting

conformal motion is essentially accelerating.



