CHAPTERS-I

INTRODUCTION

1.1 Thé H-function :

The H-function is applicable in a number of problems
arising in physical sciences, engineering and statistics.
The importance of this function lies in the fact .that nearly
all the special functions occurring in applied mathematics
and statistics are its special cases. Bgsidés, the
functions considered by Boersma [6],lMit€ag-Leffler,
generalized Bessel function due to Wright [42], the genera-
lization of the hyper-geometric functloné studied by Fox [14],

Wright [43,44] and G-function of Meijer [27] are all- spe01al
cases of the H-functiony hence a study of this function will
cover wider range.thén the G-function and gives deeper,

more general and more useful results directly applicable in

various problems of physical and biological sciences.

On account of the presence of the coefficients of s in
the definition of the H-function, the results of the H-function
are obtainable in a more co mpact form and without much

difficulty., This is not the case with G-function.



PDefinition of ?he H~function :

Mellin-Barnes type integrals have been stqdied by
Pincherle in 1888, Barnes [3] and Mellin [28], Dixon and
Fgrrar [10] have given the asymptotié expansion of general
Mellin-Barnes type integrals [ Aléo, see Erdeiyi.et al,
[12,p.49] in this connection j. ' '

. Functions close to an H-function occur in the study of
the solutions of certain functional eﬁuaiions considered by

Bochner [5] and Chandrasekharah and Narasimhan [8].

In an attempt to unify and extend the existing results
on symmetrical Fourier kernels, Fox [15]'has defined the
H~function in terms of a general Mellin-Barnes type integral.
He has also investigated the mo;t generai E?urier kernel
associated with the H-function and obtained the asymptotic
expansions of the kernel for large'values of the arguments,

by following his earlier method [14].

It is not out of place to menéion that symmetrical _
Fourier kernels are useful im characterization of probabilit§‘
density functions ‘and in obtaining the solﬁtions of certain
dual inteéral equations. The relevant detaills are available
in the works of Fox [16,17], Saxena [35,36], Mathai and

Saxena [23] and Saxena and Kushwaha {37,38]. The asymptotic
expansions and analytic continuations of this function'have

been studied in detail by Braaksma [7].
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An H-function.is defined in terms of a Mellin~Barnes

type integral as follows:
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where i = (71)1/2, z#0

and

(1.1,2) 28

exp[ sLogjzi + i argz ],

in which Logiz! represents the natural logarithm of z and
argz is not necessarily the principle value. An empty

.product is interpreted as unity,
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iﬂwhere m, n, p and q are non-negative integers such that
CLngp, léméq; AJ(j = 1,000 3P) B(J =1, vees Q)
are positive numbers; aj(j =1, coesy p), b (i=1, ..., Q)

are complex numbers such that



(1.1.4) Aj(bh + v)‘# Bh(aj - A - 1)'

for v’h=0, l’ 2’ .'.; hz.‘l’ LR I AN | m; j-—'l, L n.

L is the contour separating the points

b.+y .
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which are the poles of f"(bj - Bjs) (3 =1, +s.,m),

from the points
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which are the poles of (1 - ay + Ajs), (3 =1, ...,n).

The contour L exist on account of (1.1,4). These assumptions

will be retained throughcut,In contracted form the H-function
in (1.1.1) will be denoted by one of the following notations:
A) -
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The H-function is analytic function of z and makes sense if the

. following existence conditions are satisfied.

(1.1,7) CASE 1.  For all z #0 with p 3 0.

(1.1.8) CASE 2, for O<iz <3t with 'p=0.

Here
q p
(1.1.9) p= % B, - 3 Aj and
j=1 J j=1
p Aj 9 B B3
(1.1.10) B = IT Ay~ II5;
j=1 j=1



It does not depend on the chcice of L, Due to the
occurrence of the factor z° in the integrand of ,(1l.1.1)
it is, in general, multiple~valued but one valued on the

Riemann surface of logz,

1.2 Some known results involving the H-function :

In this 'section we state for immediate reference, some of th
the known results involving the H-function, which we use in

the present work,
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(ii) Asymptotic expansions:

The behaviour of the H-function for smal} and large values
of the argument has been discussed by Braaksma [7] in detail.
In this section we enumerate some of his results which are
useful in applied problems. In order to present the results,

the following notations as defined below will be used.
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According to Braaksma [7,p.278]

m,n c
H (x) =0 (Ix!”) for small x ,
pPsq

where p 2 O and ¢ = min R ( bj/Bj ) (3=1,"...,m);

and m,n . d!
H (x) =" O(ixy ) for large x ,
»q

where B0, «)O0, jargx| ¢ SL—;—— and

a.-l
d=maxR(_£_-) (3 =1, oee, n).
J

For n=0, the H-function'vanishes exponentially for large x

in certain cases., WNe have

. 1/p 1/u 1/w(v+1/2
£ gm0 ¢ orplonm /v 3/0 1/u1L/2)s

provided that A YO, |argx] ¢ na/2 and . p > 0.



(iii) Special cases : '
The ‘H-functicn covers a vast number of analytic

functions as special cases., These analytic functions

appear in various problems arising in theoretical and applied

brnaches of mdthematics, statistics and engineering sciences..
i t .
. In the first place, when
‘f"

Ay =By =1 (3=1, ooy p; h=1, eeu,q), (L.1.1) reduces

to Meijer's Grfunction, '
m’n ‘ L (ap!l) m’n ap » .,
(1.2,1) H [ x] xJp 17

G
(bq’l) P.q q H 1 ,

A detailqd account of Meijer's G-function and its _
apnlications éap be found in the monograph by Mathai and
Saxena [24]. We list here the few interesting cases of the
H-function\ which are useful in the present work, We have
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which is called Maitland's generalized hypergeometric function,
‘The series in (1,2,4) has been studied in detail by Wright [43].

"'(iv) The H-function of two variables :

The H-functicn of two variables defined by Munct and Kalla

[31] is given by

(1.2,5) H[x,y] =
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n
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The details of the above function are available in [39].
"(v) Here we state some of ‘the known integrals [39,1'8,9 -and 26]

which we have used in 'the present investigations,

(1.2.6) f tl (l—t ) P (“’5)(1-2tl)ﬂp q[ tl |(a Ap) ] dt,

(b 1Bg)

_ (=L)X p(prk+1) g 2
. k' . pt2, qit2

(- Yl'h)l’ (G—Yl,h), (a ) ‘
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where ' 1
Re(B)Y -1, h) 0, AY O, |arga| £ 5 An

p£ O, where

n . P m q ,

A - 2 A. - 2 A- + 2 B- - 2 BJ !

j=1 3 jen+1d =1 3 j=mtl J
po= g'A g B.
=103 g=1

(a,2)

Re (‘Yl +1) + hlming [Re(bj/Bj) i>0, P *, (x) Dbeing the
£j¢m

Jacobi polynomial [ 34, p.254].
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' 1 /2 - m,n A
(L2 [t ad) e (t))H] [ £ l P 1: | ety
Peq bg?

’(-J:)v!" (L4v+k) Hm,n+2
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s 1y 4 ' _ ..
( "T'l" ’ '}2l ), ( "2"]"' ’ "2" ) (a.p.,._.Ap) . ]
a i ' _Y‘f+}(_y ~1-Yi-v-k
. (bgr B)s ( Hg— s 3), (=5 , 3)

'
., i
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provided hyo, Ayo, jarge|< & A%, pg O,

Re(Yl) y -1, Re(‘Yl)+ hl??)-nm [Re(bj/Bj) ] +:‘l)0, and

¥ 1is a positive integer. -
iP;:’(x) 1s .the associated Legendre function [lz,p.;l.48]}

1 1 . Ys-1 ~1/2 :
- L J s e " ‘- " el s t.- .‘
(1.2.8) } ] jrr=l, ty" (1-t;) Tnj(2 5-1)
(o] (o]

m,n _ h, (a A
Hp’qt_c.(tl...'tr) ‘(b B )]dt ...dt
' m,n+21 l’a l(l Y'!h) (l/2-'¥ oh) ’ (a yA )
=/n Hp+2r,q+2r B (b Bq) . (I/2'— r"nr'h) (l/2—Yr+nr,hﬂ

where h>O, p._z_.O,~'7\> 0 largcr. [(M

Re(Y-i) + h lmln Re(b. /B )) =1, (i=l,2,00.,m)(i=1,...,T).
¢jem

m,n (a A)

(0]

o]



11

(1-8)/2 Y+k+1/2

(-1)“(2x) :
= - ) X
<! ,
m’n+26 s 6 | (l{"(5 ’-Y) ’l) ’(6(5 ’U‘-Y)"l) ,(ap ’Ap)
Hp+25 ks 28, | (b, By) - (8(s,07-7+k),1) ]

where § 1s a positive integer, p ¢ O and A)O,

Jargz| £ /2, ReI(Y+5bj/Bj)) - 1(j=1,...,m).

Taking 8§ = 1 it reduces to
(ep)
m,n (a A ) 5
3 p.'q - [} y q

) (_:Lk' Hm,h+2 [z l(-—Y,l),(o'-"{,l),(ap,Ap)J
kI p+2,q+1 (bgsBy)» (00 -T+k,1)

. » —t. Y-l m,n (a ,Ap)
(1.2.10) r e~ by Y (1,a;t) H [ btl(bp 50) ] dt
% p.q q’q
m,n+2 (l+n'-Y ,l) ,(Z-Y“n—a,l) ,(ap ,Ap) ]
= Hpi-Z,q-i-l ) (bq’Bq) ’ (2'3'7"3,1)

where Re(Y-tmin bj/BJ) » 0 (=1, «..,m); |argb|{ %
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1.3 Laplace Transform :

Define f(p) by the equation
- @ -pt
(1,3.1) £(p) = J[' f(t)e dt
0
this equation can be written in the form
YHim
1l { . pt ‘
(1.3.2) £(t) = LTy f(p)e” dp '

Y-ic0

where Y 1is a positive constant of such a nature that integral

P -rt
e f(t)dt does converge,

| S _‘

The function f(p) Jdefined by equation (1.3.1) is called
Laplace Transform of the function £(t) [40]. We use the
notation
(1.3.3) £(p) = & [f(t);p ]
for function of single variable t.

In similar manner we shall write the relation between the

funclions f{t).and f(p) in the inverse form

-] -
f(t) = & [£f(p); t]. .
In case of functions of several variables tl!""tn we use

the notation

£ty 1000sPseent ) = £ [f(tl,...,tr,...,tn); t. = p]

n
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to denote the ihtegral

(o8]

g -ptr
J( f(tl,... ’tr’... ,tn)e dtr [}
O

We shall also use the inverse notation

-1 -

f(tlltoi ’tribuo ’t I) = £ [ f(tlioot ’p’ aese ;t

" ip—=t.].

n

The above heuristic argument suggests that the inversion

theorem for the Laplace transform is of the fomm (1.3,2).

An integral of the form (1,3.1) in which the function f(t)
is integrable over the integral (o,a) for any positive a, is
called Laplace integral. The integral does not exist for cvery
function f£(t). The sufficient conditions for the Laplace

integral of a function f(t) to exist are as follows:

[I] If (a)f(t) is integrable over any finite interval [a,b],

oga(b, (b) there exists a real number c such that for any

A
by o, j e®P£(t)dt tends to a finite limit as A —» o,
b a
4N . s
fc) for arbitrary a)o, J !f(t)l dt tends to a finite

€
limit as 6 — O, then &£[f(t);p] exists for Re(p)} c,

1II1] If (a) £f(t) is integrable over any finite interval (a,b),
a .
o{a¢b, (b) for arbitrary pesitive a the integral ( [£(t)!dt

L

€
tends to a finite limit as 6 - o+, (¢) f(t) =()(e°t) as t-» o,
then the integral defining £[f(t);p] converges absoclutely for .

Bep>yo .



It is easy to show that if » 1is a constant such that
Re(»)) - 1, then the Laplace transform of ¢’ exist and is

given by

(1.3.4) &[tp] = p m(v+l) .

The convolution of two functions: !

The convolution (fxg) of two functions f and g 1is

defined by the equation
t

(1.3.5) (fxqg)(t) = ‘jﬁ f(t-T)g(t)dT .
' 0 .

Convolutign Theorem :
The Laplace transform of the covolution f#%g in terms of
« +the Laplace transforms f(p), g(p) of the functions f(t), g(t)
is given by

(1.3.6) &[fraip] = |E(p)(p).

This may alsb be wrilten in the inverse form
1

-1 .
(1.3,7) &£ [ £(p)g(p); t] = (fzg)(t).

]

!
1,4 Probability Distributions :

As is well known, every probability density function must
satisfy two basic requirements: firstly that it must be non-
negative everywhere and secondly that its total integral over

the range of variation must equal unity. Hence, in all the

14
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subsequent work we shall suppose, wi%hout mentioning so
explicitely every time, that the parameters involved are always
so .chosen that the functiorn which we name as the probability

density functior saiisfiés the above two requirements.

The term probabiiity density function will sometimes be

+

abbreviated as pdf.

The sum X, + X2 of two independent random variables is an

1
important concept iﬂ probability theory, To illustrate its
utility let'us suppose that there is a systam S consisting of

two components a and b.,” The arrangement is such that while a is
in operation first, b is not in operation, But the moment a

fails b is put ?n to .operation. Ef now Xl and x2 are the random
times of failure of thé éombdhents é and b after they are put'iﬁfo
operation Xl + X2 répresents the f§ndom time of failure of the
system S (S fails.when both a and b have failed). Assuming that
+he behaviour of‘5"§nd b;;é'indepehdgpt of each other then Xi and
x2 are independent, ' Suitable probability density functions may

be chosen as models -for--X.l and X2. The'system S may be any
mecharical or electrical system or a human relay system and is

diagrama*ically represented as follows:
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The idea is easily extended to thie sum of n. random variables

Xl + ene * Xh. We have, however, not considered the time
variations of the random variables in this work but have restri-
cted ourselves ‘to the consideration of the situation at any

fixed point of time,

We have considered, the gerieral family of probability

distributions introduced by Mathai and Saxena [22]; viz:

L]

_ 42/ (a) 1(B) O (1=c/a) X7
P (c/d) M (V)M (a-c/d) M (B~c/d)

1

(1.4.1) p(x)

x-ZFl(a, B; Y3 - axd), X'y o
= 0O othexwise

in which c¢yo, a-c/dyo and B+~c/d) o and oF;() is

the usual hypergeometric function,

In their papef, Mathai and Saxena ‘have pninted out that
most of the wellknown probability distributions and the proba-
bility distributions given by Patil [33], Stacy [41], Mathai [21]
and others are special cases of the general dﬁstribution discussed ¢
by them, Therefore, the prob?bility distribution of the sum of
two independent randoh variables discussed here will yield

particular case of interest in all these distributions.



1.5 Here we write some of ;the known polynomiaié used in our

present work.

BESSEL POLYNOMIAL

(L.5.1) Y _(x,a,b)

Orthogonality Pro

n (-n)
b}

il
o
S

r=0 Te
= 2F6 (-n, a+n=1; - ; - x/b).

perty :

(1.5.2) Jr x+=3g xy (1,a,x) Y (1,b,x)dx

o)

0

it

if m#n

|
J
L n! (2-a-p) if mw=n

TCHEBICHEF POLYNOMIALS :

(1.5,3) T (x)

U (x) =

cos{n c03'lx)

[sin(n+l)cos™ lx}

sin(cos-lx)

Orthogonality Property :

1

~=1
TR N

-1

JACOBI POLYNOMIAL

(1.5.5) B %) (x)

=.1:£l?(l-x) (1+x) d

) =
Tm(X)Tn(X)dX = 5~ 6m,n

Y

n+g
2nn’, -c-i;-(-a[(l-x) (14x) ]

17
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Orthogoniiity Property :

(1,5.6) f (l_x)d(l_,_x)ﬁplfld-sﬁ)(x) Pn(a"B)(x)dx
-1
_2%PH 1 (aan) 1 (4ne) sman,
T a+B+2n+l (n)! r (a+B+n+l) )
where Re(a) % - 1, Re(B) Yy - L.
+ LAGUEREE POLYNOMIAL‘ :
(a) . oX,~@ n :
(L5.7) 1, =T 2R %;r-; (e-"'x“*‘“)

0 :
L (x) = Ln(x) .

Orthogonality Property :
oo

- () (a)
(1.5.8) gr e xxaLm (x)Ln (x)dx

_ P (an+l)
= =

émjn, Re(atntl) S O,

1.6 Motivation of the work done :

Moharir [29] has considered the general family of
probabilit& distributions introduced by Mathai and Saxena [22].
He has investigated the probability distribution of‘the sum of
two‘independent stochastic variables utilizing similar types of

probability density functions by using some known integrals.

It is found that same probability density functions can be



derived by using the technique of convolution theorem in
Laplace transforms; This idea mctivated us to undertake the
present investigation., In order tc achieve our aim, firstly
we have established the results given by Moharir [29] by
h‘using Laplace t;ansforms technique and secondly utilizing
“the techniqués given by Mathai [207, Mathai and Saxena [25]
and Moharir and, Saxena [30], we have ihvestigated some

multivariate probability density functions’' of implicit type.
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