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CHAPTER-T1I

% General Relativity is the prime example of a

physical theory built on a mathematical
'leap in the dark', It might have remained

undiscovered for a century if a marf with

Einstein's peculiar imagination hadd not
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CHAPTERS-TI

1) INTRODUCTION

In recent ycars there has been a revival of interest in the
Einstein-Cartan theory of space-time, 1In this theory the intrinsic
spin o% matter is incorporated as the source of the torsion of the
space~time manifold, According to relativistic quantum méchahics
mass and spin are the twoc fundamental characters of an elementary

particle system, p

In Eincstein theory of general relativity mass plays a
dynamical role but not the spin. The density of energy-momentum
is the source of curvature, By introéucing torsiocn and relating
it to spin one can obtain an interesting link between the thepry

of gravitation and the theory of special relativity.

By iqtroducing torsion and relating it to the density of
intrinsic angular momentum the Einstein—Cartqn theory restores
the analcgy between mass and spin, The similarity between mass
and spin extends to the principle of equivalence at least in its
weak form, According tc this principle the world line of a
spinless test particle moving under the influence of gravitational
fields only depends on its initial position -and velocity but not
on its mass, Similarly the motion of a spin depends on the

initial data but nct on the magnitude of the spin of the N ORI
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The notion of an affine connection was casually mentioned by
Eddington [12] in discussing possible extensicns of general rela-
tivity., He pointed out thét applications in macro-physics are
ccnceivable but did not develop his idea, Torsicn as the anti-
symmetric part of an asymmetric affine connection was introduced
by Elie Cartan [7] in 1922, He suggested a simple generalization

]

of Einstein's thecry of gravitation,

In 1922 Elie Cartan proposed to consider, as a mcdel of
space-time, a four-dimensional differentiable manifé}d with a
metric tensor and a lincar connection compatible wité thel metric
but nuot symmetric, in general. According to Carta?éé%heitoFsion
tensor of the connection should be related to the density'of'

intrinsic angular momentum of matter and it shculd vanish in

matter free regions, Igggpend?n%}y pf _E§£§§51_81m11ar ideas q?re

put forward by Wagoner [74], Nordtvedt [40] and Bergmann [6]] The
O 8 ——

generalizatﬁon due to Cartan constitutes only a slight departure
from the Eiqkteinis theory: the field'equations in empty space

'
remain inchanged. . g

“he desirability of such an analysis may be related to
recent discoveries in éstroncmy. It is conceivable that torsion
may produce‘observable effects insidé 'those objects which, as the
neutron stars, have built-in strong mégnetic fields, possibly
accompar.ied by a substantial average value of the density cf spin.
One is tempted tc speculate that intrinsic angular momentum may

influence-cr even prevent- the occurrence of singularities in
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gravitational collapse and cosmology, A recent result of
Kopczynski [25] on the geometry of a Universe filled with a
spherically-symmetric distribution cf mass and spin, Supports

this idea,

2) EINSTEIN-CARTAN THEORY

In recent ycars, there has been a growing interest in the
foundation of Einstein's theory of general relativity. A number
of new relativistic theories ¢f gravitation were put-fcrward by
Brans and Dicke [4], Bergeamann [6], Wagoner [74], Nordtvedt [40]
ana Sen and Dunn [55], Their predictions with the obse;vational
data and the available experimental results are éompar?d.with

Fa

those of the older thecries,

Thorne and his coc-werkers [64] have undertaken a systematic
study of what they call ®metric theories of gravitation®, These
are the theories which may be formulated in terms of Riemannian
geometry in space-time, possibly with supplementary structures
added to it, The tctal stress-cenergy tensor of matter is assumed .
to satisfy a differential conservation law determined by the

Riemannian linear connection of space-time,

The questicn of singularity in general relativity is a
much discussed problem, Penrose [44], Hawking [15] and Geroch[14]
have shown that the occurrence cf space-time singularities is a
general prediction of the theory and not just the consequence of
the symmetry of th@ models, Modifying Einstein's equations of

general relativity has been one one of the techniques fcllowed



tc aveid space-time singularities, Recently Trautman [69] has
proposed that spin and torsion may avert gravitational singulari-
ties, by considering a Friedmann type =f universe in the frame-
work of Einstein-Cartan thecry and cbtaining a minimum radius

Ro at t =0 .,

According to Hehl Einstein-Cartan thecry is an even more
beautiful theory than Einstein's general relativity because of its

ralaticn to the Pocincare group,

In Trautman's opinion the Einstein-Cartan theory is the
simplest and the most natural modification of the criginal,
Einstein's thcory of gravitation, This modification deserves tc
be analysed in detail, in precedence over the theories requiring ,

an additional scalar field tc describe gravitational phenomena, !

3) HISTORICAL SURVEY OF EINSTEIN-CARTAN THEORY

Einstein-Cartan theory begins with Scima [56] and Kibble[24],
It was further developed by Trautman [67-70], Adamovicz [1],
Kerlick [22,23], Kuchowicz [30-34], Hehl [16,17], Hehl et al.[18].
Tafel [62,63], Stewart and Hajicek [58], Kopczyhiski [25-27],
Raychaudhuri [54] and Prasanna [45-49],

Since the predictions of the Einstein-Cartan theory differ
from those of general theory of relativity only for the regions
filled with matter, An important field of application for the
theory is relativistic astrophysics which deals with the

thecries of stellar cbjects like neutron stars with scme zlignment



of spins of the ccnstituent particles and under the conditions
when torsicn may produce some observable effects, Hence it is

’

desirable to understand the implications cf the Einstein-Cartan
theory in full for finite distributions like fluid spheres with
non-zerc pressure, With this view the problem of static fluid
spheres in Einstein-Cartan theory were cocnsidered by Prasanna[46],

Kerlick [23], Kuchowicz [33], Skinner and Webb [60].

In 1964, Istvan Ozsvath [42] had sclved the Einstein's
field equations with incoherent matter for the case of hgmcgeneous
space~time, i,e, for metrics allowing a four parametric'simply
traris.tive group of motions, He has obtained twc sets of new
solutions by using a Spincr-technique, Misra, Pandey and
Srivastava [37,38] have investigated the Einstein-Maxwell equations
for a stationary gravitational field in 1972 and for an axially
symmetric staticnary gravitaticnal field in 1973, Assuming the
space is filled with charged incoherant matter, they have shown

-

that if the Lorentz force vanishes everywhere, the charge density

bears a constant ratic tc the mass density and this constant

ratio may assume arbitrary values,

Hehl, Heyde and Kerlick [18] have considered the field
equations of general relativity with spin and tersion ( Uy theory)
to describe correctly the gravitatiocnal properties of matter on a
macrcphysical level, By an averaging prccedure one can arrive
at a macroscopic field equation, which under normal matter

densities coincides with Einstein's equation of c=2nventionsal
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general relativity, They have shown how the singularity theorems
of Penrose and Hawking must be modified to apply in U, theory and
all known cosmological models in Uy theory which prevent singula-
rities have also shown to violate an energy condition of a

singularity thecrem,

Following the work of Trautman [703, Prasanna [46] has
desZribed briefly the Einstein-Cartan equations with special
reference to a perfect fluid distribution and then obtained
three solutions adopting Hehl's [16,17] approach and Tolman's[65]
technique, He has found that a space-time metric similar to the
Schwe rzschild interior solution will no longer represent a

homogeneous fluid sphere in the presence of spin density,

Arkuszewski et al [3] discussed the-junction conditions
in Einstein-Cartan theory, Raychaudhuri and Banerji [54] constru-
cted a specific solution corresponding to a collapsing sphere
and showed that it bounces at a radius greater th;n the Schwar-
zschild radius, Banerji [5] has pointed out that Einstein-Cartan
sphere must bounce outside the Schwarzschild radius if it
bounces at all, Nduka [39] gener:lized the Prasanna's [46] work
by considering a static charged fluid sphere in Einstein-Cartan
theory, Singh and Yadav [59] studied the static fluid sphere
in Einstein~Cartan theory and obtained the solutions in an

analytic form by the method of quadrature.

Kopczyrniski [25-27] studied and developed the Einstein-

Cartan theory of gravitation. The specialization of the



technique gives the solutions of Adler [2], Kuchowicz [33],
Whitman [75], Krori et al.[28,29] and Mehra [35], Spafially
homogeneous cosmological models of Bianchi types VI and VII

based on Einstein-Cartan theory were considered by Tsoubelis
[71]. Som and Bedran [61] got a class of solutions that
represents a static incoherent spherical dust distribution in
equilibrium under the influence of torsion and spin. Krori

et al [29] gave a singularity free solution for a static charged
fluid sphere in Einstein-Cartan theory. Pandey ct al [43] sclved
the Einstein-Cartan field equations!for a static spherically

symmetric fluid sphere by a suitablé assumption on the metric

potential 9y7-

In 1982, Rao and Reddy [50] have shown that there are no
spherically symmetric static conformally flat solutions of
Nordtvedt-Barker field equations rgsﬁegtively perfect-fluid
distribution with disordered radiation obeying the equation of
stat? Q = ép, except for the trivial empty flat space-time of
Einstein's theory, Ray and Smalley [51,52] have presented an
improved pérfect—fluid energy momentum tensor including spin and
torsion with use of a Lagrangian variational principle based
upon the tetrad formalism of Halbwach and the method of
constraints oflfay. Nurgaliev and Ponomarev [4l] have shown

that for a specific value of the constant of interaction between

spins, which must be introduced from gau%e considerations, the




In 1983, Srivastava and Prasad [57] have discussed the
boundary conditions at the interface of spherically symmetric
perfect-fluid distribution and the exterior,vacuum and as a conse-

I
quence they have established the following theorem : ¢ Uniform

expansion or contraction of a perfect fluid sphere obeying an

equation of state with nonuniform density is not admitted by the

field equations¥, It is further shown that.the Wyman metric is not

suitable on physical ground to represent a cosmological solution,
Zhu Shi-Chang [76] has obtained some conformal flat interior
solution of the Einstein-Maxwell equations for a charged stable
static sphere which satisfy physical conditions inside thec sphere,
Hirohisa Ishikaa [19] has presented the exact nonistatic solutions
for the coupled repulsive sourceless massless scalar field and the
gravitational field and shown that these soiutions have the same
form as the spatially conformally flat static metric

ds2 = - eZAdt2 + e"2h (dx2 + dy2 + dzz)

deRitis et gl [11] have studied spin fluid in Einstein-
*Cartan theory : A variastional piinciple and an extension of the
velocity potential representation, Ray and Smalley [53] have
considered an Eulerian variational principle for a spinning fluid
in Einstein-Cartan metric~tcrsion theory and they have shown that
the symmetric energy-momentum tensor is a sum of a perfect—fluid

term and a spin term,

Recently Kallyanshetti and Waghmode [207] have considered a
static conformally flat spherically symmetric perfect fluid



distribution in Einstein-Cartan theory., They have solved the
field equations by adopting Hehl's [16,17] approach with the
assumption that spin of the particles composing the fluid are all
aligned in the radial direction alone, They have observed that
the deﬁsity Q will not be constant as obsérved by Narlikar in
1950 fcr conformally flat spherically symmetric perfect fluid

distribution,

Faulkes [13] has shown that shear~free sslutions of the
Einstein~-Maxwall field equations can be found by solving a single
second order non-linear differential equation containing two
q;bitrary functions of thé radial co-ordinate, But in this vecar,
Chattarjee [10], in his work, a general method has proposed tc
solve th%s nonlinear equation which,in effect, extends an earlier

work of Wyman to its electromagnetic,

A) THE STRUCTURE EQUATIONS OF EINSTEIN-CARTAN THEORY

Let M be a four-dimensional differentiable manifold of
class C?D oriented connected Hausdorff and let g be a Lorentz
metric defined on it, All geometric objects on M, other than
forms, will be described by their components with respect to a
field Qi of coframes in the cotangent spaces of M which are
linearly independent at each point of M, Since we are intercsted
in spinor fields we take the Qi to be in general anhoicnéﬁlc
and the associated tetrad to be orthonormal, The metric g =znd
the connection w are described with respect to %he co-frame Gi
chosen by the metric components 95 5 and by a set of cne~forms

i

w Y
J



' Therefore we have
g - dSz = g Qi®9j se s (401)
ij

and le are completely determined by the functions x’;j such
that

i i .k
3 = ] s e e .2
w 3 Y.kJ e (4.2)

If ¢A (A,B, veo =1, ¢e., N) is a tensor valued p-form,
the (p + 1)-form

- Bj i
is called the covariant exterior derivative of @, , tne
constants 6° 's are related to the tensorial type of @,. In

particuvlar, if dq is a O-form, its covariant exterior
4

derivative becomes covariant derivative
- i
and if ¢ is a scalar p~form

DY = dp .

The covariant exterior derivative of the vector-valued l-form

i
\E) is the torsion 2-form of w

i + Wij!\‘gj coe (4-3)

S .
\@l:DQl:dQ

The curvature 2-form of w is

+

i i i k
ﬂj = dw jtw AW vee (4,4)

These two form satisfy the Bianchi identities

Dﬂij =0, D@ = ﬁi"j /N e ... (4.5)

\

10
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We shall use the tensors Qijk and Rijkl and the one-~forms

Qij and Rijk of the torsion asnd the curvature respectively
i - Leingt
®* = 5 O
i _ 1 kagpl
J’Lj = O ARy
= 5 Rj, One’ ’ coe (427)

From (4,3), (4.4), (4.6) and (4.7) we have

(j) i ot

= dal 4+ wijr\ej

_ 1l Al oin gk !

— 2ije i\@ sre (4.8)
i _ i i k
_(Lj dwj+wkl\9
_ )i kKn o1

_2Rjk19/\6 e (4.9)

Here (4.8) and (4.9) are called as first and second Cartan's

structural equations respectively,

5) THE FIELD EQUATIONS

If the manifold M 1is four-dimensicnal and has a metric
tensor, it is posecible to introduce the completely antisymmetric

pseudo-tensor .. where
ijkl 1/2

Toza = |detay;)

Together with nijkl’ the forms
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- Al -1k
eeo (5.1)
_ 1o L
Span the Grassmann algebra cf M and
m - .M m m m
O M55k =81 Mgk = 8k M43 85 Meas = 81 My o
1 - 1 1 1
3 "nijk = aknij + éjnki + 8 njk ,
k _ -k k
j - j -
e Ani 5i n LN N ) (5.2)

The Einstein-Cartan field equations are cbtained from

the variational principle,

5q{(5 + KL) =0 eeo (5,3)
where L is the material Lagrangian fcur-form and is given by
L =L (¥ D¥ps O, 945 ) .

}

It is depending lccally on the spinor or tensor fields WA ’
their covariant derivatives DwA and the metric; K is the
gravitaticnal constant and S is the Ricci four-form defined
globelly as
=inla Nk =1 .
S—2nk1\-¢11—23ﬂ, LI (504)

k
Imn

In .m

where R = 9 8 K R ; and N is the volume four-form,

Varying the total action with respect to the metric,
i.e. ©' since gij are fixed, the connection wij and the fields

WA independently, we get the following equations

ARR. P UNREDTYAR LIRRARY

EBIVAaLM UinseaatlY, KOLbASLS
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- s DS 8L _
Gl - ktis e i - kSJl ? =0 sa e (505) )
awA
where in
- L jk J = - ned
oo (506)
8L j 1l 8L
- —_ S . = o T,
ti 591 ’ i 2 6W:L

The orthonormality of the frames tcgether with the fact
the connection as a metric connection (Dgij = 0) tells us that an
infinitesimal variation in connecticn induces tetrad rctation,
Hence sJi is the spin density of the system and t; is the

energy-momentum vector-valued three form. In the general case

we have the energy-momentum symmetric four-form,

L

o

. !

T1d

j - .
T, = oAt - 1ps ] een (5.7)

From the equations (5.5) and (5,6) by using (4,8) and

(4,9) we obtain Einstein-Cartan equations as

R] - % Rs) = - ktji ... (5.8)
i i 1 i1 i
Qj ~ 8] Qg - 8k QG = - ijk vee (5.9)

where tJi and Sljk are defined through the relations

k
S in LN ] (5010)

- J -
by = Lty L Sy = NS

ij ] k
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In finding the solutions of Einstein-Cartan equations, we
use a classical description of spin as fcllows

Si. = uiS

i . with uksjk =0 v, (5.11)

jk
where u> is the velocity four-vector and Sjk is the intrinsic

angular mcmentum tensor,

In case of & perfect fluid distribution with isotropic

’

pressure the cononical tensor for such a distribution is given by °

tkj = (p + ({)Vivj - Pg ) (‘5012)

13

.

together with glJViVj =1,
where p 1is the pressure, Q is the derisity and Vi is the

flow vector which describes the radial motion of the fluid,

6) COMPARISON WITH EINSTEIN'S THEORY

The ccomparison between the Einsteinian theory of gravitaticn

and the Einstein-Cartan theory is summarized in the following Table[27

Einstein thecry Einstein~Cartan theory

- T W e S YO B S T C W D T W W S G 1900 e WP S R S e G S S

Sources T t + s
gravitational field 9 g+w
description or g + Q

In the Einstein theory the energy-momentum of matter T is the

only one source cof gravitation, This situation may seem
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unjustified from the point of view of elementary particle
physics, where it is ?ifficult tc answer the question, which of
two invariants of the Poincare group is more ®important® :

mass or spin ? Taking this intc account, in the Einstein-Cartqn

thecry we have two quantities which serve as scurces of gravita-
tional field: except of the energy-momentum tensor t, we have

the spin tensor S. The cnergy-momentum tenscr t couples to the
curvature of the metric but assymetrié connection w in a similar
way as in the Einstein theory, Since the connection w 1is metric,

one can express it by the metric ficld g and the torsion field Q.

Thereforz, we can consider this theory as the thecry cf twe
tenscr fields - g and Q - however the role of these tensor fields
is different : the torsion is algebraically connected with

sources,

Torsion dces not propagate

Torsion is only fsund inside spinning matter. In the
vacuum we have the usual Riemann space-time geometry where the
Einstein tensor vanishes, Torsion cannot propogate in vacuum as
it is tied to matter., The propagaticn of gravity is the same as
in Einstein's theory in the vacuum., The difference springs for
the metric dependent part of gravity from redefined sources,

The metric energy-momentum tenscr of General Relativaty in this
centext is replacec by the combined energy-momentum tensor of
Einstein-Cartan theory, The sources look different but the

field is the same,
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N

Spin contact interaction

The long distance behaviour of Einstein-Cartan theory is
the same as in General Relativity but the short distance behaviour
is distinctly different. Adamovicz [1] shown that in the case of
the linear approximation Einstein-Cartan thecry and the general

relativity gives the same metrics of space-time,

Scalar matter, Photons and Neutrinos

If spin S # O, mass m # O, it is valid for spinning massivc
matter. Matter without spin (S = 0) i,e, a scalar field produces
no tersion, Spinning massless matter deserves special attention,
Maxwell's field (s = 1, m = O) cannot produce a gauge invariant
torsion and cannot be coupled to the U,, Neutrincs (s=1/2, m=0)
play an interesting role and their special relativistic Lagrangian
is not invariant in a U, At crdinary matter densities we can get
the results of General Relativity by safely neglecting the U,

correction,

Equation of Motion

In General Relativity, the test particles which are point
like and neutral fall along geodesics of the Riemannian space-timc
V4 of General Relativity. This behaviour can be derived frem the
energy-moméntum law of Gemeral Relativity or from the field
equations, In Einstein-Cartan theory a typical massive test mass
carries spin an” therefore falls neither aleng a straight line

nor along a shortest line {geodesic).
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7) COMPARISON OF EINSTEIN MODEL WITH ACTUAL UNIVERSE

The most satisfactory feature of the Einstein model is its
correspondence with a universe which could actually contain a finite
concentration of uniformly distributed matter, In this respect it
gives us a cosmology which is superior to that provided by the v

de~Sitter model, This advantage is gained only at the expense of

"

intreducing the extra cosmological term I\gij into Einstein's
original field cquations which is a device similar to the modifi-

cation in Poisson's equation proposed in order to permit a uniform

static distribution of matter in flat space of the Newtonian

" thesory.

The mcst unsatisfactery feature of the Einstein model as a
basis for the cosmology of the actual universe is that it provides
no reason to expect any systematic shift in the wave-length of
1light from distant objects., In the actual universe, however, the
work of Hubble and Humason shows a definite red-shift in the light
from the ncbulae whiéh increases with the distance, This is of
ccurse the main consideration which will lead us to prefer non-
static to static mcdels of the universe as a basis for actual

cosmclogy.

8) REASONS FOR CHANGING TO NON-STATIC MODELS

The original static universes of Einstein and of de Sitter
are certainlyvery important in furnishing examples of the kind
of cosmclcgical models these can be constructed within the

theoretical frame-work of .General Relativity.
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that neither of these models give a satisfactory description of
the present state of the actual universe, the cne because it
permits no shift in the wave-length of light frem the nebulae,
and the other because it permits no matter cr radiation to be

present in space,

AN

We must hence turn to some less restricted class of
models in our attempts to describe the behaviocur of the actual

universe,

There are several reasons which make it natural tc abanden
this assumption that our cosmological mcdels should necessarily be
static in character, They are :

(1) The non-static models which we shall study are, to be sure,

mathematically more ccmplicated than static ones,

(2) It is of course evident that any increase in generality
which can be brought abcut by the removal of previous restrictiocns
will be of advantage in increasing the range of possible applica~

bility,

(3) Although there was some observational evidence for ascribing
a reasonably stetionary character tc our surroundings at a time
when our knowledge of the universe was practically limited to the
stars in our ocwn gelaxy, this evidence now be replaced by the
observed red-shift in the light from the extra~galactic nebulae
which at least leacds to the presumpticn that these objects are

not static but are moving away from each other,
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i
(4) Even if some successful alternative hypothesis should be

proposea fcr expleining this red-shift which certainly lead teo
changes in gravitational field with the time and hence necessa-

&

rily to a non-static universe,

(5) We shall find that an originally static Einstein universe
would in any case not be stable but would start to expand or

contract as a result cf disturbances,

By dropping the restriction to static models, we study a
ccnsiderable group of non-static homogeneous models, wnich were
first ihecretically investigated by Friedmann and first considered
in. connection with the phencmena of the actual universe by

Lomaitre,

9) SURVEY OF OUR INVESTIGATION

©
In Chapter I, following the work of Kopczynski [25] and
Prasanna [46] we have described briefly the structure equations

of Einstein-Cartan theory and the field equations.,

In Chapter II, a non-static conformally flat spherically

symmetric perfect-fluid distribution in Einstein-Cartan theory is
considered., With the assumption that the spins of the particles
composing the fluid are all aligned in the radial direction alone,
we obtain the connection forms, curvature forms and Riemann
tensors and hence Ricci tenscors and scalar of curvature are

cbtained in Section~2, In Section-3, the field equations are
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obtained, Adopting the Hehl's approach [16,17], thesc field

equations are sclved in Section-4, Finally, in Section-5, we

discussed the particular cases of this solution,

~
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