
CHAPTER - 3

SPECIAL FEATURES OF 

KERR-NEWMAN BLACK HOLE

No single object or concept epitomizes 
more completely the present stage of 
the revolution than the Black Hole.
The data currently most likely to tell 
us whether black holes really do exist 
in our universe are the x-ray data from 
the UHURU satellite.

- C.Dewit and B.S.Dewit
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Introduction

In this chapter we enumerate some special features of the 
Type A field using the NP-formalism. We investigate the 
complexion of an electromagnetic field of Type A which is 
non-vanishing for KN8H. The necessary and sufficient condi­
tions for the vanishing of the Nijenhuis tensor of KNBH is 
determined in Section 2. In third section existence of Zilch 
tensor field is shown. Special transports in KNBH (i) Jaumann 
Transport (ii) Fermi-Walker transport are explored in last 
section. We recall the non-singular electromagnetic field 
tensor

Fab = - + 0i) i[anb] + ((Zll " ^1} m[aSib]

The stress-energy momentum tensor for the Type A field is

Tab = <*11 ( ~(anb) + m(aSb) > •

We list here the relations satisfied by the type A fields for 
utilization in the succeeding sections.

The Type A field is characterized in the Newman-Penrose formalism 
by (vide Chapter 1; 5.3)

0O = 02 = O
*1 ■ °

consequently the electromagnetic field tensor becomes 
(vide Chapter 1; 5.4)

Fab = 2 Re^l—[anb] + 21Im "’[aBb]
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So we can say that KNBH is of the Type A. Later using this 

we confine special features of the Kerr Newman Black Hole.

1. Complexion of an electromagnetic field of type A

The special feature of the Type A field as distinguished 

from the Type B and the Type C field is the existence of a 
complexion vector (vide Appendix Chapter 3).

The complexion vector of an electromagnetic field is 

defined by

(1.1)

which has to satisfy

(1.2)

It is shown by Singh (1965) that the differential relations 

(1.2) are identically satisfied by cylinderically symmetric 

electromagnetic fields in the absence of charges.

The equation (1.2) is the geometrized form of the relations 

governing the behaviour of the electromagnetic field in a finite 

region of space-time.

For the non-singular field of the Type A we obtain:

0n V^g"
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b,c-r , b-c r -b,c ri 1 m nr.k + 1 m n mr.k + m 1 m n

b c-r. b c,r- -b c r,
1 n m —r;k + n m i mr. k + m n m _1

b-c,r b-c-r -b c r-” — mr;k + m m m mr.k + m m m m

r ;k 

r ;k

... (1.3)

using the intrinsic derivatives of the null-tetrad field 
we obtain

©a = eabcd [ ^ m^bnC4d - ^ m^bncfed -

- Ajk l^bmC^ind + m _l^bmC^nd] + C.C,

Wheeler (1962) interprets; the electromagnetic field of the 
Type A will be an essentially electric field iff the complex 
null tetrad is expansion free and twist free. We shall 
prove this result.

Proof ; From the equation (1.4), we readily infer that

(H)a = 0 iff , ^ = O ... (1.5a)

y = o ... (1.5b)
T = n = O ... (1.5c)

The conditions (1.5a), (1.5fc>), (1.5c) give respectively,
_la, na, ma are expansion free and twist free. This completes 

the proof.

For a Black Hole ^ = O is not tenable. Accordingly the 
complexion field of a black hole does not vanish.
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2. The Nijenhuis tensor field : 

Introduction :

The relevance of the Nijenhuis tensor N^c for the General 

Theory of Relatively has been examined by Radhakrishna and 
Khade (1973 and 1976). They have constructed the Nijenhuis 

tensor viz.,

N* .c
ab 2 f;c F [.*b] + 2 F[ak Fb];k ... (2.1)

where Fgb is the skew-symmetric electromagnetic field tensor. 

In an attempt to find the physical meaning of the third rank 
tensor N.^0, Zafar Ahsan and Hussain (1980) have shown that 

at a point in Minkowske space-time this tensor represents 

"the variation of electric and magnetic fields strengths in 

different direction, determined by the electric and magnetic 

fields*1.

Relativistic Electrodynamics and the Newman-Penrose formalism :

The three-Maxwells scalars of an electromagnetif field :

There are three complex scalars called Maxwells scalars 
in electrodynamics [vide Chapter 1, (3.11a),(3.lib),(3.11c)]. 

The Maxwell Scalar 0Q is constructed by taking the inner
3 3product of Fal5 with 1 and m

0O = 2 Fabibfn^ ••• (2*2a)

This scalar is identified as the strength of the electro­

magnetic dipole field. The coulomb part of the field is
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designated by the Maxwell scalar 0^ and is defined by

0i = F, (lanb + 5amb)ab ... (2.2b)

The scalar
_%j U^2 ■ 2 Fab V* ... (2.2c)

measures the outgoing electromagnetic radiation.

Electromagnetic field tensor in the Null formalism :

In the General Theory of Relativity an electromagnetic 

field tensor is determined by a skew symmetric tensor field 

Fab satisfying the Maxwell equations.

In the complex null tetrad formalism the electromagnetic field 

tensor F ^ is in the form (vide Chapter 1, 3.10) as

Fab = - 2 Re0il[anb] + 2 1 Im0lm[affib] + +

+ \ ^[a5b] + 00 m[anb] + ^O m[anb] *** (2‘

where Re0 and Im0 denote the real and imaginary parts of 0 
respectively. The dual electromagnetic field tensor *Fafa is 

expressed as

*Fab = “ 2 i Re0x - 2 Im 01I[-anb] - i 02 I[amb] +

+ 1 02 i[affib] + 1 00 m[anb] ’ 1 00 ffi[anb]
... (2.4)

The two electromagnetic field scalars
_ _ab , - *rabFab F and Fab F
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are respectively

0q 02 + 02 - 0i - 0f and i (^ - 0^ + 0Q02 - 0Q02) .

The electromagnetic invariant K is defined as,

K = 2 (Fabpab + 1 Fab*pab) (2*5)

In terms of the Maxwell scalars, K reduces to

K = 2 (0q02 - 0i ) ... (2.6)

The invariant K can be expressed as 

K = NabNab ,

where

Nab = “ ^1^—[anb] + ffi[amb]} + ^2i[amb] + 5[anb]

... (2.7)

This can identified as the anti-self dual part of Fal>. The 
quantity Mab = Nab is called the self dual part of Fafc> .

Here,
Re K = 0q02 + 0Q02 - 0i - 0\

i Im K = 0q02 - 0q02 - 0\ + 0^ ... (2.8)

For a Kerr Newman Black Hole 0q = 02 = 0. Thus we have 
(vide Chapter 1, 5.3),

Re K = - 02 - 0X2

i Im K = - 02 + 02 ... (2.9)
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The three current scalars :

The four current vector field Ja is expressed as

Ja = I2la + IQna - I^3 - Tji3 ... (2.10)

where,

JaJa = 2 (IQI2 - I1I1) ... (2.11)

The three complex current scalars IA, (A = 0,1,2) are easily

identified from (2.10) by transvecting with the null legs as
I = J31*0 -a

^ can be obtained by taking the complex conjugate of 1^

For Kerr Newman Black Hole, 

jB - r _a

and

J° = - 1. n° - I,1 1 •
L0 = Io = 0 (2.12)

The Four Maxwell’s equations „

F ;b - J ’
p 4 p 4 pab;c bc;a ca;b = O ... (2.13)

In the complex spin coefficient formalism these eight tensor 

equations^ can be written as four scalar equations, viz.,
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... (2.14a)

D *2 + ^0 “ * xi = (Y + * ” ^ “ »)10 + (* - * ~ a - T)1! +

+ (0 + i - a - T) Ix + ^ - 6 - €) I2 ... (2.14b)

We have used here the intrinsic derivative operators viz.,

D0 = 0fala , 6 0= 0jama ,

60 = 0>ama , ^0=0ana ,

'NP-Concominants' of the electro-magnetic stress tensor :

The electromagnetic stress energy momentum tensor Tab 

is given by

Tab = (FcAf°d)9ab * FacFbC • ... (2.15)

In terms of the complex null tetrad Z® and the maxwells scalars 

the stress energy momentum tensor assumes the form (Debney and 

Zund 1971)

Tab = 1//2 [ ^22—a—b + ^OOnanb + ^02raa*b + ^20I”amb ] +

+ i2llUanb) + "(a5b) i * 02lMaab) ~ 0iai(a5b) +

+ ^10m( anb) + !?01ffi(anb) • • • (2.16)
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Here 0AB, ( A,B = 0,1,2) are the Ricci scalars.

There exists an interesting relation between the Ricci scalars 

and the Maxwell’s scalars, when electromagnetism is the only 

source of the stress tensor namely
’NT"”"

^AB = •

Energy-Balance Equations in the NP-version :

As a sequel to the Bianchi identities the electromagnetic 

stress tensor (2.15) satisfies the condition

Tab;b = 0 ... (2.17a)

since, electromagnetism is the sole contributor to the source

term, the Equations (2.17a) imply the vanishing of the
Lorentz force F?Jb

b
i.e. . Tab.b = FbJb =0 ... (2.17b)

These equations in the null formalism are expressed as 

(Tariq and Tupper, 1976) :

2 Re0r I2 - 02. Ijl - 02 I1 = 0 ,

2 Re0r IQ - 0Q - 0Q = 0 ,

2 i Im0r - 02. IQ + 0OI2 = O ,

2 i Im01. Ix + 02. I0 “ 0O.I2 = O . ... (2.18)

For a Kerr Newman Black Hole, Iq = I2 = O; thus we have
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“ ^2* ^1 ** ^2 ^1 

^0 h “ \ li
2 i Im01 . I1 
2 i Im0^ . 1^

0

O

0

O . ... (2.19)

For source-free non-null fields we have Ja = 0 and |Fa^ 4 O 

It follows that there are no Type A fields with source. In the 

case of non-null fields with sources we have Ja 4 O and the 
equation (2.17b) are true if [Fab| = °* (see Waite 1961),

The Nijenhuis tensor field in Relativistic electrodynamics :

The Nijenhuis tensor for an electromagnetic field in the 

general theory of relativity is defined by Radhakrishna and 

Khade (1973) as :

a> + F;kp.c
b;k

p. kp« cFb Fa;k (2.20)

where the skew-symmetric electromagnetic field tensor -F ^ 

satisfies Maxwell’s equations (2.13)

We can write (2.20) as

FkC(Fab;k> + f:

by utilizing (2.13).

(2.21)

We note that N*rc = - N**c and so there exist 24 components
ab ba

of N ,c in the space-line of the General Theory of Relativity, 
ab
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The null tetrad approach to the electromagnetic fields is 

developed by Debney and Zund (1971), Zund (1973), Tariq and 

Tupper (1976). We utilize their results for investigating the 

role of the Nijenhuis tensor in relativistic electrodynamics.

The Nijenhuis Tensor field :

We denote the Nijenhuis tensor field for the non-singular

field of the Type A by N *TC, using (equation 5.4, vide
(BH)aD

Chapter l)and (2.21) we obtain

. .c
Nab 

(BH)

(2R.jJknCJ + 2 iI.nJkic^) (2R;fcl|-anbj + 2 il.kn>jynbj +

+ 2Ri[anb];k + 2iI-m[affib];k)+ [R(ia"k ‘ "a^' +

+ il(ma5k - 5amk)][R.k(lbnc - n^) + il.k(mbmc - mbmc) +

+ R(Ib;knC + lbnC.k - nb;klc - n^- +

+iI(mb;k*C + ">bffic.k - ib;knic - ibmc.k)] - [R(Ibnk - 

+il(mbmk - 5bmk)][R.kUanC - n./) + - 5amc) +

+ RUa;knC + lanC.k - na;klc - + ll(n»a.kmc +

+ tnaBC;k - 5a;kmC ' V^k' ]

Here in the above expression,

... (2,&0

R a Real part of 01 and I = Imaginary part of 0^ of the 

electromagnetic field tensor Fab(vide chapter 1;3.10). Using 

the orthonormal properties of the complex null tetrad vectors 

and using intrinsic derivatives symbols we write the expression

as :



(BH)
+ iRAl)iii|-ambjlc +2 (^Q - - iRDI)mj._mbjnc -

... (2.23)
E C - E c ab cab

where,

‘abE_,.c = 4 vP + 4XQ l[amb]mc + 4kP m^n^n0 +

+ 4 o"Q nij-anb-jmc - 2( nP + fp + ilsR) l|-anbync - 

- 2 (tiP - TP - i l6R)lj-ambjnc + 2 (uP - TP +

+ il5R)m|-anbjlc - 2(pQ + y,Q + iR I) 1 ramh1iC -
[a b]

- 2 ( oQ + oQ + iRDI)mr nKlm - 4151 mr-m^-inr[a b] [a b]

Here P = R2 + iRI and Q = I2 + iRI and P, Q denote the

complex conjugates of the scalar functions P, Q respectively.

Characterization of the vanishing N3bc for the type A field 

in the NP-formalism :

We establish the following theorem for the non-singular 

electromagnetic field. We note that here Ja = 0 always.

Theorem :

The necessary and sufficient conditions for the vanishing of the 

Nijenhuis tensor field for the Type A field are

(i) the optical scalars of the two real null congruences 1 

and na vanish and

(ii) either congruence is parallelly propogated along the other.
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Proof : We claim that

NabC =0 iff k = ^=6f'=v=]i=K=0

£= Jt = 0 ... (2.24)

from the expression (2.23), we have,

N ^ = 0 = D R = Ar = si = si =
(BH)

v = \ = k= <T=0 for P,Q t

- - iRDI = 0 ,

+ <sQ + iRDI = 0 ,

+ - iRDI = 0 ,

HQ + - iRAl = 0 ,

JiQ - m + iRAI = 0 ,

JIP - Ip - il6R = 0 ,

ftp + TP + il6R = 0 ,

TlP + fp + ilsR = 0 .

solving (2.25) we obtain,

Na,c = 0 ab => k = ?,= 6'= 0
(BH)

V = |i = k = o

T!= n = O .

The convexseof the theorem follows 

Hence,

Nabc = 0 , iff k = € = ^
<*>

T = K

o .

o .

... (2.25)

... (2.26)

from (2.23) and (2.26).

= O , ... (2.27a)

= 0 , ... (2.27b)

= 0 ... (2.27c)
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The equation (2.27a) means that the la is geodesic (k=0), 

besides the vanishing of the expansion (^+^), the twist (, 

the shear (6"). Analogous result for the na congruence are 

contained in (2.27b). Equations (2.27c) give,

1,,hnb = n ., lb = o .
—a ; b a ; b—

This completes the proof of the, theorem.

3. ZILCH TENSOR FIELD :

Introduction

WhiiL studying the "time-periodic" electromagnetic fields in 

vacuum, Lipkin (1964) observed that

1/2 iP (*E x E + *H x H) =0 

by virtue of the Maxwell equations.

Here iP = — in'complex phasor' notation, P is the
’ 2>T

propagation constant of the wave, *E and *if denote the 

duals of the electric field E and magnetic field H. The 

vector field iP (*E x E + *H* x 3) is asumed to be capable of 

representing the time-averaged flux of a physical quantity 

that is conserved.

Zabc Minkowski Space-time :

In the Minkowski space-time, Lipkin's exp 

tensor field is,

Zabc = /i/4 [nar4cnebpnlq + i)br4Cneap,Iiq + t,

+ nbrTiaqecpmn] - 1/2 [ ^nqnam6bcrp

ression for the Zilch

ar^bqgcpmn +

+ T|nqt,bm6acrp +
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+ nnVpebcrm + ^ncinbPeacrm ] ? FmnF
pq ,r

a,b,c s 1,2,3,4. ... (3.1)
whe re,

i1ab = (-1, -1, -1, 1) is the Minkowski metric, 8abcd is 

the completely antisymmetric tensor density for 4-dimension, 

Fab electromagnetic field tensor.

Properties :

(1) Zabc = Zbac ... (3.2a)

(2) nabZabc = T,abZCab = r,abZacb « 0 ... (3.2b)

(3) Zabc = O ... (3.2c)
♦ • I

On the nomenclature of 'Z JSH' :

The physical significance of the divergence equation
s beZ = O is not yet known. However, the tensor components
3 b4Z are interpreted as the spatial densities of the conserved 

quantities and the remaining tensor components of Z are 

interpreted as the fluxes of the conserved quantities (Lipkin,
3 Hf*1964). Z has 18 independent components because of the 

properties (3.2a,3.2b,3.2c). Thus the testimonial representa­

tion (3.1) yields nine conservation laws which are unfamiliar in

form. This circumstance has prompted Lipkin to name this tensor 
L

as ’ZI^H' (meaning nil as given in a Dictionary of Scang and 

unconventional English, Vol.II,Patridge,E.).
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The Zilch tensor field in the NP-formalism :

We start with the definition of Zab in the form
.. c

Zab = 2 i (Na, Nkb - Na, Rkb )
• • 0 « K > C • K 9 C

3 Hwhere the antiself dual bivector N is 

,ab

(3.3)

= (Fab + i *Fab ) / 2

For a null field, we have

Nab = - 01 ( lCanb] - m[aSb] )

We observe that

4 (Nak Nkb.c - Nak N^c = [ ^1 ^l;c* “

x[l(anb) + m(aSb) ] + 2 ^ [(nkik;c)(l(amb)) +

. (3.4)

(ikik.c>n>Unb) + (mkn,,.r)i(alb) + (lkmk :c)Jl(aib) ]
k;c k;c‘

... (3.5)

making use of maxwell equations and using intrinsic derivatives 

of the Newman penrose formalism to eliminate the covariant 
derivatives, we obtain finally the expression for the Zilch 

tensor field as :

Zabc = 2 i) [0xj2 ,[l^anb^ + m^amb^] [(p - p)^ + (^)iU +

+ (n - T)mc + (it - T)mc].+ [ l^amb^(o;lc - *n»c - mc +

+ tchc) + n^anb^ (flc - darmc - $mc + k?lc)]>+ C.C. 

where, _ o ... (3.6)
<6 = N •
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Zat> for the Kerr Newman Black Hole :

• • c

The most spectacular exact solution of Einsteins field 

equations for a non-null electromagnetic field is the one which 

predicts the existence of a black hole.

Substituting the spin coefficients values of KNBH (vide
3 bChapter 1; eq.5.1) into the expression for Zd (3.6) we get
• • c

the Zilch tensor field of the Kerr Newman Black Hole as :

Zabc = 2 i |0|2 :'[ A.b> + m(aib) ] [( )ic +

+ ( r+iacos©)~J' - (r-iacos©) % +

+ ( iasin0S2+ iaslney; ) + s l< amb> [ ias™e$\ -
/2 /2 C . V2

Als!llic ]+m(anb) [ ifiiH5SS lc +
2 ■

+ (r + iacos0)_^m^ ] + C.C..
c J . - ... (3.7)

In the special case a = O; we obtain (3.7) as

z?.bc =21 l*il2 [ ila"b> + "(asb> ] )ic -
2-

i ^(9 ?),(a b)- . -1 (a b)- , r- (r-r) in ] - -~-^l m mc + (r) m n mc + C. C.

... (3.8)

which represents the Zilch field for electron.

Remarks :

(i) Kerr-Newman space time is asymptotically flat and of 

Petrov type D.
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(ii) 7abc^ • c• • • f V*
= O iff ^ = 0,

In the case of Kerr Newman Black Hole, the relation

^"2 = <?3 (m + f ) (from chapter 1; eqn. 5.2) 

yields,

Y'2 ~ "p2 ~ (^2+^>^2)+^2(^) (<$+§) (^2+f2)

obviously, for ^ = <| (Irrotational _la) we get

imh= 0 •

Zilch scalars for black hole :

The Zilch scalars of the KNBH for Za]3C are enumerated 

below.

We take

-ABC zazbzczVb C^abc ♦

(A,B,C = 1,2,3,4) .

(i) Z221 = Z212 = i012 (<£ ^2<o - Ac>2^)

(ii) Z121 = Z112 = - i012[(r-iacos0)“‘1'- (r+iacos©)

(iii) Z321 = Z312
. .2 r iasinQoq= - [ -^sa -

iasin©^2 ,
yr J ’

(iv) Z231 = Z213 = 02 asinQ^? / y/T ,

(v) Z432 = Z423
= - a (f2?) / VZ ,

(vi) Z123 = i 0i sin0(52 / \/2~ .



69

4. SPECIAL TRANSPORTS IN KNBH

(I) Jaumann Transport of the stress energy tensor for a Black Hole

Carmelt (1977) has described the Kerr-Newman Black Hole, The 
discovery kjf Kerr (1963) of the 2-parameter family of metrices 
associated with his name is one of the principal landmarks in the 
development of the General Theory of Relativity. We recall the 
physical components of Weyl tensor, Maxwell scalars and the spin 
coefficients for the rotating black hole with charge e and mass m 
(vide Chapter 1, Section 5). In this section we shall examine the 
relevance of the Jaumann derivative to the relativistic electro­
dynamics. We now prove the following :

Theorem 1 :

For the stress energy momentum tensor of the Type A field, the 
following two statements are equivalent.

W { Tab “ 0 •
(ii) ^> + <p = f- a- 0= O.

Proof : For the stress-energy momentum tensor

Tab = 011 (Aanb) + m(a^b) > • 

of the Type A field, we obtain by using the definition of 
Jaumann derivative,

J Tab = 2 (?+?>Tab + 1/2 011 (a+*“ ^-(amb)+ G*C# *•*

we readily get,



to

J Tab = 0 iff 9+f=0
a + e - f = o ... (4.2)

i.e., the stress-energy momentum tensor of the Type A field is 

Jaumann transported with respect to the eigen vector _la iff la 
is expansion-free and the other two vector fields ma, na form a 
surface orthogonal to l_a .

Following the notation of Carmeli (1977), we infer that 

I = a + 0 implies that

Im^ = O (from equation 5.1, chapter 1)

This gives,

a = O .

In other words, the Jaumann propogated Kerr-Newmann Black Hole 

loses its angular momentum and hence degenerates into the 

Reissner-Nordstrom black-hole.

a
Jaumann Transport relative to m

The following result can be similarly obtained for KNBH. 

Theorem 2 :

For the stress-energy momentum tensor field we obtain,

J T 
m

iff I - T = O , 

ImY = Im6 = 0

Accordingly

J T 
m ab ” O iff a = O ,

Im (^<^+r) O

... (4.3)

U A.̂ ';'(4. 4)
\

- \ \
•o / Li3;unv
- ■ )$

. - '//
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Thus the Jaumann propogated Kerr-Newman Black-Hole with respect
3to in degenerates into the Reissner-Nordstrom black hole. However, 

such a loss of angular momentum does not happen when the black-hole 

is transported relative to the congruence na. Specifically we 

have

J Tk = O if „ ab P- + V- = O ,

n = a + 0 ,

i.e., J T , = 0 iff ReA<9 = 0 .
n aD

We can express this result alternately as

J Tab = O iff u(Rer1 2-a2+e2 - 2mRer)- v(Imr2~2mlmr) = O 
n

... (4.5)
whe re,

u = Re<5 and v = Im§

Thus when we put Carmeli's values (1977) of 'p* then

p. + p ss o implies r = 0 . 

which is an incompatible situation.

(II) Fermi Walker transportation of the NP-tetrad and the KNBH

(1) Fermi Walker transportation of the NP-tetrad with respect
to the flow congruence ua :

(a) For the choice of ua = 2-1^2 Qa+na), we get

F la = - F na = - 2~3/2 Tf 3 + c.c] ... (4.6a)
u— u L m J

F ma = 23/2 ff(la-na) + 4ilm(h) 1 ... (4.6b)

where f = n + v + k + tt h=€ + Y • • • (4.6c)



Hence, we obtain :

FuZ(a) ~ 0 ^ I + v + k + I = 0,

e+Y + e- Y = o ... (4.7)

without loss of generality, we assume that JLa and na are 

geodesic (This does not imply that u geodesic),

i.e., € + C = O, y + Y = V = 0 ... (4.8)

By virtue of (4.7), (4.8) we have

FuZ(a) =°4=^i+T=e+Y=0 ... (4.9)

Note :

Non-geodesic flow congruence :

The NP-version of the acceleration of the flow congruence 

ua for the choice of ua = + na) is given by

ua = 2~1[(€+G+Y+Y)(la-na) + (n+v-K-T)ma + c.c. ]

,-l= 2" [(k - Dm + c.c. ],

when
Fuz(a) 0 (4.10)

For Fermi Walker transport of z(a) »

La * O

i.e. , 7i j- t .. (4.11)

Now, we recall that the Kerr Newman black hole is asymptotically 

flat and so ^ ^ O .

In this case, from (4.9) we get
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FUZ(a) = 0 4=^7 = n + T= 0 ... (4.12)

From (4.11), we get
a sin0^ (^-<j) ^ O and s0 a ^ 0 .

For the black hole a / O and so (4.12) implies that 

FuZ(a) = ^ = O (l_a is expansion free),

i.e. , + r - m = O ... (4.13)

(b) On the Incompatibility of Fermi Walker Transportation
of the NP-tetrad Zag^ for the choice of ua = 2~F/2(ma_ia) 

in Kerr-Newman black hole

Here, we obtain,

ua = Re(\-{i)la + Re(^-§' )na + Re(0-a)(ma+ma) ... (4.14)

and
Fyi3 = i2_1/2[2 lm(a+0)la+ Im^-tf"') (ma+ma) ],

Funa = i2“l/2[2 Im(a+j3)na + Im( p-\) (ma+ma) ] ,

Fuma = Fuma = i2"1/2[Im( p-X)la + Im(<^-6')na ]. 

consequently,

FuZ(a) = 0 4=^ = Im(a+^) = Im(^-6') = 0
' ... (4.15)

The geodesic nature of ma (without loss of generality) implies,

A. = a - 0 = £T = 0 ... (4.16)
Therefore,

FuZ(a) = 0 ^ Im^ = Im^) = Im(a) = °*

provided ua $ O. i.e., Re(y) ± O, Re(^) t 0 simultaneously.
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Remark :

For the Kerr-Newman black hole, a ^ O, but the condition 

^ = 0 implies a = O .

Hence, the incompatibility results.

(2) The null projection operator

The two dimensional projection operator introduced by 

Jordon, Ehlers and Sachs (1961) is
k k,v _ „ , a b

ab ^ab ~ , c7"5(uck )

2 u(akb]

u(cke)
... (4.17)

where V = !• kak = 0 
ua;bkb = 0 ... (4.10)

Supplementary condition :

The condition (4.13) which means that the ^/ye-like 

congruence ua is parallelly propagated with respect to the 

null congruence ka is referred as the supplementary condition 

in the following discussions.

(i) For the null congruence la and na

where ua = 2-i/2 (1a + na} , equation (4.18) yields

i bu, J a; b— = 0 6 + 8 = ji - k = 0 ... (4.19)

b
ua ;bn = 0 Y + Y

oC
M••••

oit

ih —iii

Note :

Since c o 3 o = 0 , the null projection operator, Y ^ is not

defined for• k3 a= m . , .ul
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(ii) The complex null congruence__m ‘

We choose
d au =2-1/2 / a -a, (m - m ).

In this case, the supplementary conditions (4.18) reduce to,

\ = }A=^=g=a-0=O ... (4.21)

(3)(a) Effect of Fermi Walker transportation of the NP-tetrad 

on the optical parameters of a Black Hole :
a

(i) For the real null congruence 1 :

The kinematical tensor quantities expansion, shear and 
rotation for la (using supplementary conditions (4.19() are :

0 = - (<$+^)

; O^Ua-ib + [^mamb * (a+®+ hi(a"”b)

-km (anb) ] + C.C. ,

(Vab ~ (^)i[amb] +[(!-«- ^)l[amb] "
(!) r

- k mfanb] ^ + G*C* ’

... (4.22a)

... (4.22b)

... (4.22c)

Remarks :

(1) The shear and rotation are affected but not the expansion 

under Fermi Walker transportation of the NP-tetrad for the 
choice of ua = 2”(_la + na) .

(2) Optical parameters for the black hole :

In this case, the optical parameters (4.22a,b,c) under
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FuZ(a) = 0 yiald that I3 is rigid, i.e. ,

0=0,
(1)

and

®ab = 0 >
Cl)

"ab = 2 Cm[a5b] - 2'1/2iao “10 ~[a%] + c-c- ]

(ii) For the real null congruence na :

We record the kinematical tensor quantities expansion,

shear and rotation for na as

0
(n)

= (V- + V) ... (4.23a)

^ab
(n)

= [-k.(a.b) + mi(aIb) + (i+a+B)m(anb)] + C.C. -

- (6 + S)nanb ... (4.23b)

wab = (^^“(a^b) + tvm[a-b] + (w“a-£)m[-anbj]+c*c- ...(4.23c) 
(n)

For a black hole we have,

a = <^Re(^),
(n)

= 21/2 iasinO^2 m^n^ + C.C. , 

(n)
w

(n)
ab = - ^ Im(^} m[aBb]

Thus the angular momentum affects only the shear and not 

6’ Wab •

(iii) For the complex null congruence ma :

The expansion, the shear and rotation for the complex null

congruence ma are listed below :
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e
(m)

^ab
(m)

wab
(m)

= n - X , ... (4.24a)

= ^IaIb - knanb + ^Y~^i(amb) + " ^m(anb)’ ••• (4.24b)

= Y>ij-arabj + (i + ^)I[anb] + “ e^m[anb] ••• (4«24c)

We observe that the above parameters are unaffected under

Fermi Walker transport of for the choice of

a _ 0-l/2, a -av u = 2 ' (m - m).

(b) Effect of Fermi Walker Transport of the NP-tetrad on the 

kinematical parameters of the flow for the choice of 

ua = 2“1/2(la + na) :

Under FuZ(a) = 0, the kinematical parameters take the

form,

0 = 21/2 Re(p - o) ... (4.25a)
(u) y

3(2)1/2 <£b = [igi,, + n3nb - 2 l(anb) - 2 m(aSb) ] +
(u)

+ 3(0 + 5)[m(anby - l(an>b) ] + C.C. +

+ 3 (<T- \)mamb + C.C. , ... (4.25b)

2i/2 wab = - 2 - <0+»>U[amb] + m[anb] ]

(u) ... (4.25c)

Remarks :

(1) All the three kinematical parameters are affected by 

Fermi Walker transport of Z3(a) .



(2) Parameters for the black hole :

In this case, the parameters reduce to

© = 2”1/2 q o m,
(H) ^ 5

6 = 2"I/2 <!?m !•—a—b + nanb ' 2 —( anb) “ 2 m( a™b> 3 +
(l*)

+ 3i<s2a sin© [m(anb) - i(amb)] + c-c->

Z wab = 2l/2<? ^ +2)“[affib] - iasin^2[i[amb] + m[anb]>C-

(u)

Here we observe that the rotation of Black Hole is independent 
of its mass.
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APPENDIX

The Ruse-Synge Classification of Electromagnetic Fields :

We follow the Ruse-Synge classification which has been extensively 
investigated by using Newman-Penrose formalism. We summarise 
this classification in the following table:(Debney and Zune,1971)

Class
Type
of
fields

Classification of
the electromagnetic 0n 0,field u 1 h

Electromagnetic 
, field tensor

Non
singu
lar

A k / 0, 0 - 0 Fab=-Re0l^[anb] + 

+2ilm02mj-amb j

A' Rek ^ 0, Imk ^ 0 0 *1*1 0 Fab= _2^li[anb] *

A'" Rek ^ 0, Imk = 0 0 01=-01 0 Fab= 20lm[a5b] •

A'" Rek = O, Imk 0 0 0 01=+i01° Fab=-2Re0i(l[anb]±
± m[aib] •

Singu­
lar

B k = 0 0 0 - Fab=02i[amb]+£^-

C k = 0 - 0 0 Fab=0Om[anb]+^£-

Notation :

The vanishing of the Maxwell's scalar is indicated by 'O'.

A dash '-' indicates that the Maxwell scalar is unrestricted . 
The stress-energy momentum tensor for the different types 
can be enumerated as :
Type A : Tab = 0U ( l(anb) + ■«(/„) ) ■



Type B Tab ■ !/2 *22 —Ab

Type C : Tab = 1/2 0QO .
The non-singular electromagnetic field 

admits two principal null directions, 

corresponds to a general non-radiating

tensor of the Type A 
_la and na and 

electromagnetic field.


