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CHAPTER ONE

Introduction

"Tn the intellectual life  of man there
can be clearly two domains, the domain
of action, of shaping and construction
to which active artists, scientists,
technicians and statesmen devote
themselves, and a domain of reflection
of which the fulfilment lies in insight,
and which since we struggle in it to find
the meaning of our activity, is to be
regarded as the proper domain of the
philosopher,”
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CHAPTER=-TI

INTRODUCTTION

1,1 Fractional Calculus

The two most basic operations of Mathematics are
dif ferentiation and integration, One can €xpect much from the
natural extension of these operations, The fractional calculus
has jts origin in the question of the extension of meaning,
In generalized integration and differentiation the JQuestion
of extension of meaning is : Can the meaning of derivatives
of integral order dny/ ax? be extended to have meaning
where n is any number .,.,. irrational, fractional, or
complex ? The concept of differentiation and integration to
noninteger order is by no means new, Interest in this subject
was evident almost as soon as the ideas of the classical
calculus were known, The subject is o0ld, dating back atleast
to Leibnitz in its theory and to Heaviside in its aoplication,

But the amolication of these ideas has not yet been fully

exposead,

Leibnitz [#9) in 1695 replied, 'It will lead to a
paradox', adding prophetically 'from which one day useful
conseduences will be drawn', to L'Hospitalls letter asking
about 'What if n be 1/2 ?' In 1697, Leibnitz, referring to

Wallis's infinite product for /2, used the notation d%y and



stated that differential calculus might have used to achieve

the same result,

In 1819 the first mention of a derivative of arbitrary
order appears in a text, The French mathematician, S,F,
Lacroix {_373 , in his 700 page text on differential and
integral calculus, has dewted less than two pages to
fractional calculus, He developns a formula for fractional
differentiation for the nth order derivative of x™ by
induction, Then, he formally renlaces n with the fraction ¥,

and together with the fact that " (1/2) =Jjf , he obtains

a% 2. /%
foom (%) = —mm-

The systematic studies seen to have been made in the
beginning and middle of the 19th century by Liouville {40],
Riemann{SéL] and Holmgren (}1} 2lthough Euler \;_20] ’

Lagrange f_38} . and others made contributions even earlier,

abel {1} wes probebly the first to give an application
of fractional calax lus, He used derivatives of arbitrary
order to solve the tautochrone problem, This problem,
sometimes called the isochrone problem, is that of finding
the shape of a frictionless wire lying in a vertical plane
such that the time of slide of a bead placed on the wire

sl ides to the lowest noint of the wire in the same time



regardless of where the bead is placed, The brachistochrone
problem deals with the shortest time of slide, The integral

he worked with

1
]

x ~
J o x- &) 7 £(r)at
o

is precisely of the same form that Riemann used to define

fractional operations.,

It was Liouvile [_40] who expanded functions in series
of ex.ponentials and defined the gth derivative of such a
series by operating term-by-term as though q were a positive
integer. Riemann ESLQ proposed a different definition that
inwlved a definite integral and was applicable to power
series with noninteger exponents, Grunwald [24) first
unified the results of Liouville and Riemann, Krug {35] ,
working through Cauchy's integral formula for ordinary
derivati%res, showed that Riemann's definite integral had to
be interpreted as having a finite lower limit while Linuville's
definition, in which no distinguishable lower limit appeared,

corresnond to a lower limit - ©0O .

Notable contributions, in the present century, have
been made to both the theory and application of the
fractional calculus, weyl £683 , Hardy (26} , Hardy and

Littlewood [27,283 . Kober {331 , and Kuttner [36] examined



some rather special, but natural, properties of fractionsal
operators of functions belonging to Lebesgue and Lipschitz
classes, Erdelyi {13, 14, 151 and Oslerc51] have given
definitions of fractional operators with respect to

arbitrary functions, and Post{ 52} used quotients to define
generalized differentiation, Riesz{ 551 has developed a theory
of fractional integration for functions of more than one
variable, Erdelyi {:18, 19} has apolied the fractional
calculus to integral eJuations ané Higgins [3§}has used
fractional integral operators to solve differential equations,
Prabhakar 5533 studied some integral eduations containing
hypergeometric functions in two variables with the help of

fractional integration,

1,11 A fractional integral is a straightforward generali-
zation of the elementary concept of a repeated integral, If
the function £(x) is integrable in any interval (o,a) where
a> 0 we define the first integral F;(x) of f(x) by the
formula
X
Fo(x) = 0} £(t) at
and the subseduent integrals by the recursion formula
X
FI‘*‘l(X) = O_i Fr(t)dt/ r=1, 2, ¢os-.

Tt can easily be proved by induction that for any positive



integer n

(x - &) £(t) at,

jo I o

(1.1) Foep (x) =

Owr N

i
Similarly we could define an indefinite integral G,.(x) by

the formulae

o o0
Gy (x) = - é £(t)dt, Gpy (x) = - é s, (t)de

r=1, 2, ,... and show by induction that for any positive

integer n
o

— 1 n
(X) = —E_! Xj (t - x) f(t) at,

(1.2) Gy

provided that £(x) is of such a nature that the integral.

exists,

The earliest generalization of the integral on the
right-hand side of eduation (1,1) would appear to be the
Riemann-Liouville fractional integral of order a defined for
R(x) > O by
(1.3) R £(x) = e §eo) o0 e,

o) o)
The upper limit of integration x may be rcal or commlex; in
the latter case the path of integration is the straight
segment t = xs, 0 € s £ 1, Integrals of this type arise in

the theory of linear ordinary differential edJuations where

they are called Euler transforms of the first Kkind,



Hardy and Littlewood(ZB} cmisider the fractional

integral
% =1
(L.a) £ (x) = [ £(t)(x~-t) = dt, (0< R(a) < 1),
-

while Love and Young {413 consider the integral

(1,5) £ (a,x) = —==— { £(t)(x-t)" "~ dt, (a £ x< b,
o
M) a

R(a)> 0 )1

£(x) being int‘egrable in (a,b): Zygmund{?l} discusses the

same integral but denotes it by ch (x).,

The Weyl fractional integral is a gen=ralization of
the integral on the right hand side of eJuation (1.2); it is
defined by the eduation (Weyl {68} )

1 o9
-1
) x
In general x and « are complex, the path of integration
being one of the rays t = xs (s » 0), or t = x + s ( g% 0),
Wwhen they occur in the theory of linear ordinary differential

edJuations, fractional integrals of this kind are called

Euler transforms of the second kind,

A fractional integral

1 b
(L7) £ (b)) = —-—  § £0e)(e=x)*"1 at, R(x) >0
o
r’(oc) x
ar -

Shiv, ... LiLtialres



Closely related to Weyl's has been introduced by Love and

Young [ 41},

The fundamental theorems on fractional integrals
and derivatives as given by weyl and Hardy and Littlewood
Were extended by Koksr{ 333 over a wider range., He studied
the applications of these operators for Mellin and Hankel
transforms, By introducing complex parameter N he dealt with

the operators

1 _ Z -
zﬂa -1 T

(1.8) Iy £= - ((z-6)%1 " £(e) at,
’ o) o)
1 oo
(1.9) K;" £= mmem Z 5(t_z)°"l e £(e) at,
o 1 (a) z
...Tk-(x oG
Z -~
(1,10) Iy £ = —emee f(t.z)"‘ Lo gy ae,
7o ' () 2z
+ ! no ¢ a1 ng
(1.1 K £ = --em oz § (z-t) € £(t) at,
7 7 (e) o}

Erdelyi[ 14, 15] further generalized these operators ard
discussed in detail the importance of these in the theory of
Mellin end Hankel transformations, For A 7» O, thc fractional
integral operators with respect to «®  are defined by

1

. X
(1,12) I";“ £(X) = mmmmm X MUTAX 0 A BAyaml Al (g (e,
x [ () o)

ra*d '
1 AT -
(1.13) Kn:xf(x) R N N AT C T

X P(a) X /:f« \




we know{ 66, ‘th. 44, ©, 60} that if £ € L (0,00 ),

g&L(0, 2 ), then (f*g)(x) & L(0,00), where
O
(1,14) (£*g) (x) = ‘ff(x/u) g(u) du/u,
0

Hence the set L(0, CO) of complex valued functions forms an
algebra over the ficld of conplex numbers with the usual
definitions of addition and scalar multiplication and the
convolution (1,14) as the nroduct, It is easy to see that the

algebra is commutative and associative,

Buschman{:lz, P.loé} has introduced

(1.15)  TH%R oy = oo GRS AT ey,
(o)
and
A
(1.16) KV¥R (x) = 3133 (1) AT 41y
"

where U$x) is the Heaviside unit function

0 for x €0
U(x) =
1 for x>0 .,

He develoned some additional identities by showing the

cohnection between these operators and algebra of functions

which has Mellin convolution as the product, He proves

0.4
Iﬂ:

(1L.17) 15 (xR wg) (),
X

f(x)

i

(1.18) KU% £(x) = (K“%P » £)(x),

xA

i



N,a.A

Where I (x) belongs to L(0, &) for R{x)> O,

n,0,A

R(M)> 1/A - 1 and K (x) belongs to L(0,o0 ) for

R(x)> 0 and R(M) > - 1/A, He has further pointed out that

(1+n - s/A)
(1,19) M [xn'“"" (XD.-. _.Z __________
[ (1404w - s/A)

R(ax) > 0, R(s/a)< 1 + R(M)
and

' (N+ s/A)
(1.20) M[Kn'“"‘ (x)] = ....E...__..f__..
{’(n+<x+s/A)

R(a) > 0, R(s/A)> - R(M),

Finally, he used these facts to reduce a pair of integral

equations to a Single integral eduation,

Kesarwani[32] extended the earlier work of Bushman
to solve certain dual integral edJuations, 3ueddon [63]
modified the Erdelyi-Kober operators and applied them to
solve certain dusl integral eJuations, Mourya{46_} hes
developed fractional integrals for the functions of two
variables on the lines of Erdelyjand Kober and discussed some
of their fundamental properties and simple identities, The &
algdbra of these operators has been developed by Korannef%]
and used in the solutions of certain dual integral eQuations
of functions of two variables, lowndes [42_] introduced the

general iz ation of grdelyi-Kober operators (1,8) to (1,11) by
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using Bessel functions, Saxena and Kumbhat [58] also gave
the generalizations of these operators by utilizing generalized

hypergeometric functions,

1,12 Since an indefinite integral is probably the

simplest integral transformation of all, no apology is needed
for using this as the starting point for a theory of fractional
calculus, another topic which has sprung to life in recent
vears with the publications of Oldham and Spanier LSO] and

Ross[SG]. Ve are well accustomed to the use of the notation

~~~~~ for the nth derivative of a function £ with respect

to x when n is a nonnegative integer, Because integration and
differentiation are inverse operations it is natural to

associate the symbol ==-w= with indefinite integration of £

with respect to x, Hence we may def ine
ate i‘c a~te  x

(1.21) o e e f(y)dy or —=—cme——s I f(y)dy.
_{dx}"l o] {d (x-a g»l éf

1i

In general the multiple integration with lower limit a is

the natural extension

a" e x X,
‘ -1
( l. 22 ) T = d - dX @eoc so e e
Ed(x-a )] -n aS To-1 a$ -2
X2 Xl

e e ey ax, .
a
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This n~-fold integration of £ with respect to x may be

symbolized as

(on) x *n-1
(l. 23) f :__-'. 5 dxn-ql S dxn_z ee s e
°n an-1
XA xl
oo e e S Xm S f(xo) dxol
) 3]

Where aj, ay,...,a, are completely arbitrary,

Using the definition of the first derivative in
termg of a backward difference and repeating the process

we can hawve

At X - a]™ N-1 i n X-3
(1,24)  memee = Lim {j-~—~=- ¥ (-1)3(3)f<-j (t-“
fax]” Nl N j=0 N

Aleo using the definition of an integral as a limit of a

Riemann Sum, we ged

a P x-a]" N x-a
sy S o= 1T B 0oy (53))
{d(x—-a]‘ N->00 NJ j=0 N
Now compering the above two formulas and recalling

. e M(j-n)
0l = Iy e it

PH-n) P (j+1)

)

we hava

UL T LIBRARY
@s..... . . AR Y 4" ]}
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G -T-3 N — = 1im | —ee—— > AT E

where q is any integer of either sign. A new term
'differintegrals' has been coined by 0Oldham and Spanier CSOJ
to awid the cumbersome alternate 'dérivatiVes or integrals
to arbitrary order', They have defined the differenintegral

of order q by the formula

il

a%f : —-ﬁ_'} N-1 P(r - q)

(1.27)  —mmmmmm = Llim | wmmeee S ——
(ax-a)] T m200) ) o [r+1)

X - a
f (x-r [—---—-—} )
N

where q is arbitrary, which was first given by Grilnwald

L24] . Note that this definition involwves only evaluations
of the function itself; no explicit use is made of derivatives
or integrals of £, They have further established that
a a9g a"'d g
(1,28) o | e e e L F e
ax? | [ax-a)]"M | [Catx-a) ]
for all positive integers n and all q,

Consider the formula
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| als x 1 4n x .
(1,29) ~—mmcmmeemas = f(yldy == === (x~y ) £(y)dy,
(_d(x - a)]'l ‘ aj nd gxn af y

n=0; llzl-

» o8 q

A single integration of (1,29) for n = 1 produces

a2 £ ic :Scl X
e ———— = ax f(x )ax = (x-y) £(y) dy,
[d(x - aB"z a 1 a ° © g Y

and an (n-1) - £0ld integration produces Cauchy's formula

for repeated integration,

(L30) {a {n-L (L (x,)a
e30)  emem—- —_——— = X PR X, =
d(x—a)]"n n-1 a a1 a 0™
1 X 1
= mm——— { (x-y)* £(y)ay.
(n -1 a

Thus an iterated integral may be expressed as a weighted
single integral with a very simple weight function, a fact
that provides an important clue for generalizations
involving noninteger orders, By replacing -n by g we get

the Riemamn-Liouville fractional integral

I

alf 1 x g1
(1,31) —————— = e -— §  (x-y) f(y)dy,q<¢o0.
d(x~a)i} r-L {7 (=) a

By establishing the identities

= 5 ™ - - g+K
(1 32) L ais _ nzl (x-a) q f(K) (a)
) d(x~a)d = A7 r R+ 1)
R-L, o [T (-q )
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r el (n)

+ f e e e 0 o e

g-n
L d(X"a) R-L

which provides an analytic continuation of the formula

(1.31) for R(g) <« n and

g . -
(1.33) - o o e | e e e

L]

til(x—-a)q

where a%/dx" effects ordinary n-fold differentiation and n
is an integer chosen so large that g-n € 0, Oldham and
Spanier (so] proved that the operators (1.27) and (1.31)

coincid gs for all functionsg £,

Riemann {54} considered power series with noninteger
exponents to be extensions of Taylor's series and built
up a generalized derivative for such functions by use of the

formula

a9 xP (p+1)
(1.34) ———— A
axd f (p=g+1)

i
1
i
1
i
i
!
i
i
§
i

this being an obvious gencralization of the formula

alxP

axn

P-n

i

P(P - l)(P - 2) cooe (P - n+l)x

[*(P~n + 1)
for n a nonnegative integer. This is similar to the approach

taken by Scott Blair[60] , Héaviside (_29] , and others,
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Liouville £40] defined a genheralized derivative for functions

expansible as a series of exponentials,

f = ECJ- exp (bJ.x), by

a4s %o
(1.35) —— = 2 CjijI ¢xp (b.,x), which leads to a
axd j=0 J

dif ferent operator than those of (1,27).

Erdelyi (18] defined a qth order differintegral of a
function f(z) with respect to the function zP by
a9 1 z f£(t)nt™! ac
(1,36)  =memmme—mew = e m—————
[d(zn_an) q P(_q) a LG - tn} 1+
Oslar CS‘l] has extended Erdelyi's work by defining differ-
integral of a function £(z) with respect to an arbitrary
function g(z) by camsidering the Riemann-Liouville integral
ade 1 oz £(e)g'(b) ae

T 1 2 T —— RS (U ——
latgtz) - g )] T 7 p-a) & [o(z) - gte)} T,

]

where a is closen to give g(a) 0, that is a = g-l(O). Upon
setting g(z) = z-a, one obtains the Riemann-Liouville
Integral once again, Certain choices of g have been shown
by Brdelyi and Osler which lead to a number of formulas of

interest in clagsical analysis,




le6

1.13 The mathematical problem of defining fractional
integration and 4di fferentiation ¢
The symbols

CDx f(X)I V}ﬂ c,

invented by Harold T, Davis, denote integration of
arbitrary order along x-axis, The subscrints ¢ and x denote
the limits of integration of a definite integral which

defines fractional integration,

For every function £(z), 2 = x + iy, of a sufficiently
wide class, and every number V, irrational, fractional, or
complex, a function cDz £(z) = g(z), or oDy £(x) = g(x)
when 2 is purely rcal, should be assigned subject to the

following criteria :

(1} 1If £(2) is an analytic function of the complex

variable 2z, the derivative cDZ is an analytic function

of v and 2z,

(2) The operation :CD;'; f(x) must produce the same
result as ordinary differentiation when v is a positive
integer, If v is a negative integer, say v = -n, then

CD;n f(x) must produce the same result as ordinary n-fold

integration and CD;H mus t vanish along with its n-1

derivatives at x = ¢c,
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(3) The operation of order zero leaves thec function
unchanged @
o -

cDx f(x) = £(x)

(4) The fractional gperatcrs must bhe linear :

-V - -V . -v
oDn [af0x) +bg(x)) = apl¥ £(x) + bpLY G,

A

(5) The law of exponents for integration of arbitrary

order holds :

~u -V _ e
cDy CDX £(x) = <Dy £(x),

A definition which fulfills thesc criteria named in

honour of Riemann and Liouville is

(1.38) D77 £(x) = e - jx(x-t)v"l £(t) dt,
{(v) ¢

This definition can be obtained in atleast four
dif ferent ways, The definition (1,38) is for integration of
arbitrary order, For differentiation of arbitrary order it
cannot be used directly, However, by mcans of a simple trick,
we can find a convocrgent expressinn, Let v = m - p where for
convenience m is the least integer greater than v, and
O0<€p £ 1, Then for dif ferentiation of a¥rbitrary order

-

we have
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v — m -P
(1,39) cDx f(x) = CQX cDx f(x)
m X ;
= _ﬂd”_ ._.1'..« 5 (X—t)p-l f(vt)dtl

ax™ " Pp) <

where we take advantage of the knowledge that CDE is an
ordinary mth derivative operator d"/dx®, The Question of
extending the definition (1,38) for integration of arbitrary
order to differentiation of arbitrary order is answered by

letting v e real and greater than zecro we have

x —
(1,40) aglv ’x) = DV f(x) = L § (x&t)v 1 f(t)at
o X
P (v) o
which is in general convergent for v » 0, For any v we can
write
. = -y _ m _p
h(v’x) = oDy f(x) = ODX oPx £ (x)
am X

ax™m F(p) 6

where -v =m-=-p, m=20,1, 2 ,...

When V » 0 choose m = 0, thus v = p and g = h, Now

(1,40) can be written

g(v’x) S,

X
J T f(t)dt} ax,
[s]

By Dirichlet's formula, we have

GIV.X) = e mme—ee (x-t)Y £(t) dt

J ax T (v+l)

Or e
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which is convergent for v > - 1, We then have g({v,x) =
= h(v,x) for m = 1, This process can be repeated for v > -n,

n a positive integer, Now g is analytic in R, where v > O

1
and h is analvtic in R2 for v » - n, Since g = h on a sct
of points in R} R, with a limit noint in the right half

rlane, then h is the analytic continuation of g,

1,14 No claim cah be made that the fractional calculus
approach is better than some other approach, However, thare
is a succinctness of notation and simplicity of formulation
in the fractional calculus that might suggest a solution to
a complic'ated functional eJuation that is not readily

obtained by other mcans,

Fractional calculus can be categoriz;'.;d as aonlicable
ma thema tics, The properties and tiheory of these fractional
opurators are prooer dSbjects of study in their own right,
Scientists and applied mathematicians, in the last decade,
found the fractional calculus useful in various fields,
within mathematics, the subject makes a contact with a very
large scgment of classical analysis an? provides a unifying
theme for a great many known, and some new, results,
Applications outside mathematics include such otherwise
unrelated topics asg ¢ transmission line theory, duantitive
biology, electro-chemistry, scattering theory, diffusion,

and dissemination of atmospbheric pollutants, Virtualiy
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no area of classical analysis has been left untouchaed by

the fractional calculus,

1.2 Generalizations of the Hankel Transform

The Well-known Hankel transform denoted by Hy , is

defined by the integral eduation

Co
(1.41) g(x) = O§<xy)% 3y (xy)£(y)dy.

where 0 < X<, ) is a real number and :fy is the Bessel
function of first kind of order Y. Functions which are their
own tHankel transforms i.e., solutions of the integral

eJuation
00

(1.,42) f(x) = ,{(xy)l/2 Jy (xy)E(y)dy
0

have been called self -reciprocal in Hankel transform of

order .

According to Titchmarsh [66, P, 252] we shall say
that £(x) belongs to the class A(wn,a), where 0 & g 7T,
a <Y, if (i)f(x) is an analytic function of x = rel®
regular in the angle defined by r > 0, ||« «, and
(ii) £(x) is O(fx{_"a-e) for small x, and O(}x} a-l+e
for large x, for every positive & and uniformly in any

angle {8\ < o=l < «a.
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Seneralizatiocns of the Hankel transform (1,41),
have bteen given from time to time by various mathematicians
like Agrawal EZ,P. 1643 , Bhatanagar(S] . Mehra [433,

R, Narain (:47, 483 p 'Bhise['7___} and several others, Sharma
[_61] has established and studied symmetrical fourier kernel

interms of Fox's H - func tion L23, D, 408] as

A
(1.43) 2By x r-1 H;I'pzr B2 <2 i (ap s ap), (1-a -« ’“p)w
Pr o By, By, (1by
y 47 Taq ﬁq_J

where g and y are real constants., With the helo of (1,43)

8 new reciprocal transform may be irtroduced in the f orm

(1.44) g(x) = 2pgy x
(ap,ocp), (l-a.p—oco, o)

b £(yay.,
| qlﬁq)’(l—lbdq—.ﬁq' Bq)_'

Y- ‘Iip 2 2y
S(xy) 20, 2 8 (xy)

which by applying Known identity

1]

(1.45) xf H;'n x (ap'ap)‘} ent | (3 Kaprog)
1 P )

may be put in the form

(1,.46) g(x) =2y B 1/2 y x

o9 : 2Y -1 - ) ( 27 +1
+ e —— ’ lu - e ——— ,
2p,2 4y
(bt —==—emm ’ ), (l-b_ = e ’ ‘
T Ty Rarfa 17 7R By)
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x f£(y)dy .

We shall denote the generalized Hankel transform (1,44) or
(1,46) symbolically by g(x) = E—IT[f(y): X7 (ap, ocp):

(bq, Bq)—L If the functions f(x) and g(x) satisfy the integral
equation (1,44) or (1,46) we shall csll g{(x) to be
HT‘{(ap,ocp): (bq,Bq)}- transform of f(x) and £(x) as
HT[(ap,ocp),' (bq'Bq)J - transform of g(x). The funcltions
f(x) and g(x) shall ke called as a pair of Hop [(ap,ocp):
(bqiﬁq)‘] - transforms, If f(x) = g(x), it shall be called
as self -reciprocal in Hp [(ap'“p)" (bq,Bq):z transform and

we shall say that £(x) is RT((ap' ozp);' (bq; Eq)}.

The Kernel in the transform defined in (1.46) is
very general and yields as particular cases a number of known

generalizations of Hankel transform (1,41) as follows @

(i) Taking « = 1, the result (1,46) reduces to

(—61 , p,a]

(1,47)  glx) =2 yp ¥ «x

p ~ PBg

oo . 2Y -1 27 -1
» ( == +ap)l (e - ap)
X Sg'g’p gz (Xy)ZY 4y 47 £(y)dy
0 P;zq :
( _2_3_:3' b.), ( 33_:_1.' - b )
iy 1’ 4y !

We shall denote the generalized Hankel transform (1,47)

symbolically by
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g(x) = Gp (f(y); x i a, q]

(ii) wWith p = i, 4‘—' 1, (1.,47) reduces to a

generalization given by R, Narain [48, P, 298]

: r - a
(1.48) g(x) = ﬁxy)%Gq'p (%) A FINT

2p,2q - ‘

(iii) On having g =%, =1, p=1, qg=2,

(1,47) yields another generalization by R.Narain ['47,P,27o]
oo

_ oY Y, x2 y2
(1,49) g(x) 2 Oj(xy) Xy,k,m ( - 7 -) f(y)dy,

known as Yv,k,m - transform, where

-V 2 k-m-3s, W~k +m + J
)d‘v,k,m (x) = x Gz
y, v+2m/ - 2m, 0

'

A function, self-reciprocal in (1,49) has been denoted by

Ry (K, m),

(iv) Taking A= 1, g = 27", where n is a positive
integer and giving suitable values to the parameters .

(1,47) reduces to the generalizations due to Bhatanagar

[5,P.176]
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(4 ]
(1,50) g(x) = g%"‘ (xy)E(y)ady,
0 p’ll.o‘ivn

(pll .o-o’vn> —;f)l

where ’Vv';l " (x) is defined as
’ » 9007/

ord — ol=n X
W (x) = 2 X2 x
pl'.o'lpn

n,D X 2
X GO,Zn {- ( -§n )
A function self-reciprocal in (1,50) will be represented

bY %ll L) ip'n

—— ——

———

125 NN - W W
2 Iocfo) 2 i 2

teove) -
2

(v) withn =2, (1,50) reduces to

2
(1.51) gx) = YW, 5 Gy)ilyddy, (g, V> -3,
0 g A

where ‘W{L,V (x) is Watson's Kernel [67, P.298] defined

. ] sol
T,y ) 2k e s (-§-){ -
| ., | -k

14

D, LB
2

A function self-reciprocal in (1,51) will be denoted

by R .
L TN

(vi) on having =%, A =1, p=1, qg= 2,
agp =k-m- V/2,b = V2 and b, = Y72 + 2m, (1.47)
yields a generalization by Mehra {43}

1%

XZYZ
K yrergm (750 £

o0
-y | +
(1.59) g(x) = 277 j (xy) ™
0
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(Vil) putting Y::Lilp::l'qzzl al=ﬁl=‘82=l'ﬁ=l'
andalzk..m-o v/Z—%,bl= )’/2,b2= V/2 + 2m,

(1,46) reduces to a modified form of )(” k. m transform
T RLY ]

introduced by Bhise |6, p, 198
| 3. -

o0
’21 kem—- Y/2 - 3, =k +mt+ V/2 + L%
(1.53) g(x) = sz' Xy x
o 2.4 Y2, V/2 +2m, - VY/2, - Y/2-2m
X £(y)dy
(viii) Having y=1, g =% p=0,a=1, b = V/2

and using the identity E3, P 216(3)1

1,0
(1.54) GO,Z [x

(1,47) reduces to (1,41).

i (a+b
= 130 5 (e,

a,b

(ix) With y=2, and P=2"%, p=0, q=12,R =8 =1

and using the identity (1,45), we have

]

oo - .
3/2 2,0 | ,xy 4} 3 1 3
(1,55) glx) = Y4 Oj(xy) GO,4 I(-—Z-) f— 50 "5 5 ,é}f(y)dy,

and

it

N~
o 4
(1.56) g(x) = Y OS (xy)3/? Ggﬂ "Zﬂ) Kl g-, - é,»g]f(y)dy

'8“1
where the Kernels used are due to Guinand {?5, Pe 19%}
1)2k

(x)on putting B = (kx" Y = k and choosing the
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parameters suitably in (1,47), we have

e0
(1L,57) g(x) = Oj (xy);iJo K (xy)f(y)ay

?

and

it

oo
(1.58) g{x) S(XY)%J%’k (xy)£(y)dy,
Q

wvhere the Kernels used are due to Ev.eritt[.?l, p.27]:l and

given in .terms of Meijer's G - function as

X130 = (2607 O/ x

k,0O X 2k
X G (EE)

0,2k 0, /2K, ve.o.s ]’Zfi-'i}"o' - 1/2Ky0es = %‘il
and
T3 (x) = (2K0)% (5 x0T x
5. K
o B2 B, - -
0,2k 2k - 2k-1 2k-1
’ ! l/4kl3/4kl se e ”ZE-I'1/4KI-001 - "Z'}E’

1.3 The H-function and its asymptotic expansions

The H-function is applicable in a number of problems
arising in physical sciences, engineering and statistics,
The importance of this function lies in the fact that nearly
all the special functions occurring in applied mathemstics
and statistics are its special c.ases. Besides, the function

considered by Boresma E9] , Mit tag-Leffer, generalized
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Bessel function due to wWright [70] , the generalization of
hypergeometric function studied by Fox {22}., and aright ijc]
are all special cases of H-function, Except the function of
Boresma, the aforesaid functions cannot be obtained as
special cases of G-function of Meijer (44] ; hence the

study of H-function will cover wider range than G-function
and gives deeper, more general and more useful results
directly applicable in various problems of physical and

biological sciences,

Of all the integrals which contain gamma functions in
their integrands the most important ones are the so-called
Mellin-Barnes integrals, Such integrals were first introduced
by 8. Pincherle in 1888, Barnes in 1908 and Mellin in 1910,
They were used fof a complete integration of the hypergeometric
differential ejquation by E.,W, Barnes in 1908, Dixon and
Ferrar in 1936 have given the asymptotic expansion of general
Mell in-Barnes type integrals, {3, vol,I, p. 45] .Func tions
close to H-function occur in the study of the solutions of
certain functional eduations considered by Bochner in 1958

and Chandrasekharan and Narasimhan in 1962,

The H-function has been used by Fox {23} in the
study of Fourier Kernels, This function has been studied in

detail with reference to analytic continuations and
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asymptotic expansions by Braaksma [8] + Following Braaksma [_8],

it is defined in terms of Mell in-Barnes integrals as follows:?

% (a » )
(1,59) HI’7 { 3].1 el T IR
P.q (by, By)

= Hm,n (allal)' ees v 00 (ap;ap)

P.g
4 (bllﬂl)p TEEEE Y, (Ql'ﬁq)

i

1 s
I Y ds,
31 } “X(s)z"ds

1
where i = (=1)2, z # 0 is a complex variable and

(1.60) 2° = exp L@og fz{ +i. argz] ’

in which Log |z} represents the natural logirithm of kz‘
and arg z is not necessarily the principal value, An empty

product is interpreted as unity., Also

n
m ) - 2 .
jgl r(bj - Bjys) J}Zl r(l aj * chs)

(1.61) "X(s) = ——— e e e e e e —_— ————
q p :
TP pge) T P - age)

where m,n, p,q are nonnegative integers satisfying O én g D,

lS.qu;on-

assumed to be positive quantities, Also, aj(j = 1,2, eeosP)

(j = 1’2"... ’ p) and Bj(j = ll2 es o q) are

and bj (j = 1,2, v.. « q) are complex numbers such that none

of the points
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(1062) S = [(qﬂl ?Y )/ﬁh} V4 h = l!2I s 00 ’ m: v: 0711'2, v e
which are the poles of ['(b, -8 s), h=1,2, ..., m

and the points

(1.63) 8 = [(ai - N-1) /oci} . 1=1,2, ...,n2M =0,1,2,...
which are the poles of f’(l - a; + ajs) coincide with one

another, i.e. .,

(1.64) a; (b, +% ) # B, (a; -1 - 1)

for ), M=o, 1, 2, .. 7 h=1,2, ,.., m i=1,2, ... n,
Further, the contour L runs from - icw to + ie® such that
the poles of r'(bh - Bhs)., h=1,2, ..., m, lie to the right
of L and the poles of [(1 - a; + «j8), j = 1,2, ... , h, lie

to the left of L, Such a contour is possible on account of

{1.64). These assumptions will be retained throughout,

The H-function is an analytic function of z and makes

sense if the following existence conditions are satisfied;

Case I : For all z # O with gy 3 O,

Case II: For 0<|z|& B™L with p = 0, where

£ B pZ
== : - fo 483
L PR B

—
(o=

and
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It does not depend upon the choice of L due to the
occurrence of the factor z° in the integrand of (1,59), it
is ingeneral, many-valued but one~valuedon Riemann surface of
Logz and the result of the H-—functionv are obtainable in a
more compact form and without much difficulty, This is not

the case with G-=function,

The behaviour of the H=-function for small and large

values of the argument has been discussed by BraaksmaCBJ

in detai}l, Here, we shall give some of his results, The

following definitions will be used @

n ' P m 3
A= ¥ oy = by oy ¥ ¥ 53- - ¥ ﬂj ;
j=1 j=n+1 j=1 j=m+l

m dq i
D= Z B = b B_] - z oy ard
j = 1 J J':m-{-l J:l
Lok
= . - o .
L4 J=.1. ﬁJ j=1 J

Then according to Braaksma LS, D, 2781
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(1,65) Hr;'z [x} = 0 (\x{ c) for small x,

7

where 4 2 0, amd ¢ = “1”'2 igm R(bj/ﬁj)"

(1,66) Hg'; [XJ‘: o(fx} d) for large x,

£

where p=2 0, A >0, f..argx{( ATl /2 and

ax
d = T‘jgn %{ (R [(BJ - l)/(XJ'] )}.

The two useful identities of the H-function are :

(a Il) a
(1.67) Hg'g X P = G;"Z x{ P
t 4 ¥ d i .
(bq;l) 7 i bq [
(1.68) H(l)’g x =3} 0
’ 3 (Oll)l (">‘ 1‘1)
[« § (__X)r
where J;:" (x) = 2 —e——————eceee is the

r=0 ri {T(1 +X+ur)
Maitland's generalized Bessel function,

We now state some of the important properties of

H-func tion

(1,69) The H-function is symmetrical in pairs of (a;,01),...

serla b)) and in (apy, « Y/ ecoees (ap,ocp) likewise in

n+l

<blfsl)l LI ’ (bml ﬁm) and in (bm+1’ Bm"‘l) 2 @ e e (bqlgq)o
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(1,70) If one of the (aj,aj) (3 = 1,2, ...,n) is the same
#s the one of (bh’ ﬁh) (h = m+l, ...,q) or one of (b, » Pr’
(h = 1,2, ...,m) is the same as one of (aj, aj) (j=n+l, ....,p).

the H-fumction reduces tc one of lower order,

(ap,ocp) " I_Irn,n 1/x (l"bq’ﬁq)

(byopy) P.q (1-a,, ap)

(1,70) H™O [ x
P,gq

(ap,cxp) - m,n xk (ap,kocp)

q’Bg 3’ "Pq

I
X
e

1,72 2R X
( ) P.,q

1,4 Fractional Integrations of H-function

In this section we evaluate some integrals which will

be useful in the development of the work in the dissertation,

Riemann~Liouvi lle integral

Let
(a_,o..)
(1.73) £(x) = Hrg,;}’ ax’ PP , b>0
= L (bq_'ﬂq)
then
1 X
Ry [f(t); x] = i: ~~~~~ 5 (x-t:)“ 1 £(t)at
(o) o!
r
= ai-- 5 (x~- )“—l I—Im'n ; atP (ap'ap) dt
[la) 8 P.q (bq,aq)
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2771 Fla) O

D S ; (x-t )%t jX(s)a 5 gedt

X
O j%(s)a“s ds. —=2- 5 £P8 (x-£)%"L at

21TL L f(x) ©

changing the order of integration and using

ff (o, 3*858) Wf’(l -3y = oy s)

(1,74) X(s) = «l—-—-.. ..... e
p
T [(1-by - Bys) T T (aj+°‘j3)
J Tati i=ng

Now evaluating the t - integral with the help of the
known result [4, Pe 185('7)3 and then using the definition

of H-function wWe get

<Olb)l ( Fas4 )
(1,75) lf(t)lx] x% m'n+l ax ap P
p+l,q+l (b 1) ), (~x,b) ’
qd'Fq

p+q< 2(m+n), R(OC) > Ol R(bj/ﬂj) > -ll j = llzloovlmo

Weyl Integral

Using (1,73) we have

cn .
Ef x} ———= f (t-x)%"L £ (t)ae
P(oc) X
* a_, a)
= ___}__ j (t_x)(x"l Hm,n atb ! P P at
M) x P (b, )
oo
- L-—- - j (t-x)*" fX(s)a"S £~P8 gsat
L

2mi (’(rx) X
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1 j -5 1 ’m—bs x=-1
= e X(s)a ds, =—=- 5 t (t-x) at
x

2TTi 1 ™ (o)
changing the order of integrations and using the relation(l,74),
Now evaluating the t-integral with the help of the known
result [4,13,201 (6)] and then using the definition of

H-function, we obtain

(apr(xp) , (o,b)

(1,76) L Ef;x] =y Hm+l,t‘1 ax®
p+llq.+ (—(x,b)p (b ;ﬁ ) ’
17 Fg
l-a.
p+rq < 2(m+n), 0 <R(a) € R( ===2= ), j = 1,2, ....,n.
a-
j

1.5, The Mellin transform

The Mellin transform F{s) of the function f({x) is

defined by the eduation

o0

(1.77)  F(s) = M(E(x) ) = § £6x L ax, s = €+ 1z .
0

Under certain conditions {_66, P,46J , £{x), the inverse

Mellin transform of [¥(s), may be represented as an integral

1 1 c+it®
(1,78) M~ LF (s)} = f(x) = —me- j F (s) x"Sas,

2TTi c-ieo
Associated with this transform is the following convolution
theorem (ée, Th, 44, P.6Q} JIf s =c + it, x*£(x) and

xCg(x) belong to L(0, oo ), then
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F(s)G(s) = M [(f*g)(x)] and xc(f*g)(x) belongs

to L(0, OQ) where
oo
(1,79) (f*g)(x) = jf(x/u)g(u)du/u.
0

The Mellin transform of the H~function follows from

the definition (1.,59) in view of (1,77) and (1,78). Wwe have

oo
(a s
(1,80) st’l HO | ax p*P dx = a° X(s)

where X (s) is given by (1.%y) and the conditions

A>0, \arg al<_ AT(/Q and >0,
_ min R (b. . R min R . .
12 3i<m ( J/BJ)<‘ (s) < 1Si<n ( (1 aJ)/ocJ)

are satisfied,

l\‘gptivation of the work done

Erdelyi-Kober Y_14, 33] , Srivastava [653 , Bhise [_7:}
and Sharma Eélj have used the operators of fractional
integration to stuldy the theory of Hankel t}ansform and its
generalizations, The generalized Hankel transform (1,46) yields
almost all earlier known generalizations as special cases,

This very situation motivated us to study the theory of the

generalized Hankel transform with the help of fractional
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integral operaters, Thus the study of this generalized
Hankel transform will not only help us to study some of

the generalizationsg which were not studied earlier with the
help of fractional integral operaters but will also unify

the scattered results in this field,

000



