
CHAPTER-I

BLACK HOLES AND NEWMAN-PENROSE FORMALISM

**The mathematical theory of black 

holes is a subject of immense 

complexity. But its study has 

convinced me of the basic truth 

of the ancient mottoes:

f
The simple is the seal of the true 

and

Beauty is the splendour of truth.** 

... Prof. S.Chandrasekhar

Stockholm (Nobel Prize)address 1983
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CHAPTER-1

1. Historical aspects of Black Hole 

What is a black hole ?

Black Holes are at present enjoying a certain prevailing 
fashion in astrophysics. In standard textbooks black holes 
are described as exotic. The theoretical astronomers have 
come up with interesting concepts of the black hole with the 
help of careful observation. The concept of black hole is not 
a difficult one, although it does lead into various conceptual 
differences. According to Prof.S.Chandrasekhar "they are very 
simple objects." Both their mathematical and physical ideas 
are very simple. The basic definition of a black hole is that 
it is a region of space towards which the gravitational attra­
ction is so great that not even light can escape. This idea 
was first thought of by pierre Laplace in 1796, when he stated 
that "there exists, in the immensity of space, opaque bodies as 
considerable in magnitude, and perhaps equally as numerous as 
tne stars." This prediction is remarkably close to what we 
believe today. We all know that if a rocket is boosted from 
the Earth it has to have a certain minimum speed before it can 
escape the gravity of the Earth (Escape velocity of the Earth:
7 miles/sec). Similarly if one projects a rocket from a planet 
where the surface gravity is much larger than we have to boost 
it with a much larger speed e.g. on Jupiter it will be 
840 miles/sec. Consequently it is not difficult to consider an 
object with a force of gravity so large that even light cannot
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escape from it, since the velocity of light is the limiting 
velocity of any body, it follows that black hole is the 
strongest object in the universe. The general theory of 
relativity predicts that light rays will be deflected by 
gravity in exactly the same way as the particles. This was 
verified in the eclipse expedition of 1919; The light rays 
grazing the sun are deflected by 1.75 seconds of arc which is 
very small. On the other hand, if for the same mass like the 
sun, it had been compressed to a radius 10 times smaller, then 
the deflection would have been 10 times greater. Hence in order 
that light should be deflected by say about 90°, so that 

instead of being deflected and going into infinity it should 
go round and round the sun. It has been calculated that if 
the sun from its radius of 700,000 km were compressed to a 
radius of 3.75 km then light would go round that object in the 
same way that planets circulate round the sun. And if the 
radius be contracted still further to 2.5 km then no light can 
escape from it. That is the reason for the name "Black Hole", 
The mathematical theory of black holes is based upon finding 
solutions to Einstein's vacuum equation which satisfy the two 
conditions of having an event horizon and a space time which 
is asymptotically flat.

Evolution of neutron stars and black holes

Neutron stars are the endpoints in stellar evolution in 
which a star that has a mass more than the Chandrasekhar limit, 
that is, 1.44 solar masses, but less than 3 solar masses, will
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contract until the neutrons in the star resist being pushed

together any further. It is supported by compressed

’’degenerate" neutrons. But now the question is would objects

like the sun and stars similar to the sun, evolve in the

natural course of events so that a state like black holes

could be formed ? Suppose take a star of given mass, at a

state in which it is large and suppose that it obeys perfect

gas law. Then if it loses its source of energy, it contacts.

Now one question arisesj Is there some way in which this

process of contraction could be arrested? If the star has

mass less than this limiting mass, then clearly it would

settle down to a finite state of equilibrium. The next

question then arises: What happens if the stars had a larger

mass? Naturally when it contracts, its mean density becomes,

say 100 million or 50 million, then at that stage the degeneracy

pressure cannot arrest the contraction and hence the contraction

will proceed still further. Clearly one could say that a limit

must be reached when all the nuclei are placed closed together.

Then the density of such matter will be more like 101 , 101 or 
1510 grams per cubic centimeter. Thus a star of mass greater 

than the limiting mass could find a stable equilibrium at a 

state in which all the nuclei are compressed together. This is 

similar to what has been discovered as pulsars. Pulsars are 

the magnetised neutron stars with a mass of about one solar 

mass and a radius of 10 km. These are spinning rapidly with 

about 1-30 revolutions per second and give off pulses of
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radiation in radio and other bands with this period. Their 
observation some 16 years ago confirmed the earlier theoretical 
predictions of the existence of neutron stars. It is suggested 
that electrons moving rapidly in their magnetic field produce 
narrow beams of radiation which sweep around the sky as the 
pulsar spins. As of early 1980s, about 300 pulsars are known, 
all located within the miky way Galaxy. The primary constituents 
of such compressed nuclei will be neutrons. Therefore in the 
first instance, it would appear that stars of large mass would 
end as neutron stars. But on the other hand in general relati­
vity we cannot have stable equilibrium when mass exceeds limiting 
values, that is we cannot have a neutron star with a mass greater 
than a certain limit (This limit is established to about two or 
three solar masses). Now if a star is more massive, let us say 
five solar masses and goes on contracting, under those conditions 
it will become a black hole. Thus the possibilities are if a 
star is of sufficient mass and it does not eject a sufficient 
amount of matter during the process of collapse, it will end as 
a black hole.

On the detection of black holes

There are some observational signals of black holes predicted 
by astronomers from 1965, Black Holes do not emit any light of 
their own but one could hope to detect them from their gravita­
tional effect on nearby stars and matter. In 1972 the American 
Satellite UHURU detected a strong and rapidly fluctuating source
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of x-rays called Cygnus X-l. This turned out to consist of a 

large normal star in orbit around a small massive object that 

could not be seen. Material from the outer layers of the 

large star seemed to be blown off and to fall onto the compact 

object. As it approached the compact object it developed a 

spiral motion like water running out of a bath and it got very 

hot, emitting the observed x rays (see the figure; pagers).

So one assumes that if you have a massive compact object that 

emits x-rays, then it is the secondary effect of the black hole 

that one is observing. The black hole simply represents the 

possibility of matter acquiring velocities close to that of 

light. And as a specific signal of black hole one expects 

intensity variations which are of the order of milliseconds.

This variation represents the size of the black hole.

Artists impression of a double star system containing a 

black hole by Prof. J.V.Narlikar shows that the matter falling 

into the black hole forms a disc around it, called the 'acdertion 

disc'. Many believe such a system exists at the location of the 

X-ray source cygnus X-l which is suspected as a black hole.

Characteristics features of Black Hole

Last few years ago it was thought that the black holes were 

complete dead ends, that matter and energy which fell into a 

black hole were lost forever and they could not be recovered in 

any form. However it was found that when quantum mechanical 

effects were taken into account, so called black holes were not
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completely black after all : radiation would leak out of them 
at a steady state. This is due to Heisenberg uncertainty 
principle which states that one cannot simultaneously measure 
accurately both the position and the velocity of a particle.,H 
also suggests that the energy of a system cannot be accurately 
defined over a short interval of time. The rate at which a 
black hole leaks radiation depends on its size. For a black 
hole of the mass of the sun the rate is so low that the effect 
would be quite undetectable. But it is possible that there 
may also be very much smaller black holes which might have been 
formed in the very hot and dense conditions that are thought to 
have existed in the early stages of the universe soon after the 
Big Bang, the beginning of the universe such primordial black 
holes might have masses around 100 million tons (the mass of a 
mountain) and sizes of about one ten million millionth of an 
inch (the size of the elementary particle). They would be 
emitting radiation in the form of gamma rays and high energy 
particles at the rate of about 6000 megawatts. As they radiate 
energy, their mass would decrease and the rate of emission go 
up. In course of time they would disappear completely in a 
huge explosion which will be equivalent to many million of 
H bombs. The scarcity of observational evidence has not 
prevented theoreticians from coming up with beautiful results 
on how black holes should behave as physical objects. Whether 
they will be successful will depend on whether the conditions
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in the early universe were such as to produce significant number 
of primordial black holes. But the quantum mechanical emission 
from black holes will be very important conceptually as it 
completely changes our notions of black holes. The commentary 
on black holes delivered by Prof, S.Chandrasekhar in Dec.1983 
on the eve of the Nobel Prize presentation is quite valuable: 
"Black holes are macroscopic objects with masses varying from 
a few solar masses to millions of solar masses. To the extent 
they may be considered as stationary and isolated, to that 
extent, they are all, every single one of them, described 
exactly by the Kerr solution. This is the only instance we 
have of an exact description of a macroscopic object. Macro­
scopic objects, as we see them all around us, are governed by 
a variety of forces, derived from a variety of approximations 
to a variety of physical theories. In contrast, the only 
elements in the construction of black holes are our basic 
concepts of space and time. They are thus, almost by definition 
the most perfect macroscopic objects there are in the universe. 
And since the general theory of relativity provides a single 
unique two-parameter family of solutions for their descriptions, 
they are the simplest objects as well".

2. TVPBS OF BLACK HOLES :

There are four different types of Black Holes. All these 
types of black holes are named after scientists who obtained 
their mathematical description.
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(i) Schwarzschild Black Hole :

Schwarzschild discovered the first rigerous solution in 

spherically symmetric space time to the Einstein field 

equations for empty space. This famous but simple solution 

is described how space time is warped by the gravitational 

field of massive collapsed star or black hole. If the black 

hole has mass and no electric charge and angular momentum it 

is the simplest type of black hole and is called the 

Schwarzschild black hole.

(ii) Reissner-Nordstrom Black Hole :

A black hole with mass and electric charge but no angular 

momentum is called the Reissner-Nordstrom Black Hole. It is 

spherically symmetric and it is also believed to represent the 

ultimate state of an irrotational collapsing massive body with 

electric charges and current.

(iii) Kerr Black Hole :

A black hole with mass and angular momentum but no charge 

is called the Kerr black hole. The Kerr black hole is exactly 

symmetric but not spherically symmetric.

(iv) Kerr-Newman Black Hole (KNBH) :

The most general type of black hole within the framework 

of Maxwells electromagnetic theory and Einsteins General theory 

of relativity is the socalled Kerr Newman black hole. The
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Kerr-Newman black hole is an exact solution of the Einstein's 

field equations possessing mass angular momentum and charge.

The dynamical and geometrical features of KNBH are delineated, 

exploiting the null formalism in Section 4.

" Black Hole Has No Hair "

“A black hole has no hair This celebrated statement 

by J.A.Wheeler implies that when a body undergoes gravitational 

collapse to form a black hole, very few items of information 

survive to tell outside observes what the physical characteris­

tic of tne black hole are (Anything or any one falling into a 

black hole could never get out again or even signal for help).

The basis for this remark is a theorem known as "No-hair theorem". 

■When matter falls down a black hole left by a dead star, the 

matter loses all identity. The only quantities left after 
material falls down a black hole are mass charge and angular 

momentum the object carried with it. Such things as the 

chemical composition of the material, the colour of the object 

and its size are all lost. This is due to the fact that space 

is asymptotically flat far from the singularity. But if tie 

entire universe itself falls down into its own black hole, then 

even the fundamental quantities are lost. This is because 

there is no flat space on to which we could connect our 

solutions to the field equations.
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3. NE.iMAN-PENROSE PORiMALlSM (NP-FQRMALISM) :

Introduction :

This is the most efficient artifact in finding the exact 

solutions of Einsteins field equations in different fields. A 

beautiful review on the exact solutions is available in the book 

of Kramer, Stephane, Hearlt and MacGollum (1980). Conspicuous 

usage of this technique can be found in the study of Black 

Holes (Hawking and Ellis,1973); Chandrasekhar (1978,1979,1980) 

and in the study of asymptotically flat spaces. All these 

applications justify that this is an "AMAZINGLY USEFUL TOOL'*. 

(Flaherty

Advantages :

NP-formalism is exquisitely useful because,

(i) it is suitable for computational work,

(ii) it is adaptable to other formalisms,

(iii) it utilizes all the 24 Biancht identities,

(iv) it makes Einstein field equations transparent.

In the 4-dimensional space-time continnum of the general 

theory of relativity different types of tetrad formalisms have 

been employed. The most prominent among the formalism is 

proposed by Newman and Penrose in 1962, which uses four 

’invisible vectors' in the sense that their magnitudes vanish.

It has several exquisite advantages over the standard tensorial 

presentation of Einsteins field equations of gravitation in the 

presence of matter.
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Ax first we observe that cinstein had utilized only four 

(contracted) Blanche identities, viz. (Rab m- = 0.

Leading to the energy-balance equations in Continnum Mechanics:

Unfortunately these four equations do not indicate the inter­

action of free gravitational field vVeyl tensor (Cakccj) and the 

matter field, T One has to look out for the twenty four 

Bianchi identities in a 4-dimensional Riemannian-space. The 

credit of utilizing all the twenty four identities for studying 

the interaction of C ^ ^ and T ^ lies in the Newman and Penrose 

formalism (NP-formalism in short).

Next advantage in this spin coefficient formalism is its 

easY adaptability to other formalism. From null tetrad formalism 

we can switch over very easily to a tetrad comprising of one-time 

like and three space like vectors. ci|^nhart (1964), Lichnerewicz 

(1955), Shaha (1974) have used such formalism consisting of one 

null vector field and three space like vector fields, while 

studying the Serret-Frenet formulae of a curve representing the 

history of a massless particle. Computational ease is an asset 

for the NP-formalism. The covariant derivative of a vector field 

is again in terms of the (outer product of) four null vectors.

In particular the derivatives of null vector fields is again in 

terms of null vector. As a matter of fact even the computer time 

is economized if the NP metnod is adopted. Campbell and Bainright 

(1977) have claimed that the null formalism affords a saving of 

60 % of the computer time as compared to the classical methods

of tinstein
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Tne efficiency of the Newman Penrose formalism lies in 

making the tensor equations transparent. This means that the 

necessary and sufficient conditions for the validity of a 

TENSOR equation will be expressed in terms of independent 
SCALAR equations. This is the reason for calling the Newman 

Penrose formalism as an amazingly useful formalism.

EXPOSITION :

The four null vector fields :

Newman and Penrose (1962) invented a set of four null vectors

where _1l * 3» n3 are *wo real vectors and ma, ma (an over head bar 

denotes complex conjugation) are complex vectors which satisfy 

the following conditions :

lal = mam. = nan = mamO =0 ... (3.1)
— —3 3 33

(Null relations)

lam = lam = nam = nam =0 ... (3.2)
— 3 — 3 3 a

(orthogonal relations)

lan^ = - mama = 1 ... (3.3)
(Normal relations)

The relation between this tetrad and the geometry of space-time 

is

9ab = —anb + na±b ' ma5b ’ Samb

(completeness relation).
• • • (3.4)
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Differential relations :

The simplification of differential relations become 

possible because of the fact that the covariant derivative of 

a null vector field is expressible as an algebraic (linear) 

combination of the four null vector fields.

To illustrate this we note that,

t b (Y+Y)lalb - (a+0)lamb - (a+i3)lamb + (€+£)lanb -

- 1 maAb + •S'V'b + ^ ma®b - 5 manb " T 5a4 +

+ ^ mamb + ^’Samb - k manb . ... (3.5)

The Twelve Spin Coefficients :

This formalism combines 24 Ricci rotation coefficients into 

12 complex spin coefficients and ten components of .Vey^ tensor 

into five complex spinfcr components. The Ricci rotation coeffi­

cients are defined by

= z.uljk ib;a j k * • • (3.6)

which are antisymmetric in first two indices. In NP formalism 

these are known as spin coefficients which are defined as follows 

(The following 12 '•Greek" letters have been famous in all the 

works on gravitational radiation)

K = 1a;bmaib > .. .(3C 1)

^ = la.bmamk ’ . ..(3C 2)
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e = i „a b—a;bm m ‘ ...(SC 3)

T = i a b
—a;bm n • ...(SC 4)

V = -a b“na;bm n * ...(SC 5)

= -a b”na;bm m * •..(3C 6)

k = -a-b
-na;bm m ■ ...(SC,7)

n = -a, b“na;bm A - ...(SC 8)

a = | (ia;bnasb ~ ma;bi"a5b)' ...(3C 9)

3 = 1 / , a b -a bx2 (ia;bn m - ma;bm m )• . .. (SC 10)

Y = 1 /1 a b -a b>2 Ua;bn n - ma;bm n >- . ..(SC 11)

c = 1 (i na,b m -a,bx2 a ;bn - " ma;bm ^ ) * ...(SC 12)

Ricci Scalars :

The enumeration of the eleven scalars which are just the 
tetrad components of the Ricci tensor R ^ and R (Ricci scalar) 

is given by :

^00 II 1 Mt
- Rabiai 9 ...(Rl)

0oi 1
~ " 2

Rabia"b 9 ...(R2)

002 1_ _ 2 d ma b Rabm m > ...(R3)

010 1- - j i a-b Rabi ■" 9 ...(R4)

. 
1 '—1 

Y3. 1_ - 4 Rab‘ A'nb j. ma-bx + m m ) , ... (R5)

CM >—1 
Y3- 1- - 2 r-, a bRabn m 9 ... (R6)



16

• • •

(R7)

(R8)

• • • (R9)

The scalar curvature R is identified by

A - 24 R (Cl)

The Five complex Weyl scalars :

The free gravitational part of the curvature tensor ft ^ ^ 

(which is locally not defined by matter tensor T is the Weyl 

tensor CabC(j. The Weyl tensor Cabc(j in NP formalism is 

expressed by (Campbell and Weinright, 1977)

- 2^2(UabVcd + 4 Mab Mcd + Vab Ucd > +

(3.7)

wh ere

Uab

Vab

Mab “ —[anb] " m[amb]
and
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Then the tetrad components of

iti — p , a b.c d
'fo - - Cabcd i "> 1 “ •

,,, _ ^ ,a b.c d
- - Cabcd I n I m »

r ma bic d 
f2 Cabcd m n 1 m ,

,,, _ r -a b.c d
V^3 " - Cabcd m n I n »

,,, _ r -a b-c d
^4 “ “ Cabcd m n m n -

abed are as f°H°ws :

... (Wl) 

... (W2) 

... (W3) 

... (.V4) 

... («V5)

Types of Cabcd

Petrov type Propogation
vector For,n of Cabcd

I na ^abed = - f'o UabUcd ■ fo ^ab^cd .

II na ^abed = 2 ft(UabMcd + MabVcd)+ C-C-

HI -a Gabcd = 2 ab'\d + Wcd) + G-C-

D n, and 1a —a '"'abed = _ f2<uabvcd + 4 MabMcd +

"f VabUcd> + C-C-

N —a C , . abed = - fi Vab Vcd + G-G-
...(3.

It is clear that the VVeyl tensor (generally) is specified 

by the f ifcfe complex scalars j^Q , ^, .... ^ . Hence it is 

convenient to have a general formula which expresses the
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different components of the Weyl tensor in terms of the five 

scalars, vizv

Gabcd = * ^2 +^2> 1 { —antrLcndj + '{"a5bmc5d j

+ ( *2 - f 2> 'Oa'Wd /> * r0{ naffibnc5d? - /'4{iambicmd j
J It

+ P2 ambncSd] - f1 |^ianbnc5d ) + £naSbfficmd j] +

+ y-3 [ Z-a nbicmdJ _ /{-ambmc™d] J + cornPlex conjugate

*

electromagnetic field as source of gravitational field :
C3-3>

In NP version the electromagnetic bivector (Debney and Zund, 

1971) is

Fab = - 2 He Uil^j m[ambj + 0, l[atnb] + ?2i[aSb] -

— 0 nr m, -| — 0 Hr m, -i . o fa bJ ■ *o [a bJ ... (3.10)

where Re(...) and Im(,,,) denote the real and imaginary 

parts of (...) respectively.

The tetrad components of the electromagnetic field Fab are given 

by the three complex scalars (NP formalism).

0q = Fabiamb ... (3.11a)

0X = \ Fab (lanb + mamb) ... (3.11b)

-a b
2 = Fabm n • ... (3.11c)



19

4. KERR NEWMAN BLACK HOLE : (KNBH)

The most general type of Black Hole within the framework of 

Maxwells electromagnetic theory and Einsteins General theory of 

relativity is the so called Kerr Newman Black Hole. The Kerr 

Newman black hole is an exact solution of the Einsteins field 

equations possessing mass, angular momentum and charge. The 

metric describing this solution is (in "Boyer-Lindquist coordi­

nates") :

ds2 = - (1 - 2 mrH “’'*") dt2 - (4 mar sin20 H“^) dtd 0 + A^H^dr2 +

+ H~^d©2 + (r2 + a2 + 2m2ar sin20 H-*)sin2©d02

... (4.1)
whe re ,

2 2—2 a + e m
2 2 2A = r - 2 mr + a + e

ej / 2 . 2 2~* -1H s (r + a cos 0)

where m, e, a are respectively mass, charge and angular 

momentum. The metric coefficients are independent of t and 0 ,

So c^(t) = and <^>(0) - '9/^0 are killing vectors. Among

the properties of this solution which follows from the metric 

are the orbital equations for the test particles :

r = + (Vr) 1/2 H . ... (4.2)

0 = ± (VQ) 1/2 H . ... (4.3)

# = - (aE - LJ sin2©)+a/AP) H ... (4.4)
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t - a(aE sin2e - Lz) + r2+a2pA'1] H ... (4.5)

Here "dot" indicates the derivative with respect to proper time 

or affine parameter and

P = E( r2 + a2) - Lza - e*er ... (4.6)

Vr = P2 - A[ u2r2 + ( Lz - aE)2 + -A_ ] ... (4.7)

VQ = -0- - cos2© [a2(u2 - 62) + L2 / sin2©] ... (4.8)

where,

E = conserved total energy.

Lz = conserved z component of angular momentum 

u = rest mass of particle 

e* = charge of particle

-A- = conserved quantity related to total angular momentum

The dynamical features and geometrical features of KNBH are : 

alelineated below with the help of Kerr Newman metric (Carmeli ,1977).

jravitational potentials :

Contravariant components of gravitational potentials

g = - a sm © / (r + a cos ©} 
g01 = (r2 + a2) / (r2 + a2 cos2©) 

g03 = -a / (r2 + a2 cos2©)

11 (2 mr - r - no 0 0 0
a - e ) / (r +a cos ©).
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13 _ / i 2 2g = a / (r + a cos©)

g^2 = -1 / (r2 + a2 cos2<s©)

g33 = -l/(r2 + a2 cos2©) sin2 © .

Govariant components of gravitational potentials

gOO
2 2 2 2^ r +e - 2mr + a cos 0

2 2 2„ r + a cos ©
1 +

e2 . 2 mr
2 2 2 r +a cos 6

g0l

g02

g03

= 1 

= 0
= a(2mr - e2) sin2©

2 2 2^r + a cos 0

gn
g12

g13

g22

0

0

-As in2©

/ 2^2 2_, - (r + a cos ©)

g23

g33

= 0

, 2, 2x . 2~ (e2 - 2mr) a2sin4©
= -(r +a )sm 0 + 2----- ------- L-------------

r + a^ cos^ ©

Orthogonal tetrads :

lu = (0, 1, 0, O)

mu = - 2-1^2 (5 (iasin©, 0, 1, icosec© ). 

nu = ^ (r2 + a2, - */2, 0, a )

2 2 2where A = r + a + e - 2 mr ,

.. (4.9)

(4.10)

(4.11)
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lu = (1, 0, 0, - asin2©)

mu = -if / V^) £ iasin©, 0, -1/(^5 , - i(a2+r2)sin© ]

nu = / 2, 1, 0, -(A^ a/2) sin2© ] ... (4.12)

2 2 2where A = r + a^ + or - 2 mr

5. PHYSICAL COMPONENTS FOR KNBH :

Spin coefficients :

The spin coefficients for the Kerr-Hewman metric are (Carmeli,1977).

A = y s o = a= 6 = J

<d = - (r - ia cos©)”'*'

T = - 2"1/2 ia sin©^ , 
xc = 2 “1//2 ia sin©§2 , 

a = n - i3 ,
3 = - 2”3/2 cot©^ ,

P = 2”1 AC<*2<> ) ,

y = 4 + (r-m)^ /2 . ... (5.1)

where A.= r2 + a2 + e2 - 2 mr

Physical components of the Weyl tensor and Maxwell scalars

(i) Vileyl scalars :

V^o = 4^1 = ^3 = % = 0 ^2 = ^3(m+e2^ ...(5.2)
i.e. , Black hole is of Petrov type D since
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Q p _
= <3 (m + e ^ ) and other four tieyl scalars

Yo* Yl’ ^3’ *+*4 vanish*

(ii) Maxwell scalars :

0^ = 02 = ° , 01 = e o2/2 . ... (5.3)

p
i.e. , out of the three maxwells sclars only, 0^ = e(3 /2 

is non vanishing.

Then the electromagnetic bivector for KNBH in NP version is

F , = i;.e0,_l n, + Re0, n 1, + iIm01mamK - ilm0,m m ... (5.4) so i a d l a d 1 d lag

where Re(..,) and Im(...) represents Real part of (...) 

and Imaginary part of (...) respectively.



24

APPENDIX, (i)

NP concomitants :

-a; b (y+y)!^ - (a+e)Iamb - (a+e)Iamb + (e + s)ianb

- t malb - r SaAb + ^ Vb + 6'5a5ib + ? maffib + 

+ ? iamb - k manb - k Sanfa .

na; b v ml, + v rrLl, - A mjn, - A m_l?L -
a-b "a±b - A mamb. ~ * mamb " » mamb

- * Vb + * manb + " Sanb ~ (Y + y)naib +

+ (a + ^)namb + (a + e)na% - (e + 6)nanb-

ma:b 5 —aA " * -3% - K A.5b + 1 —anb + (',-,,”aib +

+ (3-a)mamb + (a-*3)mamb + (G - G)manb - X naJ. + 

+ p n m + 6“ n_m, - k n n,V a b a b a b

ma.b = v lalb - A lamK - ]x lamK + tj lanK + (y-yJSJ^ +;a b a b -a b a-b

+ (cu0)mamb + (0-a)mamb + (G - G)manb - I nalb

<T namb + \ namfa - k nanfc .

For Kerr Newman black hole ;

lc = y= o = A = S = 0.

'-a ;b = (Y+Y)j.alb - (a+{3)l^mK - (a+0)lflmh - X mJLa b -a b a—b

X ”aib + ? mamb + ? Samb



25

na; b = ma5b “ 5amb + 71 manb + 1 5anb “

- (y + Y)naIb + (a + ^)namb + (a + 0)namb *

= - V- lamb + I lanb + (Y - + (» - a)Samb +

+ (S ^e)ma5b - f nalb + ? naSfa .

= -t*iaMu +TTianb +C<-^|1,“,T'b +
•+ ( >B-<0 “ t ^af fa + § *)« Wfe •

APPENDIX (ii)

Intrinsic Derivatives of Tetrad Vectors :

ma; b 

/fa-,b

1 1-a;b±>

la. Km —a, b

, -b 
—a; bm

4;bn
b

na;bi

na; bm
b

na;bm

n , n a; b
b

(e + S)la - k ma - k ma , 

(5 + 3)la - ? ma - «-ma , 

(a + S)l3 - <j Sa - ?">a .

(t + f)ia - r>a -Tsa .

iim.

pm.

km.

vm.

+ ™a

+ kSa

+ ^a 

+ vi a

- (€ + e)n_
a

- (a + 3)n a

+ (a + 3)m=
a

- (Y + Y)na

»

I
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1 fc>
ma; = ifl + (S - S)ma - kna ,

brn , m a; b = Aia - (a * J3)ma - d* nQ ,

-b
ma;bm = |ila - (I - a)ma - ?na ,

b
ma;bn = 5Aa + (T - ,)ma - Tna •

m ,1^
a; b- = Kla + (€ - €)ma - kna ,

Sa;bmb = |ila + (5 - (3)Sa - ^na ,

5a;bSt = \la. - (a - e)ma - <Tna ,

b
ma ; bn

= via + ^ “ Y^a “ ^na ’

The projections of the tetrad vectors can be obtained in 
the following forms :

lal— ~a; b = 0

a,
m ±a;b = Tlb - <amb - <TSb + knb ,

-a,
m ia;b = TIb - «"mb - ?Sb + knb ,

n ia; b = (Y+Y)ijr) “ (a+3)mb - (a+0)rnb + (6+€)nb .

ia1 n v a, b
= -(Y+7)].b + (a+i)mb + (a+3)mb - (G+G)nb ,

”ana;b = -vlb + mb + Xmb - infa ,

SXsb = -’'■ib+ + w'b - *% •

"Xjb = j ,
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,a
- ma;b S - Ub + ¥"b + ^ - knb ,

""S^b S 0 ,

m 3,11 a; b = -(r - Y)lb - (P - a)mb - (a - B)mb - (e-l)nb,

an m,.K a; d
S' 5lb - T»b - 5iSb + Snb ,

. a-
A ma;b s *Ub + ?™b + 8'"’b - Enb ’

m3™a;b s - (y-y)- (g-a)ib - (a-0)mb - (€ - 6)nb ,

™a™a;b = 0 .

"““ash s Vlb - mb - Xmb + nnb .


