
CHAPTER - I

B General Relativity is the prime example of a

physical theory built on a mathematical 

•leap in the dark1. It might have remained 

undiscovered for a century if a manj with 

Einstein's peculiar imagination held not 

lived,"

... DYSON,F.'J.
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CHAPTER - I

1) INTRODUCTION

In recent years there has been a revival of interest in the 
Einstein-Cartan theory of space-time. In this theory the intrinsic 
spin of matter is incorporated as the source of the' torsion of the 
space-time manifold. According to relativistic quantum mechanics 
mass and spin dre the two fundamental characters of an elementary 
particle system. ^

In Einstein theory of general relativity mass plays a 
dynamical role but not the spin. The density of energy-momentum 
is the source of curvature. By introducing torsion and relating 
it to spin one can obtain an interesting link between the theory 
of gravitation and the theory of special relativity.

By introducing torsion and relating it to the density of 
intrinsic angular momentum the Einstein-Cartan theory restores 
the analogy between mass and spin. The similarity between mass 
and spin extends to the principle of equivalence at least in its 
weak form. According tc this principle the world line of a 
spinless test particle moving under the influence of gravitational 
fields only depends on its initial position 'and velocity but not 
on its mass. Similarly the motion of a spin depends on the 
initial data but net on the magnitude of the spin of the 
particle.
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The notion of an affine connection was casually mentioned by 

Eddington [12] in discussing possible extensions of general rela­

tivity. He pointed out that applications in macro-physics are 

conceivable but did not develop his idea. Torsion as the anti­

symmetric part of an asymmetric affine connection was introduced 

by Elie Certan [7] in 1922. He suggested a simple generalization 

of Einstein's theory of gravitation.

In 1922 Elie Cartan proposed to consider, as a model of

space-time, a four-dimensional differentiable manifold with a
i< imetric tensor and a linear connection compatible witti the! metric
i i

'but not symmetric, in general. According to Cartan,;|1:he ^orsion
* i 1 i

tensor of the connection should be related to the density of' 

intrinsic angular momentum of matter and it should vanish in

matter free regions. / Independently of Cartan,. similar ide^s were’

(put forwardJbyjflagoner [74], Nordtve'dt [40] and Bergmann [6]/ The 

generalization due to Cartan constitutes only a slight departure 

from the Ein|stein-' s theory: the field; equations in empty space
'I

remain inchanged.

The desirability of such an analysis may be related to 

recent discoveries in astronomy. It'is conceivable that torsion
i ^

may produce observable effects inside those objects which, as the
t

neutron stars, have built-in strong magnetic fields, possibly 

accompanied by a substantial average value of the density of spin. 

One is tempted tc speculate that intrinsic angular momentum may 

influence-or even prevent- the occurrence of singularities in

ORB. p V
ftMlVA *< 1

U8KMB
,irv <( it waW*
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gravitational collapse and cosmology. A recent result of 
Kopczynski [25] on the geometry of a Universe filled with a 
spherically-symmetric distribution of mass and spin, supports 
this idea.

2) EINSTEIN-CARTAN THEORY

In recent years, there has been a growing interest in the 
foundation of Einstein's theory of general relativity. A number 
of new relativistic theories of gravitation were put forward by 
Brans and Dicke [4], Bergamann [6], Wagoner [74], Nordtvedt [40] 
and Sen and Dunn [55], Their predictions with the observational 
data and the available experimental results are compared', with

✓
those of the older theories.

Thorne and his co-wcrkers [64] have undertaken a systematic 
study of what they call ^metric theories of gravitation81.( These 
are the theories which may be formulated in terms of Riemannian 
geometry in space-time, possibly with supplementary structures 
added to it. The total stress-energy tensor of matter is assumed „ 
to satisfy a differential conservation law determined by the 
Riemannian linear connection of ^space-time.

The question of singularity in general relativity is a 
much discussed problem. Penrose [44], Hawking [15] and Geroch[14]
have shown that the occurrence of space-time singularities is a 
general prediction of the theory and not just the consequence of

i

the symmetry of thufc models. Modifying Einstein's equations of 
general relativity has been one one of the techniques followed
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tc avoid space-time singularities. Recently Trautman [69] has 

proposed that spin and torsion may avert gravitational singulari­

ties, by considering a Friedmann type of universe in the frame­

work of Einstein-Cartan theory and obtaining a minimum radius

Rat t = 0 . o

According to Hehl Einstein-Cartan theory is an even more 

beautiful theory than Einstein’s general relativity because of its 

relation to the Poincare group.

In Trautman*s opinion the Einstein-Cartan theor\ is the 

simplest and the most natural modification of the original, 

Einstein's theory of gravitation. This modification deserves tc 

be analysed in detail, in precedence over the theories requiring , 

an additional scalar field to describe gravitational phenomena. 1

3) HISTORICAL SURVEY OF EINSTEIN-CARTAN THEORY

Einstein-Cartan theory begins with Scima [56] and Kibble[24], 

It was further developed by Trautman [67-70], Adamovicz [1],

Kerlick [22,23], Kuchowicz [30-34], Hehl [16,17], Hehl et al.[18]. 

Tafel [62,63], Stewart and Hajicek [58], Kopczynski [25-27], 

Raychaudhuri [54] and Prasanna [45-49].

Since the predictions of the Einstein-Cartan theory differ 

from those of general theory of relativity only for the regions

filled with matter. An important field of application for the 

theory is relativistic astrophysics which deals with the 

theories of stellar objects like neutron stars with seme alignment
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of spins of the constituent particles and under the conditions 
when torsion may produce some observable effects. Hence it is

t

desirable to understand the implications of the Einstein-Cartan 
theory in full for finite distributions like fluid spheres with 
non-zerc pressure. With this view the problem of static fluid 
spheres in Einstein-Cartan theory were considered by Prasanna[46], 
Kerlick [23], Kuchowicz [33], Skinner and' Webb [60],

In 1964, Istvan Ozsvath [42] had solved the Einstein's 
field equations with incoherent matter for the case of horriogeneous 
space-time, i,e, for metrics allowing a four parametric-simply 
transitive group of motions. He has obtained two sets of new 
solutions by using a spincr-technique, Misra, Pandey and 
Srivastava [37,38] have investigated the Einstein-Maxwell equations 
for a stationary gravitational field in 1972 and for an axially 
symmetric stationary gravitational field in 1973, Assuming the 
space is filled with charged incoherent matter, they have shown 
that if the Lorentz force vanishes everywhere, the charge density 

bears a constant ratio to the mass density and this constant 
ratio may assume arbitrary values, *

Hehl, Heyde and Kerlick [18] have considered the field 
equations of general relativity with spin and torsion ( 1)^ theory) 
to describe correctly the gravitational properties of matter on a 
macrcphysical level. By an averaging procedure one can arrive 
at a macroscopic field equation, which under normal matter 
densities coincides with Einstein's equation of conventional
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general relativity. They have shown how the singularity theorems 
of Penrose and Hawking must be modified to apply in U4 theory and 
all known cosmological models in U4 theory which prevent singula­
rities have also shown to violate an energy condition of a 
singularity theorem.

Following the work of Trautman [70], Prasanna [46] has 
described briefly the Einstein-Cartan equations with special 
reference to a perfect fluid distribution and then obtained 
three solutions adopting Hehl's [16,17] approach and Tolman's[65] 
technique. He has found that a space-time metric similar to the 
Schwa rz>schild interior solution will no longer represent a 
homogeneous fluid sphere in the presence of spin density.

Arkuszewski et al [3] discussed the junction conditions 
in Einstein-Gartan theory, Raychaudhuri and Banerji [54] constru­
cted a specific solution corresponding to a collapsing sphere 
and showed that it bounces at a radius greater than the Schwar- 
zschild radius. Banerji [5] has pointed out that Einstein-Cartan 
sphere must bounce outside the Schwarzschild radius if it 
bounces at all. Nduka [39] gener?lized the Prasanna's [46] work 
by considering a static charged fluid sphere in Einstein-Cartan 
theory. Singh and Yadav [59] studied the static fluid sphere 
in Einstein-Cartan theory and obtained the solutions in an 
analytic form by the method of quadrature.

Kopczyfiski [25-27] studied and developed the Einstein- 
Cartan theory of gravitation. The specialization of the
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technique gives the solutions of Adler [2], Kuchowicz [33], 
Whitman [75], Krori et al,[28,29] and Mehra [35]. Spatially 
homogeneous cosmological models of Bianchi types VI and VII 
based on Einstein-Cartan theory were considered by Tsoubelis 
[71], Som and Bedran [61] got a class of solutions that 
represents a static incoherent spherical dust distribution in 
equilibrium under the influence of torsion and spin. Krori 
et al [29] gave a singularity free solution for a static charged 
fluid sphere in Einstein-Cartan theory. Pandey et al. [43] solved 
the Einstein-Cartan field equations' for a static spherically
symmetric fluid sphere by a suitablb assumption on the metric 
potential g^.

In 1982, Rao and Reddy [50] have shown that there are no
spherically symmetric static conformally flat solutions of
Nordtvedt-Barker field equations respectively perfect-fluid
distribution with disordered radiation obeying the equation of
state <^ = 3p, except for the trivial empty flat space-time of
Einstein's theory. Ray and Smalley [51,52] have presented an
improved perfect-fluid energy momentum tensor including spin and
torsion with use of a Lagrangian variational principle based
upon the tetrad formalism of Halbwach and the method of ✓
constraints of Ray. Nurgaliev and Ponomarev [41] have shown 
that for a specific value of the constant of interaction between 
spins, which must be introduced from gau^-e considerations, the 
Einstein-Cartan equation without the A-term admits a 
gical solution in the form of a steady-state deSitter
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In 1983, Srivastava and Prasad [57] have discussed the 
boundary conditions at the interface of spherically symmetric 
perfect-fluid distribution and the exterior;vacuum and as a conse-

I
quence they have established the following theorem : a Uniform 
expansion or contraction of a perfect fluid sphere obeying an
equation of state with nonuniform density is not admitted by the 
field equations19. It is further shown that,the Wyman metric is not 
suitable on physical ground to represent a cosmological solution.
Zhu Shi-Chang [76] has obtained some conformal flat interior 
solution of the Einstein-Maxwell equations for a charged stable 
static sphere which satisfy physical conditions inside the sphere. ~ 
Hirohisa Ishi Jcewa [19] has presented the exact non^-static solutions

for the coupled repulsive sourceless massless scalar field and the 
gravitational field and shown that these solutions have the same 
form as the spatially conformally flat static metric

ds = - e dt + e A (dx + dy 4- dz ).

deRitis et al [11] have studied spin fluid in Einstein- 
Cartan theory : A variational principle and an extension of the 
velocity potential representation. Ray and Smalley [53] have 
considered an Eulerian variational principle for a spinning fluid 
in Einstein-Cartan metric-torsion theory and they have shewn that 
the symmetric energy-momentum tensor is a' sum of a perfect-fluid 
term and a spin term.

Recently Kallyanshetti and Waghmode [20] have considered a 
static conformally flat spherically symmetric perfect fluid
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distribution in Einstein-Cartan theory. They have solved the 

field equations by adopting Hehl's [16,17] approach with the 

assumption that spin of the particles composing the fluid are all

aligned in the radial direction alone. They have observed that 

the density will not be constant as observed by Narlikar in

1950 for conformally flat spherically symmetric perfect fluid 

distribution.

Faulkes [13] has shown that shear-free solutions of the 

Einstein-Maxwell field equations can be found by solving a single 

second order non-linear differential equation containing two 

arbitrary functions of the radial co-ordinate. But in this year, 

Chattarjee [10], in his work, a general method has proposed to

solve this nonlinear equation which,in effect, extends an earlier
\

work of Wyman to its electromagnetic.

.4) THE STRUCTURE EQUATIONS OF EINSTEIN-CARTAN THEORY
—wa—■—waw—mm—e—.<■■■ i «a—»—a—» |

*

Let M be a four-dimensional differentiable manifold of

class C, oriented connected Hausdorff and let g be a Lorentz

metric defined on it. All geometric objects on M, other than

forms, will be described by their components with respect to a

field Q1 of coframes in the cotangent spaces of M which are

linearly independent at each point of M. Since we are interested
• •%

in spinor fields we take the 91 to be in general anholoncmic 

and the associated tetrad to be orthonormal. The metric g and 

the connection w are described with respect to the co-frame G1 

chosen by the metric components g^j and by a set of one-forms



Therefore we have
g = ds2 = g. .Q1©©-* ... (4.1)

and w1. are completely determined by the functions such
3 kj

that
0k ... (4.2)

If $A (A,B, ... = 1, ..., N) is a tensor valued p-form 
the (p + l)-form

*A = *A + <rE">*B
is called the covariant exterior derivative of $A , tne 
constants 6" ' s are related to the tensorial type of $A. In 
particular, if is a O-form, its covariant exterior 
derivative becomes covariant derivative

= V7.V1
and if $ is a scalar p-form

D0 = d® .
The covariant exterior derivative of the vector-valued 1-form

s
■(H)1 is the torsion 2-form of w

(h)1 = D91 = de1 + wij/\9^ ... (4.3)

The curvature 2-form of w is

■/T-j = dw^ + ...(4.4)

These two form satisfy the Bianchi identities
D-Hij = 0, D©1 = /\ & ... (4.5)
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We shall use the tensors Q1.. and R1.. . and the one-forms
jk jkI

Q1^ and R1jk
01

of the torsion and the curvature respectively

-A*. =

i 0JA Qij

k ek/SRljk
= | Rjkl ekA e1

From (4,3), (4.4), (4.6) and (4.7) we have
@ 1 = na3

-A*

= dQi + j f\

=

= dw* + wx^0k

= s^jki eW

... (4.6)

... (4.7)

... (4.8)

. ... (4.9)

Here (4.8) and (4.9) are called' as first and second Cartan's 
structural equations respectively.

5) THE FIELD EQUATIONS

If the manifold M is four-dimensional and has a metric 
tenser, it Is possible to introduce the completely antisymmetric 
pseudo-tensor » where

i 1/2
ni234 s |detgijl 

Together with *1,ijkl

ij

, the forms

I
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*U41. = 0^,4'ijk ijkl 43 k
... (5.1)

= 4 gPa n.. , *i = t e1*1!*~ S’ ~ " -*ij * ■' ” 4mm
3 ~ ‘ ' 'ii 7 4 ~ ‘i

Span the Grassmann algebra of M and

m©■%*,., = s? n441. - 6?, *1,4 4 + sT n. ,4 -‘ijkl ’1 ijk k lij ’ uj ‘kli ‘S "JU

^’■ijk = sk^ij + 6j\i + 6i ’’jk ’ 
= 6^. - 6^. , 

n (5.2)

The Einstein-Cartan field equations are obtained from 
the variational principle.

... (5.3)

where L is the material Lagrangian fcur-form and is given by
L = L (*A, d*a, O1, gy ) .

i

It is depending locally on the spinor or tensor fields \jr^ , 
their covariant derivatives and the metric; K is the

gravitational constant and S is the Ricci four-form defined 

globally as
S = | -fl!^ = | m,

where R = gln 6mk Rklmn; and *1
... (5.4) 

is the volume four-form.

Varying the total action with respect to the metric,
• • i.e. 01 since g^ are fixed, the connection w1^ and the fields

independently, we get the following equations

f”...... .wapumm
miVAJi Uw..t^oifY. K.OUdA.'UlS
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g . = kt . , . = kS^ . ,
1’ 1 1 ’

JL = O . (5.5)
A

where in
±n jk J2 ijk J — ’ c î “ Dn i '

. (5.6)
6L
60j

sj = 1 6L
i 2 . i6w ,

The orthonormality of the frames together with the fact 
the connection as a metric connection (Dg.^ = °) tells us that an 
infinitesimal variation in connection induces tetrad rotation. 
Hence is the spin density of the system and t^ is the
energy-momentum vector-valued three form. In the general case 
we have the energy-momentum symmetric four-form,

Tij 1 Mi-
2 69ij ’

which, along with t^ and satisfies the identity

T[ = /\t1 - ~ DSJ ... (5.7)

From the equations (5.5) and (5.6) by using (4.8) and 
(4.9) we obtain Binstoin-Cartan equations as

r{ - | R5^ = - kt^ ... (5.8)

Qjk “ 5j Qlk " 6k Qjl = " kSjk **• ^5*9^

where t^ and S1^ are defined through the relations

ti = y i , sij = \s ij .. (5.10)
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In finding the solutions of Einstein-Cartan equations, we
l

use a classical description of spin as follows

si3k ■ “Sk - with “Sk =0

where u1 is the velocity four-vector and 

angular momentum tensor.

... (5.11)'

is the intrinsic

In case of a perfect fluid distribution with isotropic
/

pressure the cononical tensor for such a distribution is given by

■tkj = (P + ^vivj - P9ij ... (5.12)

together with g^V.jV,. = 1»

where p is the pressure, ^ is the derisity and is tho
flow vector which describes the radial motion of the fluid.

6) COMPARISON WITH EINSTEIN’S THEORY

The comparison between the Einsteinian theory of gravitation 
and the Einstein-Cartan theory is summarized in the following Table[27

Einstein theory Einstein-Cartan theory

Sources T t + s

gravitational
description

field g + w 
or g + Q

In the Einstein theory the energy-momentum of matter T is the 

only one source of gravitation. This situation may seem
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unjustified from the point of viow of elementary particle 

physics, where it is difficult to answer the question, which of 

two invariants of the Poincare group is more “important" : 

mass or spin ? Taking this into account, in the Einstein-Cartan
'j

theory we have two quantities which serve as sources of gravita­

tional field: except of the energy-momentum tensor t, we have 

the spin tensor S. The energy-momentum tensor t couples to the 

curvature of the metric but assymetric connection w in a similar 

way as in the Einstein theory. Since the connection w is metric, 

one can express it by the metric field g and the torsion field Q. 

Therefore, we can consider this theory as the theory cf two 

tensor fields - g and Q - however the role of these tensor fields 

is different : the torsion is algebraically connected with 

sources.

Torsion does not propag’ate

Torsion is only found inside spinning matter. In the 

vacuum we have the usual Riemann space-time geometry where the 

Einstein tensor vanishes. Torsion cannot propogate in vacuum as 

it is tied to matter. The propagation of gravity is the same as 

in Einstein’s theory in the vacuum. The difference springs for 

the metric dependent part of gravity from redefined sources.

The metric energy-momentum tenser of General Relativity in this 
context is replaced by the combined energy-momentum tensor of 

Einstein-Cartan theory. The sources look different but the 

field is the same.
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Spin contact interaction

The long distance behaviour of Einstein-Cartan theory is 
the same as in General Relativity but the short distance behaviour 
is distinctly different. Adamovicz [1] shown that in the case of

the linear approximation Einstoin-Cartan theory and the general 
relativity gives the same metrics of space-time.

Scalar matter, Photons end Neutrinos

If spin S *= 0, mass m # 0, it is valid for spinning massive 
matter. Matter without spin (S = O) i.e. a scalar field produces 
no torsion. Spinning massless matter deserves special attention. 
Maxwell’s field (s = 1, m = O) cannot produce a gauge invariant 
torsion and cannot be coupled to the U^. Neutrinos (s=l/2, m=0) 
play an interesting role and their special relativistic Lagrangian 
is not invariant in a U^. At ordinary matter densities we can get 
the results of General Relativity by safely neglecting the. 
correction.

Equation of Motion

In General Relativity, the test particles which are point 
like and neutral fall along geodesics of the Riemannian space-tirnc
V4 of General Relativity. This behaviour can be derived from the 
energy-momentum law of General Relativity or from the field 
equations. In Einstein-Cartan theory a typical massive test mass 
carries spin an^ therefore falls neither along a straight line 
nor along a shortest line (geodesic).
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7) COMPARISON OF EINSTEIN MODEL WITH ACTUAL UNIVERSE

The most satisfactory feature of the Einstein model is its 
correspondence with a universe which could actually contain a finite 
concentration of uniformly distributed matter. In this respect it 
gives us a cosmology which is superior to that provided by the « 
de-Sitter model. This 'advantage is gained only at the expense of , 
introducing the extra cosmological term l\g^j into Einstein's 
original field equations which is a device similar to the modifi­
cation in Poisson’s equation proposed in order to permit a uniform

static distribution of matter in flat space of the Newtonian 
theory.

The most unsatisfactory feature of the Einstein model as a 
basis fGr the cosmology of the actual universe isTthat it provides 
no reason to expect any systematic shift in the wave-length of 
light from distant objects. In the actual universe, however, the 
work of Hubble and Humason shows a definite red-shift in the light 
from the nebulae which increases with the distance. This is of 
course the main consideration which will lead us to prefer non­
static to static models of the universe as a basis for actual 
cosmology.

8) REASONS FOR CHANGING TO NQN-STATIC MODELS

The original static universes of Einstein and of de Sitter 
are certainly very important in furnishing examples of the kind 
of cosmological models those can be constructed within the 
theoretical frame-work of .General Relativity. It is ev
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that neither of these models give a satisfactory description of 
the present state of the actual universe, the cne because it 
permits no shift in the wave-length of light from the nebulae, 
and the other because it permits no matter or radiation to be
present in space.

\

We must hence turn to some less restricted class of 
models in our attempts to describe the behaviour of the actual 
universe.

There are several reasons which make it natural to abandon 
this assumption that our cosmological models should necessarily be 
static in character. They are :

(1) The non-static models which we shall study are, to be sure, 
mathematically more complicated than static ones.

(2) It is of course evident that any increase in generality 
which can be brought about by the removal of previous restrictions 
will be of advantage in increasing the range of possible applica­
bility.

(3) Although there was some observational evidence for ascribing 
a reasonably stationary character to our surroundings at a time 
when our knowledge of the universe was practically limited to the 
stars in our own galaxy, this evidence now be replaced by the 
observed red-shift in the light from the extra-galactic nebulae 
which at least leads to the presumption that these objects are 
not static but are moving away from each other.
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4

(4) Even if some successful alternative hypothesis should be 
proposed for explaining this red-shift which certainly lead to 
changes in gravitational field with the time and hence necessa­
rily to a non-static universe.

(5) We shall find that an originally static Einstein universe 
would in any case not be stable but would start to expand or 
contract as a result cf disturbances.

By dropping the restriction to static models, we study a 
considerable group of non-static homogeneous models, vnich were 
first theoretically investigated by Friedmann and first considered 
in. connection with the phenomena of the actual universe by

vLomaitre.

9) SURVEY OF OUR INVESTIGATION
e

In Chapter I, following the work of Kopczynski [25] and 
Prasanna [46] we have described briefly the structure equations 
of Einstein-Cartan theory and the field equations.

In Chapter II, a non-static conformally flat spherically
symmetric perfect-fluid distribution in Einstein-Cartan theory is 
considered. With the assumption that the spins of the particles 
composing the fluid are all aligned in the radial direction alone, 
we obtain the connection forms, curvature forms and Riemann
tensors and hence Ricci tensors and scalar of curvature are 
obtained in Section-2. In Section-3, the field equations are
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obtained. Adopting the Hehl's approach [16,17], these field
equations are solved in Section-4. Finally, in Scction-5, we 
discussed the particular cases of this solution.
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