CHAPTER-1II

THE CONSEQUENCES OF CONFORMAL SYMMETRY
ON FERROFLUID SPACE~TIME
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1. INTRODUCTION

A brief account of restrictions on geometry of space-

time is presented below :

(1) ISOMETRY (YANO, 1965) :

Let (V, 6 g) be a 4-dimensional Riemannian space with
the fundamental metric fomm

2

as? = gpaxtad . ces (1.1)

In order that the infinitisimal point transformation

mo=m® 4+ X3M)at m‘ma-nz , ees (1.2)

be a motion in V4 it 1is necessary and sufficient that the
Lie derivative of g, with respect to (1.2) vanishes
i.e.,

L gab-% Xa;b + ¥pya = 0- eee (1.3)

»

Thus (V, , g) is said to adnit a one parameter group of
motions (infinitisimal isometry) generated by the vector
field X if the conditions (1.3) are satisfied,

(2) SELF SIMILARITY (EARDLEY, 1974) :

DEFINITION 3 If there exist a smooth map Vg4 => V4 such

that the metric g transforms under a constant scale factor ,
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1.’0’

g—> g =e?*g , cee (1.8)

then (V4 ,g) is called a self similar space-time., The

conditions ({-2) can be put in terms of Lie derivative as

Tlc'g“-c Jab. , ees (1,5)

where C is any scalar.

It follows from such transformations that the geometry
and physics at different points of a region , (where self
similarity holds) of a space-time 6 differ only by a change

in the overall length scale,

REMARK : If in equation (1.5) C is constant then these

conditions characterize the groups of hamothetic motions.

(3) CONFORMAL SYMMETRY (YANO, 1955) 3

this case
InTthere exists a mapping V4—> Vy such that the

metric g transforms under the rule

9ab * Y %ab eee (1.6)

J

wir

where Y is arbitrary function

of co~ordinates,

Here the arbitrary vector X is the generator of conformal

symmetry group.
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(4) A SPECIAL CONFORMAL MOTION (Katcin et al., 1970) :

The arbitrary vector field X is said to generate a

special conformal symmetry if
%gab: Ygab ., Y’ab::o‘ sse (1:7)

In this chapter we have studied the space-~time of
the ferrofluid constrained under the conditions of the
group of conformal symmetry and the special conformal

symmetry.

The local conservation laws providing the equation
of continuity and stream-lines are the contents of
Section 2, It is proved that
(1) for expansion free flow of ferrofluid the matter
energy density is conserved along the flow if and only if
the magnetic permeability is conserved along the flow.

(11) If the 4-acceleration of the ferrofluid is normmal

to magnetic lines then the conservation of isotropic
pressure along the magnetic lines is the direct consequence
of the conservation of magnetic permeability along magnetic
lines,. Section 3 deals with conformal symmetry group
generated by flow vector u and magnetic field vector H
involved in ferrofluid system. we have shown here (1) the

flow of the ferrofluid admitting conformal motions must
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be expanding ; (2) the 4-acceleration is normal to magnetic
lines if and only if M is preserved along these lines.
Moreover it is proved that the variation of isotropic pre-
ssure along magnetic lines and the divergence of magnetic
lines depend explicitly on conformal potential Y . Ricci
Identities for conformal symmetry group are examined in
Section 4. The expression for Lie derivative of Einstein's
field equations along the arbitrary vector field X generating
the conformal symmetry group is evaluated in Section S. The
next section six comprises a special case of conformal
motions. It is proved that if the space-time of ferrofluiad

adnits the spgcial conformal group of motion then

LO+DP = =Y (o+b)e uH”
2R Y(Q+p .

The corresponding conservation law generators provide the

2

results like % H = Q <mmy e - p- 932 = 0,

2, SYSTEM OF DIFFERENTIAL EQUATIONS FOR FERROFPLUID

The space~time of ferrofluid characterizead by the
stress energy tensor (I.(4.1)) has to satisfy the following
set of Adifferential equations.,

(1) ‘l‘ab’b = 0. (Local conservation laws) y eee (2.1)

¢2) [» (uPH® - u2uP) ]:b = 0, (Maxwell equations)...(2.2)
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We discuss below the implications of above Adifferen-
tial equations (2.1) and (2,2).

THE LOCAL CONSERVATION LAWS 3

The equation (2.1) with the expression of T,
(1. (4.1) ) generates

(Q+p+m213bu'ub+ ( 9+p+m-12) u‘,"‘bub-b
+(9+p+mz) n‘ub’b- (b+§ﬂH2)’bgah-
- u’b Halib - uHa,b ‘ib - Haﬁb,b = 0, ove (2-3)

The time component of this equation ('l‘a):’,b u,) with the

use of the results
a
uaua = ] 2 H ua = 0 » ua’b na. 0. eve (2.4)

is given by

1 .2
(?+-2'BH)'bnb+(Q+p+¥H2)O-FHa,beua-O,

ees (205)

a
where un-s.

This after simplification under the notation é =0 y aua

reduces to
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é+(e+p)e--lz-iaz+n(-15(l-12)'+nz

o+ ua,baaﬁb )
+ u Hz = 0. eece (206)

Purther contracting the equation (2.3) with H, and using

the notations
«a
) ] = ua’bub <y H%‘a - - Hz ) . A ese (2.7)
we get
Qa [ ]
(@+ PIoH, - by B + 8 [Nu‘ﬂa +H ) 4+

1 1,:]
+ 3 p’h H b 0: so (2‘8)

MAXWELL EQUATIONS 3

The only valid set of Maxwell equations to be used
for ferrofluid is given by equation (2.2). This can be

written as
“(Ha’bub + Ha“b’b - ua’bub" uaflb’b ) +
+ p’b (H‘uh - uanb ) = 0, eve (2.9)

By transvecting this equation (2.9) with H, and noting that
Haua =0, HH = - H2 ana u® .= @ , we get after
simplification

s -:- (#2) + 82 @+ H, u®, H® ] + w2 = 0. ... (2.10)
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Further on contracting equation (2.9) with u, we obtain
after simplification

p(uana’bub- uanaxb P - Hb:b ) - p’bab =0,
i.e.,

ll(ual-la’bub = Hb:b) - ":bab = o0,(°° ua:bua =0)

t.e,,
(- “:b H%P - Hb’b) - %,p H® = 0.
«¢*.° Ha’bna =~ Uy, H® )
This finally can be written as

s &
B uaH + ( “l{b)’b = 0, ses (2011)

Now if we use the consequence (2.10) in the equation (2.6)
then we obtain

ot

° > 2 -
e + ( ? + p)e 2 2 H 0. eo e (2.12)

This is the ecuation of continuity for ferrofluid which
explains the effect of variable permeability 1

’

On the variation of mass energy density e

So also by virtue of equation (2.8) and (2.11) we deduce
an important result

( ? + p) ﬁaﬁa - (b’b + % p’bﬂz : Hb . eve (2413)

It is observed from this result that the 4-acceleration is
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orthogonal to magnetic lines if and only if the isotropic
pressure p and the magnetic pemeability ¥ are preserved

along these lines,

To write the equation of streamlines we utilize the
contindity equation (2.12) in the conservation equation (2,3).
So that after simplification we get

(o+p+md a%s (p+-12-lll-12)’bh°b-
- (pﬂb)’b Ha = 0, XX} (2014)

This equation exhibits the factors causing the deviation of
path lines from geodesic path,

3. THE GROUP OF CONFORMAL SYMMETRY

We recall the conditions for the conformal symmetry

group generated by vector field m in the form

% b = Y 9ap , Y is a scalar function.

i.eoo

ma’b + llb’a:'_' "r’gab [ ] [N X ) (301)

our aim here is to study the effects of this conformal

symmetry group generated by special vector fields given by
CASE (A) + m =My, = mm®= M2

Here the vector m, is parallel to time-like vector u,.
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CASE (B) : my = Hy, , mgm® = HH® = - H?
Here H, is the space-like magnetic field vector.

CRSE A, Let m, = Mu, : For this case the condition (3.1) becomes

(Mua),b + (Mub)" = \Y gab . oo (302)

The contraction of this result (3.2) with gab and uaub

produce respectively the results

ﬁ+MO' 2\‘/ oo (303)

and
;‘ = hadegud . L X N ] 304
5 (3.4)

The above two equations yield in common

Mé =

(N ] [P

Y . oee (305)
FPurther the contraction of equation (3.2) with u? yield
H%+H’b+néb = \Yﬂb . ceoo (306)
From equation (3.4) this reduces to
M}b + M ub = "’%)" ub . ®ee (3.7)
This after contraction with Hb generates

H.be+M{|be=0. eee (3.8)
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Also the contractions of equation (3,2) with H® and

H‘Hb gives

M Huy + M(H%u,,), + up,, B ) = YH . eee (3.9)

and

M ua’b Hal'lb = - Y Hzo sese (3.10)

INTERPRETATIONS :

(1) The flow of the ferrofluid adritting conformal motions
along m must be essentially expanding (8 ¥ 0 ).
[ vide equation (3.5)]

(2) The 4~acceleration is normal to magnetic lines if
and only if M is preserved along these lines,

[ vide ecuation (3.8)]
CASE (B) : Let m, = Hy  mm® = - 2

For this choice the conditions (3.2) become

Ha’b + Hb,a p— Ygab R soe (3.11)

These conditions when contracted with u2, u®uP, u®H®, H®,

H® ana q’b respectively give rise to following equations,
» a. L |
Ha'b u- = 2 nb ? see (3.12)

a 2 2 see (3.13)
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He,pu H> = 0, oo (3.24)
P ST HY = Y (3.15)
2 ’h Hb,a Hb 3 ase .
2 2
vu? = nl W .ee (3.16)
a
H o o= 2Y ese (3.17)
It follows from equations (3.13), (3.16) and (3.17)
P a 2 a
uH #o,n,bnb#o and Hy,, # ©
as Y# o. eee (3.18)

Further by using equations (3.13) and (3.17) in Maxwell

equation (2.11) we get

3
B = - 5 YA
100.

\\J. ( - Sé" )( n’bnb )0 see (3019)

This shows the explicit dependence of the conformal potential

Y on the variable magnetic permeability B. Purther by
using equations (3.,13) and (3.19) in equation (2.13) we
derive

2
-2 - 2p + 3BH
b,bﬂb = \T] ( ? 4' - )o ceoe (3020)

This exhibits the explicit dependence of isotropic

pressure b on Y .

REMARK ¢ If the equation (3.20) implies
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p’bab =0 <=mm> 20+ 2 - 3pH?2 = 0. vee (3.21)

We infer from this that the isotropic pressure of ferro-
fluid remains constant aiong magnetic lines if the ferro-
fluig satisfies the equation of state 2 e+ 2p - 3pu2 = 0,

Purther we obtain from equations (2.10) and (3.14)

2

» '2 2 -
-== (H°) + BH® @ + BWH® = O, ese (3.22)
2

If 6 = 0, then this produces the result

*

(u?

) = 0 <mnz) i = 0, XX (3023)

we conclude from this that for the expansion free ferro-
£fluid adnitting the conformal motions along the magnetic
lines, the magnitude of the magnetic lines is preserved
along the flow if and only if the magnetic permeability is

also preserved along the flow.

4. RICCI IDENTITIES FOR CONFORMAL SYMMETRY GROUP

Let X be the conformal killing vector satisfying
the conditions

Xasb * Xpja ® Y9 ° ceo (4.1)

CLAIM : For conformal killing vector X the Ricci Identities

are

[
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k

Xaynp = B * 3 L Yy %mp * Wyp %n -
"\\'m gnp] vee (4,2)

PROOF : We have Ricci Identities

- K
Xmsnp  ~ Xmspn X R anp eee (4,3)

L3

Similarly we write

X
Xnppom = Xnpmp ™ *x Rppm | cee (4.4)
Xpsmn = ¥prom ® Xx R pmn ees (4.5)

By additing equations (4.3), (4.4) and (4.5) we get

Xmsnp * Xnspm * Xpymn = Xmipn = Xngmp -

X " X
= Xpyom = Xx { Rmnp + Rippm + Rpgp )
i.e.,

Xnsnp ¥ Xnjpm * ¥psmn = Xmppn = Xngmp -
- %’m = 0. ese (406)
(By cyclic property of curvature tensor)

From equation (4.1)

xﬂ}p + xp’m = Ygﬂ]p‘ see (4.7)

This equation implies
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Xospn * Xpsmn ® YWin Smp
i.e.
“Xmspn = Xpsmn = Y,n Imp . eee (4.8)

Similarly we derive

-xn,mp * xﬂ}np - \‘),p %n een (409)

’
and

-xp’m * xn’m “ Y’m gnp . ove (4010)

Hence equation (4.6) with the use of equations (4.8), (4.9)
and (4.10) redices to

Xnsnp + Xnspm * Xpymn * Xpymn = Win Gmp *

* Xosop = YWip Fan t ¥mpm = Wym Inp = 0,
i.e.,

1
Xmsnp * Xnspm * Xpymn = 3 [ Yin%p * Ysp en *

+ Y,m 9np 1- ees (4.11)
Also by adjusting the terms in equation (4.11) we get

Xmsnp ~ ( Xprom - \V:m 9np = Xp;mn )

.%[ Y;ngmp*Y:pgxun*Y,ngup] ,
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i.e. Xymp - (xp;m = Xp;mn )
“30 Yin9mp* Yop Oun*t YimOmp] -

_Y’n gnp ) see (4012)

Thus due to the Ricci identities (4.3), the equation (4.12)
produces

1
*msnp ~ kakpm *32 [ Yin Omp * Yep %an -

“Yym Inp 1
if.e.

1
Xmynp = kakPm +3 [ Yin %mp * Yip %an -

-Y;m 9np 1. voo (4,13)

This is the required result.

5. THE GROUP OF CONFORMAL MOTIONS IN FERROFLUID :

(a) DEIDUCTIONS FROM THE GROUP OF CONFORMAL MOTIONS :

We have the defining conditions for the conformal
symmetry group

Loy ™ Y9 ees (5.1)

where Y is a scalar function of co-ordinates., For these

transformations following the same procedure of Herrera
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et al (1984) we can write the transfommation formulae for

flow vector u and magnetic field vector H as follows.

_Ix_-: ua = "'2"' ua ] o0 ‘502)
and

L. HA 8 === H see (503)

i a 2 a .

we write by using the definition of Lie derivative

Lu, = l.-lbua’b + Uy Hb,a ees (5.4)

s+

But from the fact that H and u are orthogonal this yields

% ua = b (u‘:b - ub'a )o eve -(5.5)

By using the expression (I.2.10) of the gradient of the
flow vector in terms of kinematical parameters we write

the above equation after simplification as

%ua'-ﬂhﬁb\la-bﬁl‘bwab ,

i.e,,
--Z--ua B = '{b %ua + 2Hb wab - *ew e (5.6)

[vide equation (5.2) ]

This provides two results

Y - - 26blib' ’ L B J (507)

and



wyy, HP = 0. oo (5.8)
CONCLUSION 3 We infer from equations (5.7) and (5.8)
1) as Yo, &5 #o.

This shows that the 4-acceleration can not be normal to

magnetic field lines,

ii) The magnetic lines are always normal to the plane of

rotation.

1
(b) TO FPIND %{aab - =

From the expression (I.(4.1)) of the stress energy

tensor of ferrofluid we write

31.‘.(",1)' ')I"'c[ (Q+p+ﬂﬂz)uaub-(p+%uuz) 9ap -
- B HgHy] P
i.e.,
%Tab‘[ Le+ Lp+(LW aznx()%uz) Jugw, +

+(?+p+’32) [ua(_}l_eub)+ub(§ua)]-

b+%v( HY) +2u2 (Lw lg, -

i
i

N
b

1

-+ )(Lgy ) = (LB HME -

e
b

26



-pﬂb(LHa)“pHa(inb)o cuo(509)

N . Y
(11) _)I:( 9ap * anb and (41i) L H, = -5-H°" . We can

o

write the above equation as

2 2
LT = L?-&L +H  (L®)+B (LH ) +

>

+Y(e+b+!ﬂ2)}uaub -[%p +

TV

+2p(LHE) +2H(LB) +

N

»
N

i

+ Yo+3md] gy - RS QLEY
o (5010)
1
Now to find the expression for % Rab - 5 R g, ™~ k % Tab

we separately evaluate the terms as follows.

Prom the definition of Ricci tensor , the expression for

L R, is given by (Herrera 1984).
x .

- 1 4cd - -
% Rab > [ ( % gcd),ab ( % gbd)’ca

- L %ad,n - (L 9ap);ca 1., e (5.11)

27
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1 ca
% Rab = 5 gc [ ( \Vgéd)’ab - ( \ngd)’ca =
- Ygad):cb - ( Yg&b))cd ]o
{(vide equation (5.1))
1l
ioeo' % Rab = \\J’ab + ‘2' gab Q\Y .y

where ¢$y = g°P Y,ab *

Hence

i.e.

This with the result L o9 a . 02 &

g
X ab

)

and eguation (5.12) implies
%R'Rab['gacga’%%d*gab[ Yrab *

* ; gﬁbéﬂyj] !

i.e.,

eee (5.12)

ees (5.13)

28



LR=-RrO Yocq + 3 OY . (vide equation (5.1))
X

1.3., LRa= 3 *Y —— RY ° eoe (501‘)

Hence we find
L Rgp, = l R’gab = L Rab - i géb'& R - i RL g&b
X 2 X 2 X 2 X
vees (5.15)
From the equations (5.1), (5.12) and (5.15) we finally

write

1
Rab - 5 Rg‘b poe-ed Y’ab - gab ?‘f eoe (5.16)

i

Thus from the two expressions (5.10) and (5.16) the trans-

formed version of Einstein field Equations R, - % Rg, =

- K Tab under the conformal transformation (5.1) is given

by

-g =-x [Leo+Lp+u2 (LR +0(LH)+
Y}&b ab¢\i} x? X i

o

+ Yep+p+wd Juw -

- lzp+;

1
P (LHE) +=HE LW +
X 2 X 2

- [ LV + \VF} Ka}ib . ese (5011)
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On transvecting this equation (both sides) with u?uP , HeHD R

2P ana u3HP respectively we obtain the following equations:

13uP - =-K|l L +532(Lv)+
Yiabu ’Y [-x"? 2 -)E

1 2 1 2
+3PLHED + Yo+ 3 Yer®]  ...(5.18)
\\)“bn‘nb\« $YH x[_)xép+\|1p+2u(nn)
--l-(;.,vw vmu? ] eee (5.19) 7
2 H b

2
- = - - -3y -
3 ¢y K[%Q 3%?*‘1’? YP "(-jl-éﬂ)];

sse (5.20)
\V’ab naﬂb - o. LI (5.21)

6. THE CASE OF SPECIAL CONFORMAL MOTIONS

These special types of conformal motions are described
by the condition (5.1) with extra condition on the conformal
potential as WGab = 0. (Katzin et al,, 1969)

For this choice the final equation (5.17) gets reduced to
the form

e+Lb +H (LW +N§H2)+Y(9+p+mz)]u,ub-

H
i
»

»
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1
clpp+ v s 2uPE Yo+ g ]gy, -
2 % 2 X

M

- [ % ®+ Y’]Haf% = 0. ese (601)

THEOREM : If the space~time of ferrofluid admits the

special conformal group of motion then

Lo+bp)=-Y(o+p ~-ul
+ B - + — -
L@ R

PROOF : On substracting the ecquation (5.18) from equation
(5.20) we get

_:._p+\fp+-1-nz(gn+ YF)+?—(£H2)=O.
X 6 X 2 X
eee (6,2)
If we add this in equation (5.19) we get
éu + \V“.O‘ see (6.3)
X

Hence the equations (5.18) and (5.19) get reduced in the

form

? e (6-4)

1 2
L o+ + =8 (LH) =0
Lb+ Yp+3w (Lu)=o. cer (6.5)
X X

Consequently these two equations provide the required

result
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2
L(g+p) =~ Yleo+p) —uH, ces (6.6)
X
Hence the proof is complete,
7. THE CONSERVATION LAW GENERATORS :

If the space-time of ferrofluid adnits the special
conformal symmetry group then it leads to Ricci Collineation.

The corresponding conservation law implied by Ricci Collinea-
tion is

(Ry x° )ya ™ O eee (7.1)

Our aim in this article is to investigate this conservation

law for selected vector fields i) X =Nu , 1i) X =H .,

CASE (i) : For the choice X = N u.

The conservation law (7.1) for this case provides

(Rg N “b);a = 0

H

i.e, E(Q-&-b-}pﬂz)ua\lb'%(e‘b-’-ﬂﬂz)g:-
-na‘ub]mb] ;a0

[ vide (1.5.2) ]

ioeo' [(e+3p+paz)uua] .00

za

i.e., Nu"a ( Q+ 3+ ﬂﬂz) + N:a u® ( ? + 3 + nﬁz) +

a 2 -
+ Nu® ( Q+ 3+ mH ):a 0
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1.Qo.

(Ne + B ) (?* 3b+vH2)+§?+ 3;._p+_x=(m2)-o

"
»

eee (7.2)

o 2
(oo ua’ale,N’aua’N'ﬁQ'e’a(m)).

By using the result (3.3) this reduces to

4 1
\;:Q+3kfvp+2\t’uxz+[§e+ \‘Jq+3n(§ﬂz)]+

1 2
+3[Lp+ + = B( LHY)] -
[ip Yb+3PL
- B (_I:Hz) +H2 (&u)800 seo (703)
X X

This equation can further be simplified by using the
equations (6.4) and (6.5) as

Yo+ 3yp + 2 ym® - nL ud) + w2 ) = o.

By adjusting the tems and using the earlier derived
condition L B + Y = 0 we get
X

Yo+3 Yb+ ‘vmz-v(%uz)-o. ,

i.e.’

2 Y 2
%H p(e+3p+pﬂ)0 0-0(7.4)

We infer from this result that the conservation of n2 along
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X explicitly depends on the scalar potential Y and the

variable magnetic permeability %,

CASE (11) X = H : For this choice the conservation law

(7.1) becomes

(Rp B2 ) = [ +p-oin®] =0 ,

sa
1.30’
a b - 2 a a 2
(Rp H?),, = (BH® + p - 0 )H] + H [(n,a)a +
2
+“(H;a)+p:a'?:a]'o ’
i.e.,

(Rp %) = (% + p = o )2y + @ P2 +

+ u( Hz)

bo ol [ )

+-I.Jb-£e-0Q see (705)
H

s o

( *," vide equation (3.17))

By using equations (6.3), (6.4) and (6.5) and simplifying

equation (7.5) becomes
2 2
(wH +p-9)+v(_1_,a ) = O,
H
Hence we can put a claim

_I__..ﬂ230<s==> ?—b—uﬂzao.
H



