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“In the intellectual life' of man there 

can be clearly two domains, the domain 

of action, of shaping and construction 

to which active artists, scientists, 

technicians and statesmen devote 

themselves, and a domain of reflection 

of which the fulfiIntent lies in insight, 

and which since we struggle in it to find 

the meaning of our activity, is to be 

regarded as the proper domain of the 

philosopher. '*
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CHAPTER-I

INTRODUCTION

1,1 Fraction al Calculus

The two most basic operations of Mathematics are 

differentiation and integration. One can expect much from the 

natural extension of these operations. The fractional calculus 

has its origin in the question of the extension of meaning.

In generalized integration and differentiation the question 

of extension of meaning is : Can the meaning of derivatives 

of integral order dny/ dxn be extended to have meaning 

where n is any number .... irrational, fractional, or 

complex ? The concept of differentiation and integration to 

noninteger order is by no means new. Interest in this subject 

was evident almost as soon as the ideas of the classical 

calculus were known. The subject is old, dating back atleast 

to Leibnitz in its theory and to Heaviside in its application. 

But the application of these ideas has not yet been fully 

exposed.

Leibnitz £$9} in 1695 replied, 'It will lead to a 

paradox', adding prophetically 'from which one day useful 

consequences will be drawn', to L'Hospital's letter asking 

about 'What if n be 1/2 ?' In 1697, Leibnitz, referring to 

Wall is' s inf in ite pro due t for It/2, used the notation d^V and
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stated that differential calculus might have used to achieve 

the same result.

In 1819 the first mention of a derivative of arbitrary- 

order appears in a text. The French mathematician, S.F. 

Lacroix £37} , in his 700 page text on differential and 

integral calculus, has devoted less than two pages to 

fractional calculus. He develops a formula for fractional 

differentiation for the nth order derivative of xm by- 

induction. Then, he formally reolaces n with the fraction J?, 

and together with the fact that f (1/2) f , he obtains

-T- (x) =hdx

2v^r
W1

The systematic studies seem to have been made in the 

beginning and middle of the 19th century by Liouville {*4oJ, 

Riemann^543 and Holmgren jjil'J although Euler £2cQ ,

Lagrange , and others made contributions even earlier.

Abel 02 was probably the first to give an application 

of fractional calculus. He used derivatives of arbitrary 

order to solve the tautochrone problem. This problem, 

sometimes called the isochrone problem, is that of finding 

the shape of a frictionless wire lying in a vertical plane 

such that the tima of slide of a bead placed on the wire 

slides to the lowest point of the wire in the same time
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regardless of where the bead is placed. The brachistochrone 

problem deals with the shortest time of slide. The integral 

he wor ted with

JCJ (x - t)"3* f (t)dt 
o

is precisely of the same form that Riemann used to define 

fractional operations.

It was Liouvile [_4ol who expanded functions in series 

of exponentials and defined the qth derivative of such a 

series by operating term-by-term as though q were a positive 

integer. Riemann [54"} proposed a different definition that 

involved a definite integral and was applicable to power 

series with noninteger exponents. Grunwald £24^ first 

unified the results of Liouville and Riemann. Krug £ 3 53 

working through Cauchy's integral formula for ordinary 

derivatives# showed that Riemann's definite integral had to 

be interpreted as having a finite lower limit while Liouville1 s 

definition, in which no distinguishable lower limit appeared, 

correspond to a lower limit - ckj -

Notable contributions, in the present century, have 

been made to both the theory and application of the 

fractional calculus, weyl ^68] , Hardy £_26j , Hardy and

Littlewood £27,283 * Kbber £33^ , and Kuttner £363 examined
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some rather special, bat natural, properties of fractional 

operators of functions belonging to Lebesgue and Lipschitz 
classes. Erdelyi £l3, 14, 15*2 and Osier £ 5l3 have given 

definitions of fractional operators with respect to 
arbitrary functions, and Post £ 52 3 used quotients to define 

generalized differentiation. Riesz Oi has developed a theory 

of fractional integration for functions of more than one 
variable. Erdelyi £l8, 19^ has applied the fractional 

calculus to integral equations and Higgins £30} has used 

fractional integral operators to solve differential equations. 

Prabhakar £533 studied sorre integral equations containing 

hyper geometric functions in two variables with the help of 

fractional integration.

1.11 A fractional integral is a straightforward generali­
zation of the elementary concept of a repeated integral. If 
the function f(x) is integrable in any interval (o,a) where 
a> 0 we define the first integral F-^(x) of f(x) by the 
formula

x
F (x) = j f(t) dt 
1 0

and the subsequent integrals by the recursion formula
x

Fr+l^x^ ~ r = 2'.....

It can easily be? proved by induction that for any positive
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integer n

1 x(1.1) Fn+1 (x) = - \ (x - t)n f(t) dt.n 1 nj 0
Similarly we could define an indefinite integral Gr(x) by 

the formulae
GO OQ

Gx(x) = - \ f(t)dt, Gr+1 (x) = - Jg (t)dt
X X

r = 1, 2, .... and show by induction that for any positive 

integer n

(1.2) Gn+1 (x) = j (t - X)n f (t) dt,n! x
provided that f(x) is of such a nature that the integral*, 

exists.

The earliest generalization of the integral on the 

right-hand side of equation (1.1) would appear to be the 

Riemann-Liouville fractional integral of order a defined for 

R(a)> 0 by

1 x ,
(1.3) R f (x) = —---- i f(t) (x-t) dt.

a fMa) 0
The upper limit of integration x may be real or comolex; in 

the latter case the path of integration is the straight 

segment t = xs, o£s£l. Integrals of this tyoe arise in 

the theory of linear ordinary differential equations where 

they are called Euler transforms of the first kind.
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Hardy and Littlewood £ 28 J consider the fractional

integral

(1.4) f (x) = j f(tJCx-t)®"1 dt, (0 < R(a) < 1),
^ - C*»

while Love and Young £4lJ[ consider the integral 

^ i. ^
(1.5) f (a,x) = —----- i f (t) (x-t)a*~^ dt, (a S x b,

“ f(a) a

R(a)> 0 ),

f(x) being integrable in (a,b); Sygmund 03 discusses the 

same integral but denotes it by Fa(x).

!Ihe Weyl fractional integral is a generalization of 

the integral on the right hand side of equation (1.2); it is 

defined by the equation (Weyl )

l oo
(1.6) Vi f(t);x"l = ------ J (t-x)a_1 f(t)dt, R(«) > 0,

t- J P(a) x

in general x and a are complex, the path of integration 

bein g one of t he rays t = xs (s > 0), or t = x + s ( s>0). 

When they occur in the theory of linear ordinary differential 

equations, fractional integrals of this Kind are called 

Euler transforms of the second Kind,

rt i X

a i h
O
i rr X X
J a V o

l-h Q
J O (f H
- o o Q
J j-> H
- 3 ft (D iQ 0)

tii ftI I—*x * O
'

t-h a ir-**

H
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closely related to Weyl's has been introduced by Love and 

Young £41^.

The fundamental theorems on fractional integrals 

and derivatives as given by weyl and Hardy and Littlewood 

were extended by Kober£33^ over a wider range. He studied 

the applications of these operators for Mellin and Han Ice 1 

transforms. By introducing complex parameter he dealt with 

the operators

(1.8) llf = ---- z11"® $ (z-t)®”1 t1 f(t) at,
^'a f(a> 0

(1.9) f = JL 2n
P (a)

j (t-z)a” 
z

-1 t-n-a f(t) dt,

(1.10) StOC f =

z-n-a

r (a)

oo
C , .a-1f (t-z)

z
t11 f(t) at,

(1.11) < f =
1 T1

Z 1
Z IV.
i (z-t) -1 a

f(t) at.
l'a r(a) 0

Erdelyi£l4, 15^J further generalized these operators and 

discussed in detail the importance of these in the theory of 

Mellin and Hankel transformations. For 0, the fractional 

integral operators with respect to x^ are defined by

(1.12) in'a f (x) = — x-xn-Aa j (xA _ tA)a"l t^f (t)d(tA),

P (a) 0

K f (x)
X*

oo
AT)

f( a)

j (t^x7^)a"1 t~AT]~Aa f (t)d (tA).
'///>,

(1.13)
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We

g &

know^66, Th. 44, P. 6cTJ that if £ £ L (o, oo ),

L(0, QO ), than (f*g)(x)£ L(0,O°)/ where

,00

(1.14) (f*g) (x) = jf(x/u) g(u) du/u.
0

Hence the set L(O,0O) of complex valued functions forms an 

algebra over the field of complex numbers with the usual 

definitions of addition and scalar multiplication and the 

convolution (1.14) as the product. It is easy to see that the 

algebra is comnutative and associative.

Buschman f 12, P. 101] has introduced

(1.15) I11'®'* (x) = ----- (xA-l)a_1 yTM-** u
P(a>

and
(1.16) Jjll / oc / A (x) = _A_,_ (l-xA)®"1 X*11 u(l-x)

f (a)

where Uix) is the Heaviside unit function

U (x)
0 for x £ 0

1 for x > 0 .

He developed some additional identities by showing the 

connection between these operators and algebra of functions 

which has Me 11 in convolution as the product. He proves

(1.17) iV* f(x) = (ITl'“'A *f) (x),
xA

(1.18) K\'« f (x) = (Kn'tt/A * f ) (x) ,
xA
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Where i^,0C/A (x) belongs to L(o,C») for R(a)> 0/

R(n) > 1/A - 1 and (x) belongs to L(0,OQ) for

R(ct)> o and R(n)> - 1/A. He has further pointed out that

(1.19) M I?]/a* A

—

p d+n - s/a) 

f (l+Tl+oc - s/A)

R(a)> O, R(s/A) <1 1 + R(n)

and

p (T1+ s/A) 

p" (tihxc+s/A)(1.20) M K71/a/A (x)

R(a)> 0, R(s/A)> - R(Tl).

Finally, he used these facts to reduce a pair of integral 

equations to a Single integral equation.

Kesarwani £ 32^] extended the earlier work of Bushman 

to solve certain dual integral equations. Sueddon [60 

modified the Erdelyi-Kober operators and applied them to 

solve certain dual integral equations. Mourya [46] Has 

developed fractional integrals for the functions of two 

variables on the lines of Erdelyi and Kober and discussed some 

of their fundamental properties and simple identities. The 

algebra of these operators has been developed by Koranne f>3 

and used in the solutions of certain dual integral equations 

of functions of two variables, Lowndes [<0 introduced the 

generalization of Erdelyi-Kober operators (1.8) to (1.11) by
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using Bessel functions. Saxena and Kumbha t [_ 58 J also gave 

the generalizations of these operators by utilizing generalized 

hypergeometrie functions.

1.12 Since an indefinite integral is probably the 

simplest integral transformtion of all, no apology is needed 

for using this as the starting point for a theory of fractional 

calculus, another topic which has sprung to life in recent 

years with the publications of Oldham and Spanier^ScQ and 

Ross 56^J. Vue are well accustomed to the use of the notation 

dnf
-----— for the nth derivative of a function f with respect
dxn
to x when n is a nonnegative integer. Because integration and 

differentiation are inverse operations it is natural to
r

associate the symbol —----- with indefinite integration of f
[dx] “-*•

with respect to x. Hence we may define
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This n-fold integration of f with respect to x may be 

symbolized as

x xn_1
(1.23) f(~n) a j j ^ >

an **n-i

x2 xx

..... S dxl l f(xQ) dx ,
*2 al

where aj_, a2,«*«;an are completely arbitrary.

Using the definition of the first derivative in 

terms of a backward difference aid repeating the process 

we can have

(1.24)
dnf
jdxp

-n N-l
£

j=0
(-i>J<?>f

<\1 so using the definition of an integral as a limit of a 

Riemann Sum, we get

(1. io j
d'^f

limN~»ooc
c-a'j
n!

n N
£
j~o

Now comparing the above two formulas and recalling

iJ r ^ \ _
•J 3

v,re have

>n-l. P<J-n>
P(~n)p(j+1)

" VT IJRRAIt
«*-»*•....... . ; '.SAWI*
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(1.26)
a* f
=-------- -tr- a. lim

L N J N-lz p(r-q)

£d(x-a)Jq N-*<» r=0 f(r+1)

f

where q is any integer of either sign. A new term 

*differintegrals' has teen coined by Oldham and Spanier 03 
to avoid the cumbersome alternate 'derivatives or integrals 

to arbitrary order'. They have defined the differenintegral 

of order q by the formula

(1.27) lim
N->00 f<-q>

£
r^O

p(r - q) 

f(r + 1)

f (x - r
‘x - a" 

** N -
)

where q is arbitrary, which was first given by Grtlnwald 

J>3 . Note that this definition involves only evaluations 

of the function itself* no explicit use is made of derivatives 

or integrals of f. They have further established that

"n a - t

n+q
(1.28)

d 

dx11

dqf

for all positive integers n and all q.

Consider the formula
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Thus an iterated integral may be expressed as a weighted 

single integral with a very simple weigh t f unc t ion, a fact 

that provides an important clue for generalizations 

involving noninteger orders. By replacing -n by q we get 

the Riemann-Liouville fractional integral

(1.31)
dqf

d (x-a)^ R-L r<-q>

B>y establishing the identities

^ —cr—1
S (x-y) H f(y)dy,q C0,

d^f ^ 

d(x~a)q

(x-arq+Kf<K^_(a)

R-L r; P <-q + K + 1)
K=0
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j-aq-nf(n)

[ aU-^j R_L

which provides an analytic continuation of the formula 

(1.31) for R(q)n and

r <flt" dq“n f

d(x-a)c3 ..*
R-L dxfl d(x - a)q~n

—

Where dn/dxn effects ordinary n-fold differentiation and n 

is an integer chosen so large that q-n ^ 0, Oldham and 

Spanier [s°] proved that the operators (1.27) and (1.31) 

coincides for all functions f.

Riemann 03 considered power series with noninteger 

exponents to be extensions of Taylor's series and built 

up a generalized derivative for such functions by use of the 

formula

(1.34)
a* xP

dxq

p(p+l)

r<p-q+i>

this being an obvious generalization of the formula 

dnxP

dxn = P(P - 1)(P - 2) .... (P - n+l)xP-n

p(P + 1) 

f (P - n + 1)
xP~n

for n a nonnegative in teger, ibis is similar to the approach 

taken by Scott Blair £ 6cQ , Heaviside ^2^3
/ and others
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Liouville £40*3 defined a generalized derivative for functions 

expansible as a series of exponen tials/

f = £cj exp (bjX), by

dqf
(1.35) ------- = C.b? ^xp (b.x), which leads to a

j=0 j j " J

different operator than those of (1.27),

Erdelyi (.18] defined a qth order differ integral of a 

function f(z) with respect to the function zn by

(1.36)
dqf

£d(zn-anj]q p(-q) a ^zn - tnJ

z f(t)ntn“1 dt 

^ ~ n nl l-*q

Oslar Csq has extended grdelyi's work by defining differ- 

integral of a function f (z) with respect to an arbitrary 

function g(z) by considering the Riemann-Liouville integral

dqf 1 z f(t)g(1)(t) dt

jj3(g(z) - g(a) ]j q f (-*q) a £g(z) - g(t?]f ,

where a is chosen to give g(a) = 0, that is a = g (0). Upon 

setting g(z) = z-a, one obtains the Riemann-Liouville 

Integral once again. Certain choices of g have been shown 

by irdelyi and Osier which lead to a number of formulas of 

interest in classical analysis.
M:*',. *>

lf;
*k

----
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1.13 The mathematical problem of defining fractional 

integration and differentiation :

The symbols
CDx f(x), 0,

invented by Harold T. Davis, denote integration of 

arbitrary order along x-axis. The subscripts c and x denote 

the limits of integration of a definite integral which 

defines fractional integration.

For every function f(z), z = x + iy, of a sufficiently 

wide class, and every number V, irrational, fractional, or 
complex, a function CDz £(z) = g(z), or CD^ f(x) = g(x)

when z is purely real, should be assigned subject to the 

following criteria :

(1) If f(z) is an analytic function of the complex

variable z, the derivative is an analytic function

of v and z.

(2) The operation : f(x) must produce the same

result as ordinary differentiation when v is a positive 

integer. If v is a negative integer, say v = -n, then
D n f (x) must produce the same result as ordinary n-fold

c X
integration and cD“n must vanish along with its n-1

derivatives at x = c
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(3) The operation of order zero leaves the function 
unchanged :

D° f(x) = f(x) u x

(4) The fractional operators must be linear :

(5) The law of exponents tor integration of arbitrary- 
order holds i

A definition which fulfills these criteria named in 
honour c£ Riemann and Liouville is

l x v-1—— j (x-t) f(t)dtr<v) c
(1.38) CD^V f(x)

This definition can be obtained in atleast four 
different ways. The definition (1.38) is for integration of 
arbitrary order. For differentiation of arbitrary order it 
cannot be used directly. However, by means of a simple trick, 
we can find a convergent expression. Let v = m - p where for 
convenience m is the least integer greater than v, and 
0<p < 1. Then for differentiation of arbitrary order
we have
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(1.39) c^x £(x) * cDx AP f(x)

= _2. . -i-- f <x-t)p-1 £ (t)dt,
dx01 p (p) c

where we take advantage of the knowledge that D™ is an
v< X

ordinary mth derivative operator dP/dx™. The question of 

extending the definition (1.38) for integration of arbitrary 

order to diff erentiation of arbitrary order is answered by 

letting v be real and greater than zero we have

(1.40) g(v , x) = D“V f (x) = —f (x-t)V-1 f (t)d.t
’ OX f(v) o

which is in general convergent for v > 0. For any v we can 

write

h(Vjx) —v , m d oDx f(x) = oDx oDxP f (x)

dm

dx01
( (x-t)^1 f(t) dt,

P (p) o

where -v = m - p, m = 0, 1, 2 ....

iihen V > 0 choose 01=0^ thus v = p and g = h. Now

(1,40) can be written

g(VjX)
dx o'

i
x—i— 7 (X-t)^1 f (t )dt

P (v) o
dx.

By Diri chiefs formula, we have

d i x
g(v^x) X (x-t)Vf(t) dt

dx P (v+-l) o
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which is convergent for v> - 1. We then have g(v,x) =

= h(v,x) for m = 1, This process can be repeated for v j> -n, 

n a positive integer. Now g is analytic in where v > 0 

and h is analytic in R2 for v ]> - n. Since g = h on a set 

of points in R2 with a limit point in the right half 

plane# then h is the analytic continuation of g.

1,14 No claim can be made that the fractional calculus 

approach is better than some other approach. However/ there 

is a succinctness of notation and simplicity of formulation 

in the fractional calculus that might suggest a solution to 

a complicated functional equation that is not readily 

obtained by other means.

Fractional calculus can be categorized as apolicable 

mathematics. The properties and theory of these fractional 

operators are proper objects of study in their own right. 

Scientists and applied mathematicians/ in the last decade/ 

found the fractional calculus useful In various fields.

Within mathematics/ the' subject makes a contact with a very 

large segrrent of classical analysis and provides a unifying 

theme for a great many known, and some- new, results. 

Applications outside mathematics include such otherwise 

unrelated topics as : transmission line theory, quantitive 

biology, electro-chemistry, scattering theory, diffusion, 

and dissemination of atmospheric pollutants. Virtually
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no area of classical analysis has been left untouchaed by 

the fractional calculus.

1.2 Generalizations of the Hankel Transform

The if*ell-known Hankel transform denoted by Hy , is

defined by the integral equation
Oo

(1.41) g(x) = [(xyJ^Jy (xy)f(y)dy.
0

where 0 <T xl<cc>, is a real number and Sy is the Bessel 

function of first kind of order 'j). Functions which are their 

own Hankel transforms i.e./ solutions of the integral 

equation
Oo

(1.42) f (x) = fuyJ^Jy (xy )f (y)dy
0

have been called self-reciprocal in Hankel transform of 

order d).

According to fitchmarsh ^66, p. 252*^] we shall say 

tha t f (x) bel ongs to the class A(a,a), where 0 a * JT/ 
a < Jjy if (i)f(x) is an analytic function of x = re10 

regular in the angle defined by r > 0, |0\<La, and
(ii) f(x) is 0(\x\~a~L ) for small x, and 0(jx^ )

for large x, for every positive and uniformly in any 
angle | £ oc-H a.
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Generalizations of the Hankel transform (1.41), 

have been given from time to time by various mathematicians 

like Agrawal ^2,?. 1643 / Bhatanagar ^3 , Mehra £43j,

R, Narain ^47, 48j , Bhise^7land several others. Sharma 

^61J has established and studied symmetrical fourier kernel 

interms of Fox's H - function £j23, P. 408J as

(1.43) 2py x " ^ pV-l uq,P 1 ^2 X2V j (ap , ap), (l-ap-ap/ap)

^ (bg, £q)/ “Pq'ftq ^

where p and y are real constants. With the help of (1.43) 

a new reciprocal transform nay be introduced in the form

(1.44) g(x) = 2py x 
oo

x j (xy) Y-% Hq'p
0

p2(xy) 2 Y
2P/2q

which by applying known identity

(1.45) xk Hm'n
P/q

may be put in the form

(1.46) g(x) = 2 | p 1/2 y x

^ ^ 7 ^p ^ / ^”a*p“ap/ ap}

^ bq7 Pq ^^ 1-b^- S< |3^)
f (7>)dy,

r
= h

,m/n
P/q

(ap + K.ap,ap)

% + W

CO r 2 Y -1 2 Y +1 ~7
x (h^P f>2(xy)21 <ap+ '17 v“pm1-p * ’17 v“j)

0 2p,2q 2Y -1 2 y +1(v -77- pqV'(i-i - Tr'v^J X
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x f (y )dy .

We shall denote the generalized Hankel transform (1.44) or

(1.46) symbolically by g(x) = HT f(y); x? (ap, ap);

(b / 8 )| If the functions f(x) and g(x) satisfy the integral 
H Hj

equation (1.44) or (1.46) we shall call g(x) to be 
Ht‘j^(ap/ap); (b^PqjJ- transform of f(x) and f(x) as 

HT^ap'ap); (bq/pq)J - transform of g(x). The functions 

f(x) and g(x) shall he called as a pair of HT^(ap'ap)‘

- transforms. If f(x) = g(x), it shall be called 
as self-reciproc al in HT^(ap/0tp); (bq/Pqfj transform and 

we shall say that f(x) is (ap, 0Cp)7 (bq, £q)lt

The Kernel in the transform defined in (1.46) is 

very general and yields as .particular cases a number of known 

generalizations of Hankel transform (1.41) as follows s

(i) Taking ap = =

- p-0
1, the result (1.46) reduces to

(1.47) g(x) = 2 yp 1/2y x

<30 -
2Y -1 2 Y -1

x Jof'P P2 <xy)2r
(-------- +a_) / (---------------a )

4 y y 4 Y F
o 2P/2q

( ll-zl +b >, < Ltzi - b >
4 y q 7 4 y q

We shall denote the generalized Hankel transform (1,47) 

symbolically by

f(y)dy.
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g(x) * Grp (y) * x ; ap/b.^

(ii) With p = %, n/= 1/ (1.47) reduces to a 

generalization given by R, Narain |jt8, P. 298J

(1.48) g(x) = J (xy)%G*'P
2p/2q0

(*£)2 
v 2'

V - ap

b / - bq' q^

f(y)dy.

(iii) On having p = J5, (f* 1, p = 1, q * 2,

al = k - m - --- - Jj( , ---- and b, = --- + 2m/o 2 7

(1.47) yields another generalization by R.Narain j^47,P.27oj

(1.49) g(x) = 2

oo
■° i<xy)15+y

0

x2 y2
7, , ( —-—) f(y)dy,
k^V/k/m 4

known as "X-y ^ m - transform/ where

r
■>^u,m (x> -x'v Gl',l

k-m-Jj / V -k + m + %

V, "^+2m, - 2m, 0

A function, self-reciprocal in (1.49) has teen denoted by 

R -y (K, m),

(iv) Taking rj == 1, p = 2~n, where n is a positive 

integer and giving suitable values to the parameters . 

(1.47) reduces to the generalizations due to Bhatanagar

[s,P.176]
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co

(1,50) g(x)

where w

i (xy)f (y)dy,

0 Hi,...,

^1, • * • • ,Vn y
(x) is defined as

s-*w

^1, ••../Vn

(x) = 2^ n x% x

x Gn, 0
o, 2n

x v2( --- ) 
2n

Hi- Hi- J'l
m* mt m

Vn

A function self-reciprocal in (1.50) will be represented 

by *Vl, •** 'V-n

(v) Withn = 2, (1,50) reduces to
CO

(1.51) g(x) = ^'wjl (xy)f(y)dy, (p/V > - h) ? 

where ^ (x) is Batson’s Kernel I67- P.298] defined

. « i % _2/0*V,V Wi“i^ =0,4
-H- -JL - H-

2 ' 2 ' 2

A function self-reciprocal in (1,51) will be denoted

** V ■*> ■

(vi) On having $ = %, rf = 1/ p - 1, q = 2, 

a* = k - m - V/2, bx = ^/2 and bj = ^/2 + 2m, (1.47)

yields a generalization by Mehra 03

(1.59) g(x) » 2

oo
~V j f(y)dy.

5 A y.rfc+*s,m 4
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(vii) Putting Y » h, p = 1, q = 2, = p1 =* P2 = 1, p = 1,

and = k - m * V/2 - H, b^ = V/2, b^ = V/2 + 2m,

(1.46) reduces to a modified form of "V k ^ m transform' y/K/mfm ”»n
introduced by Bhise j 6, p, 198 *

(1.53) g(x)

oo r

xy
k—m— V/2 — Jj, — k + m+ V/2 + % 

V/2, V/2 +2m, - V/2, - V/2-2mJ

and

K f (y)dy

(viii) Having y =1, p = Jg, p = 0, q = 1, bj_ = V/2 

using the identity |j3, p. 216(3)~|

(1.54) ,1/0
*0,2

r
X f

U I a'b

J< (a+b) k
x Ja-b <2x >'

(1,47) reduces to (1.41).

(ix) With Y =2, and £ = 2“4, p = 0, q = 2}0]_ = = 1

and using the identity (1.45), we have

oo

(1.55) g(x) = k J (xy)-" G
0

3/2 ^2,C 
0,4

(X2_)4L ^ 1 3 J
' 4 ' f a' 8' 8 '8

J1-
f(y)dy,

auu ev
(1.56) g(x) = k j (xy)3/2 G2'° | (-S£)4 L |, - L-|

and oo
_<y-)3/2 C-S^)4|

0 0,4 4 j 8 8 88

where the Kernels used are due to Guinand jj?5, p. 192

f (y)dy

1 o jc
(x)On putting P = (Jpc“x) , y = k and choosing the
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parameters suitably in (1.47),
00

(1.57) g(x) = j (xy)^J
0 c>/ K

we have 

(xy)f<y)dy

and

(1.58) g(x)

oo
j<*(xy) 2 J, (xy)f(y)dy,

0
where the Kernels used are due to Everitt^21, p.27lj 

given in .terms of Meijer's G - function as

and

xHjo,k(x) = (2k)H

X Gk/0
a,2k

and

—
, x .2k
( 2 jr}

0, 1/2 k, ..., ~i,o, - l/2k,
2k 2k

J

x^ Jh k = x/k)^""1 x

X Gk,0
o,2k

( x .2k
' 2k~'

. -"^-1/4k/. 
4k

l/4k,3/4k,

1.3 The H-f unction and its asymptotic expansions

- ^

2k-l
"4k"

J

The H-function is applicable in a number of problems 

arising in physical sciences, engineering and statistics.

The importance of this function lies in the fact that nearly 

all the special functions occurring in applied mathematics 

and statistics are its special cases. Besides, the function 

considered by Boresma Mittag-Leffer, generalized
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Bessel function due to wright ^7oJ , the generalization of 

hypergeometric function studied by Fox ^22^ / and #*right f"7cT} 

are all special cases of H-function. Except the function of 

Boresma, the aforesaid functions cannot be obtained as 

special cases of 3-function of Meijer M ? hence the 

study of H-function will cover wider range than G-function 

and gives deeper/ more general and more useful results 

directly applicable in various problems of physical and 

biological sciences.

Of all the integrals which contain gamma functions in 

their integrands the most important ones are the so-called 

Mellin-Barnes integrals. Such integrals were first introduced 

by S. Pincherle in 1888, Barnes in 1908 and Me 11 in in 1910.

They were used for a complete integration of the hypergeometric 

differential equation by e.W. Barnes in 1908. Dixon and 

Ferrar in 1936 have given the asymptotic expansion of general 

Mellin-Barnes type integrals/ ^3/ Vol.I/ p, 49^] .Functions 

close to H-function occur in the study of the solutions of 

certain functional equations considered by Bochner in 1958 

and ChandraseKharan and Narasimhan in 1962,

The H-function has been used by Fox j~23*^ in the 

study of Fourier Kernels. This function has been studied in 

detail with reference to analytic continuations and
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asymptotic expansions by Braaksma {^8^j . Following Braaksma £8j|, 

it is defined in terms of Me 11 in-Barnes integrals as follows!

U.59) H,m,n
P/q

■m,n
P/q

1 (ap, «p)

<V
(a^/a^) (vV

J 'X,(s)zsds/ 
2 TTi L

1^
where i = (-1) , z / O is a complex variable and

(1.60) zs = exp sLog |z| +i. argz]| >

in which Log jz| represents the natural logirithm of j^z| 

and arg z is not necessarily the principal value. An empty 

product is interpreted as unity. Also

ITf P *bi " Pis) TT P (1 - ai + a.-s) 
j=l I J J j=i * J J

(1.61) X^s)
q
tt pa -

j=m+l
b.

J
+ Pjs>

P
rr r(a•
j=n+l J

°Cj s)

where m,n, p,q are nonnegative integers satisfying 0 4ni p, 

H m S q ; «j (j = 1,2,,,.. , p) and Bj(j = 1,2 ..., q) are 

assumed to be positive quantities. Also, aj(j = 1,2, . ..,p) 

and bj (j = 1,2, ... , q) are complex numbers such that none 

of the points
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"f ^ )/p^~j / h — 1/2/ . .. / rn* 0/1/2, ..«

which are the poles of [*'(b^ - 8^ s), h = 1,2, . .., m; 

and the points

(1.62) s -L

(1.63) s = (a£ - n-1) j oci /

which are the poles of ^(1 - aj[ 

another, i.e. ,

1=1,2, ...,n^*n —■ 0,1/2,... 

+ oc-^s) coincide with one

(1.64) «. (l^ + V ) * Ph (at - n - l)

for *^), — 0, 1/ 2, ... , h = 1, 2, ..., rn, i ~* 1,2, ... n.

Further, the contour l> runs from - ice to + is© such that

the poles of p (b^ - Phs^ h = 1/2, .../ m, lie to the right

of L and the poles of p (1 - aj + ocjs), j = 1,2, ... , h, lie

to the left of L. Such a contour is possible on account of

(1.64) . These assumptions will be retained throughout.

The H-funotion is an analytic function of z and makes 

sense if the following existence conditions are satisfied;

Case I s For all z K 0 with p, "> 0,

Case II: For 0<jz|«C. B"*^ with ]i = 0, where

q p
\i ~ 2L P-i - oci

j=l j=l
and

P q _o .
B = ff (ct.j)aj IT Pj •

j=l j=l J
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It does not depend upon the choice of L due to the 

occurrence of the factor zs in the integrand of (1.59), it 

is ingeneral, many-valued but one-valuedon Riemann surface of 

Logz and the result of t he H-f unction are obtainable in a 

more compact form and without much difficulty. This is not 

the case with G-function.

The behaviour of the H-function for small and large 

values of the argument has been discussed by Braaksma£8j 

in detail. Here, we shall give some of his results. The 

following definitions will be used :

n p m q
A = £ oc. - £ a. + £ - X. Pi ;

j=l J j=n+l J j=l J j=m+l J

p al q —a.
B = IT (a.) IT (Pi) ;

j=l J j=l J

q P
C = £ b. - JT a. + p/2 - q/2;

j=l J j=l J

D
m
£ ^ “ 

j = 1PJ
q 
£
j=m+lfl- T a. and

Then according to Braaksma ^8, t>. 278
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<1.65) H™' [" x =0 / |x| C) for small x,
P/**! L J '*• *

where u ^ 0, and c = , R(b./a.);
r 1 4 lim JPJ

(1. 66) H,m/H f
= 0([x{ ) for large x,

where y. ^ 0, A > 0, |..argx|< A Tf /2 and

P/q

a =
max
li j^n

(R [(aj - l)/aj] )

The two useful identities of the H-function are

(1.67) Hm,n
P/q

(a_/l) ,,n\ := G J X

naP P
(b , 1) i - P/q J b ]q

<hI

L

(1.68) H1/0
0,2

where (x)4

(0,1), (-\ ,p

°» (-x)rz
= (X)

r=0 rJ P (1 + \+y.r) 

Maitland's generalized Bessel function.

is the

4«e now state some of the important properties of 

H-f unc tion

(1.69) The H-function is symmetrical in pairs of (a^/txi)/... 

,./(an,an) and in (an+1, an+1 )/ .......... .. (ap,ap) likewise in

*bl'01*' •*** ' ^bm' £m^ and in ^Hrt+1, Pm+l * 7 **" (bq'£q^#
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(1,70) If one of the (aj/Otj) (j = 1/2, ..„,n) is the same 
as the one of (b^, ph> (h = m+1, . .„,q) or one of (b^,
(h = 1/2, ...,m) is the same as one of (aj, ot j ) (j=n+l, ..,/p), 
the H-function reduces to one of lower order.

(1.71) H™'”
P/q

(1.72) lf}'n P/q

x

—
(Sp/Kp/ m,n = H

r*

l/x
(1-bg/^)

*bq'&q* , ~ P/q d-Bp, Op) 
■0*

X (Sp/OCp) m,n= k H
r*** xk '

(bq/(3q) P/q
(ap/fep)

(V *&q> , k>°

1.4 Fractional Integrations of H~function

In this section we evaluate some integrals which will 
be useful in the development of the work in the dissertation.

Riemann~Liouvi lie integral

Let

(1.73) f(x) = tf1'11
P/q

bax

then

V / b>0

— C (x-t)a 1 f (t)d t
f' (a) 0

1
plaJ

xi0 (x-t)a_1 m,nHP/q

r
at

(ap/a?)

(VPqV, dt
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/ (x-t)""1 lx(s)a's t"bs 
2TTi P(a) 0 L

dsd t

~ --— S (s)a“s ds. —-- J t“bs(x-t)a at
2fTi L f(a) 0

changing the order of integration and using

m n_ Js1fMvejs) -aj - “js>
(1.74) X(s) = ------------------------- -------

Jf pU-b. - £jS) IT f (a +a,s)

Now evaluating the t - integral with the help of the 
known result j^4, p. 185(7)^J and then using the definition 

of H-function we get
r~ (o/b)/ (ap#Kp)

(1.75) Ra
(t) jx~j x“ Hm'n+1 

p+l,q+l ax"

p+q <. 2 (m+n), R(a) > 0, R(b./p.) > -1, j = l/2/.../m.

Weyl Integral

Using (1.73) we have
CO

w„ f f ;xl 1 J <t -x)“-1 f<t)dtU U- J f(a) X

1
oo

[(t-x)11-1 H™'"
— I
at13 J (v ap,~j at

p (a) X P/q
- 1 (b /q

h’J

1_ 1 T* “** • -i- J
QQ
(t-x)”-1 Sx (s )a”s t*bs dsdt

to H- r<«> x h
dsdt
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<30

- -—- } "X*- (s)a-sds.------ j t“^s (t-x)a ^ dt
2fl i L P (a) x

changing the order of integrations and using the rela tion (1.74), 

Now evaluating the t-integral with the help of the known 

result j^4,P.201 (6)J and then using the definition of 

H-funotion, we obtain

(1.76) [f,x] b
(ap,ap), (o/b)

ax
(-a, b) / (b / p )

g. q j

1.5. The Mell in transform

1-a.
p+q < 2 (m+n), 0 < R(a) < R(------ ), j = 1/2, ... . ,n.

aJ

The Mell in transform P(s) of the function f (x) is 

defined by the equation
00

(1.77) p(s) = M(f(x) ) = j f(x)xs_1 dx, s = <T + it .
0

Under certain conditions £_66, P. 4fTj ' fctle i-nverse

Mell in transform of F(s), may be represented as an integral

r m 1 c+iC*0
(1.78) F (s) = f(x) = ------- ( F(s) x~sds.

J 2 TT i c-ioo

Associated with this transform is the following convolution 
theorem ^~66, Th. 44, P. 6cTJ .If s = c + it, xcf(x) and 

xGg(x) belong to L(0, &a ), then
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p(s)G(s) = M^(f*g)(x)^ and xc(f*g)(x) belongs 

to L(0, Oo) where
DO

(1.79) (f*g)(x) * r$ f(x/u)g(u)du/u. 
0

The Hell in transform of the H-function follows from 

the definition (1.59) in view of (1.77) and (1.78). kie have

OO
(1.80) 5 Xs"1 Hm,n

o P'3

—*

(a ,oc )
ax y y

~
^bq'£q> _

dx = a"s ’X.(s)

where X (s) is given by (1. w and the conditions 

A > 0, | arg a J «C and y 0,

R (b/g.K R(s)< min R( (l-a^/cc.) 

are satisfied.

mm
l^j<m jPj'x ,v iSj$n 3 " j

Motivation of the work done

Erdelyi-Kober ^_14, 33^ , Srivastava £_653 / Bhise (1t3 

and Sharma Q&1J have used the operators of fractional 

integration to study the theory of Hankel transform and its 

generalizations. The generalized Hankel transform (1.46) yields 

almost all earlier known generalizations as special cases.

This very situation motivated us to study the theory of the 

generalized Hankel transform with the help of fractional
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integral operaters. Thus the study of this generalized 

Hankel transform will not only help us to study some of 

the generalizations which were not studied earlier with the 

help of fractional integral operaters but will also unify 

the scattered results in this field.

0O0


