
CHAPTER - II

Non-Static Conformally Flat Spherically 
Symmetric Perfect Fluid Distributions 
in Einstein-Cartan Theory

w Einsteir-Cartan theory is an even 
more beautiful theory than Einstein's 
general relativity because of its 
relation to the Poincare Group. "

• • t -HEHL, F.W



CHAPTER-I I

Non-static Conformally Flat Spherically Symmetric 
Perfect-fluid Distribution in Einstein-Cartan Theory

l) INTRODUCTION

The Einstein-Cartan theory of space-time has attracted a 
lot of interest in recent years. From the cosmological stand 
point the interest stems from the fact that non-singular cosmo­
logical models in Einstein-Cartan theory have been constructed 
explicitly. In most of these models the spin of the particles 
composing the fluid is assumed to be aligned along a particular 
direction.

The general theory of relativity•is bedevilled by a number 
of unknown functions - the ten components of g.y. Hence there is 
a little hope of getting physically interesting results without 
making reduction in their number. In conformally flat-space-time 
the numoer of unknown functions is reduced to one. The confor­
mally flat metrics are of particular interest since all of the 
homogeneous and isotropic osmological models of the universe can 
be cast in conformally Minkowskian form. Due to the equality 
of conformal curvature tensors of two conformally related spaces 
it is clear that corresponding to the two existing physical 
systems, one can generate the others by introducing a conforma'l 
transformation.
* This paper is sent to Phys.Rev.D. for publication.
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A physically significant space-times which are conformally 
flat are the Sohwarzschid■ internal solution and Lemaitre universe.

Buchdahl [2] has shown that the only static distribution 
of the fluid with positive density 'and pressure which would 
generate a conformally flat metric through the Einstein's equations 
without cosmological term is that described by the Schwarzschild 
inferior solution. Burman [3] discussed the motion of the
particles in conformally flat space-time. Singh and Abdussattar 
[22] has obtained a non-static generalization of the Schwarzschild 
interior solution which is conformal to flat space-time, and it has 
also shown that the model admits cf distribution of discrete parti­
cles and disordered radiation. Nduka [13] generated a closed
analytic solution to the Einstein's equations for a uniformally

«charged fluid sphere by a method similar to that used by Adler [1], 
Zalcev and Sikin [27] have obtained conformally flat non-static 
solutions in general relativity theory and scalar-tensor-theories 
of gravitation. Ccllinson [5] has shown that every conformally 
flat axisymmetric stationary space-time is static. He has also 
proved that if the source is a perfect fluid the space-time is the 
interior Schwarzchild field. Gupta [6] has observed that if a 
conformally flat space-time describes a perfect fluid distribution 
of matter with q 4 O, then it is necessarily cf embedding class 
one and the lines of flow are normal to the hypersurface
q^x1) = constant. Gurses [7] has shown that the Schwarzschild 
interior metric is the only conformally flat static solution of 
the Einstein field equations with perfect fluid distribution.
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Roy and Raj Bali [20] have obtained the solutions of 
Einstein's field equations representing non-static spherically 
symmetric perfect fluid distribution which is conformally flat. 
Prasanna [15] has described the Einstein-Cartan equations with
special reference to a perfect fluid distribution following the 
work of Trautman and then obtained three solutions adopting 
Hehl's [8,9] approach and Tolman's [23] technique. He has shown 
that a space-time metric similar to the interior Schwarzschild 
solution will no longer represent a homogeneous fluid sphere in 
the presence of spin density.

i

Recently Kallyanshetti and Waghmode [11] considered the 
static fonformally flat spherically symmetric perfect fluid-dist-
ritoution in the frame-work of Einstein-Cartan theory and obtained
the field equations. They have solved these field equations and
discussed the reality conditions in the view of their solutions.

Ul.They have observed that the density q will nctjconstant as observed 
by Narlikar [12] for conformally flat spherically symmetric 
perfect fluid distribution. But they have shewn that ^ will be 
constant.

In this chapter we consider the non-static conformally /
flat sperically symmetric perfect-fluid distribution in Einstein- 
Cartan theory and obtain the field equations. These field 
equations are solved.

In Section 2, we have considered the metric in non-static 
conformally flat spherically symmetric perfect-fluid distribution.
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By using Cartan structural equations, we have obtained the 
curvature forms -A2\, Ricci tensors R.. and the curvature

J “ J
scalar R. In Section 3, field equations ar’e obtained. In 
Section 4, solutions of the field equations are obtained by 
adopting Hehl's [8,9] approach. In Section 5, the solutions 
obtained are compared with those solutions obtained by Singh 
and Abdussattar [22], Kallynshetti and Waghmode [11].

2) METRIC AND THE CURVATURE

00Let M be a C four-dimensional oriented connected 
Hausdorff differential manifold and1 g be a Lorentz metric 
defined on it. The metric g and the connection w are described 
with respect to the co-frame 01 chosen by the metric' components 
‘g^ and by a set of one forms w1 .

Therefore we have

ds = g..O1®©^
XJ

where w^ are determined by 

i c* 1 gkw j - » kj y *
The Cartan structural equations are

D1 D0
d©* + w^/SG-* 

iQ\.k 0^A ©k

... (2.1)

... (2.2)

... (2.3)

\
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-C&. =' dw*. + w*. Awk.
3 3 k j

= | Rijkiek/Vv 01

Q1., w 3k
«i o1 6j Qlk ’k Qjl kS3^k

... (2.4)

... (2.5)

where D 
and R$kl

denotes the exterior covariant derivative and Q^k 
are the torsion and the curvature tensors respectively.

The classical description of spin is defined by the 

relation
sjk = >JiSjk with Sjkuk = O ...(2.6)

where u1 is the four velocity vector and S^k is the intrinsic 

angular momentum tensor.

We consider a non-static conformally flat spherically 
symmetric perfect-fluid distribution represented by the space- 
time metric :

ds2 = e2k (- dr2 - r2d02 - r2sin2ad$2 + dt2) ... (2.7)
v

t
where X is a function of r and t alone. Ihe energy-momentum 
tensor for a perfect-fluid distribution is given by

T±j = (jp + Q )ViVj - pgijS 

together with g^V.V. = 1,1 J
where p is the pressure, q is the density and V.'J ^

... (2.8) 

^,0,0,^)

is the flow-vector which describes the radial motion of the 
fluid.
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We have then the orthonormal tetrad
/

91 = e^dr, 92 = re^d9

93 = rsin9e^d$, 94 = e^dt

The metric (2.7) now becomes
ds2 = - /(91) + (92) + (93/ - (94) \ 

so that

... (2.9)

... (2.10)

9ij = diag (-1, -1, -1, 1).

We suppose that spins of the particles composing the fluid 
are all aligned in the radial direction alone. Therefore the only 
independent non-zero component of the spin S^j is S23 = ^ (say). 
From this the non-static condition, we have the velocity four 
vector u1 = 6^ , 1,3 =1,2.

Thus the non-zero components of

S

S

1
23
4
23

uls23 " 1*

4C - 1 u S22 mm

sljk are 

JC= JC .

JC= JC.
Therefore from Cartan's equations

.1 -i «1 . i r>l _ ,.ci- 6t Qt, - 6,1 Q*. *jk j jLk k *jl kSjk

we have the non-zero components of Qjk

§23 - k J< and 

Using (2.11) in (2.3), we get

Q23 = - k JC (2.11)
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(h)1 = £h)4 = - | k JK©2* 93

@2 =®3 =0

From (2.9), we obtain

d©1 = e“X x 04 e1

dQ2 = e~K(k' + r“1)Q1A92 + e“X XQ4A ©2

d93 = e~*(x' + r“1)01A ©3 + e“^94A ©3 

+ e~X r“1cot902A 93

d©4 = e"\' 0XA 04 . .

... (2.12)

... (2.13) 

... (2.14)

... (2.15) 

... (2.16)

where a dash and a dot over X denote differentiation with 

respect to r and t respectively.

Here (2.13), (2.14), (2jl5) and (2.16) are Cartan's first 

structural equations. Comparing these equations with the 

equations (2.3), we obtain the non-zero components of w1. as

2
w^ = I £ I-

1

ro = e^(x' + r“X)92 - | k jce3

«? = -A = ex(X* + r-1)©3 + 1 2 “ k JK9Z

wl4 = w4i = I^X©1 + e\x'©4

3w 2 ss " ^3 e^r-1icot©©3 - ~k JK©4 + j k JK©1

2
W 4 = 4w 2 = e^X92 + i k JKQ3 • • •

4
w 3 = 3w 4 eH©3 - jk JK©2

(2.17)
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Now from the Cartan's second structural equations
./if. = dwX. + w\ wk.

J J ” «J
we have

-Hi l
_ dw11 + w1JL/\ w^ + w12/\w21 + w13Aw31 + w14Aw41

= d(0) + O + [- eX(X» + r™1)©2 + jk JK93]a[eX(X'tr1)©^

- \ k J:©3]+[-ix(X,+r1}©3 - |k JK©2]/v[Ix(x'+51)©3 +

+ j k JC92] + [eXX©‘ + eXx'©4] A[eXX©* + eV©4 ]

= 0 + 0 + 0 + 0
(Since 91A91 = O and ©^ = -©^A©1 )

/ n1 =0.

2 = dwl2 + wliAw^2 + w12Aw22 + w13Aw32 +-w^4/\w42

= d[eXx'©2 - ^r"1©2 + ~ k JC©3 ] + 0 + 0

+ [- eV©3 - eXr-1©3 - | k JC©2] A[eXr~lcot©©3 - ™k JC©4 

+ ik'JC©1]^©1 + 5Xx’©4]A[eH©2 + |k JC©3 ]

= - eK(-X')dT!\\'Q2 - eX(4)dt AX’©2 - eX X‘*drA©2 -

- eX x’dtA©2 - eh'dQ2 - eX(-X* )drA'r“1©2 -

- eX(- XjdtAr”1©2 - e"X(-r2)drA©2 - e^^d©2 +

+ ~ k JC ! dr A ©3 + » k idtA©3 + ~ k JKd©3

+ \ k JCeX X ' ©3A Q4 - |k JC eX^ ' Q3A Q1 +

■f | k JC eXr“1©3A ©4 - | k JCeXr”X 93A 01 -
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- | k JKeXr“1cot 0Q2A 93 + ~ k2 J? Q2\ Q4

- j k2 J? 02A 61 + e2X(x)29*A92 + | k JKeXX01A Q3 + 

+ 02X\' X94A92 + j k JCeX X* 04Aq3

Using (2.9), (2.14) and (2.15), we get

st - [ e2*{xW + K'r‘ml - (X)2j - i k2 JK2] e2*®1 +

+ [ e'2X(X'X - X' ) - ™ k2 ] 94AQ2

+ 2 k' e [JK+2JKX' + 2 jCr”1 + JCX ] 0JAo3 

+ j k eX [ J:+ JCX - JCr”1 ] 94A 03 .

Similarly we can find the other components of w1^ .

Thus the non-zero components of curvature form -QLj

—Hu 2 = [ e2X ^X" + X'r”1 - (x)2| - | k2 J? ] 02A 91

+ [ e2x (x'X - X’) - | k2 K2 ] 94A 92 

+ ~ k eX [ JK ' + 2 JKX’ + 2 JCr"1 + JCx ] 6* A q3 

+ | k eX [ JC + JCx - JCr"1 ] W\ 93

3 = [ e2x^Xtf + X'r1 - (X)2} - | k2 JC2 ] 93A Q1

+ [ e2X (X'X - X') - | k^JC2 ] 94Aq3 

+ i k eX [ JC * +2 JCX» + 2 JCr”1 + JCx’ ] 92A01 

+ ^keX [JC -f JCX - JCr"1 ] Q2A ©4

are

%

• 9 • (2.18)
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~"± 4 = (X ~ X") 94A Q1

h* k JKeX ( x + X' + r"1) 93A 92.

_n?3 = e2X [ (X*)2 + 2X,r“1 - (X)2 ] 93A 92

+ |keX [ JK • +JKX' + JK + JCX ] O1^ 04
i

•_/€4 = [ S2X{x - (X1)2 - X' r"1! - ^ k2 «K2 ] 94A92 

+ [ e2X ( X'* -V) - ^ k2 JC2 ] 92A 91 

+ ~ k eX [ JK* + JKx’ + JCr"1 ] 91A93

+ \ k eX [ jc + 2 JKX + JKX’ ] 94A 03 .

4 = [ e2X{ X - (X')2 - XV1 - \ k2 JK2 ]94A03

+ [ e2X (X* X - X* ) - i k2 JC2 ] Q^Q1 

+ “ k eX [ JK ' + JKX' + JKr”1 ] 92A91

+ | k ek [ JC + 2 JKX + JKXf ] 92A 94 .

Comparison of these results with

—= i- Qk A Q^"j 2 R jkl y A y

immediately yields the following components of the Riemann 

tensor :

_1 _ Q1 R 221 ~ R 331 2x[ X" + X’ri —1 - (X)" ] - \ k2 JK2 

2X r% *; . i *r I k2 ^2R 242 R 343 ~ R 421 R 431 =®A[XX-X] ^

r1213 = r1321 “|k®X [ CK f + 2JCX’ + 2 JKr1 + JKx ]

mi I ’ !-V"t.sr l|B!M|n
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R 243

R 441

R 432

R* 332

R2
314

R 442

R 413

R 443

R1324 = | k eX [ J: + JKX - JKr1 ] 

e2K [ X - X- ]

k JKeX [X1 + \ + r1 ]

e2x [ (X')2 + 2 X’r-1 - (X)2 J

~ k eX [ JC» + JKX' + ic + JCX ]

,33 _ *r2X rV /» i \ 2 i, i —1 -i 1 ,2 "rjr 2R 443 = e [X-(X') -A r J-^k JC

R342i = | k eK [ JC » + JCX’ + JKr1 ]

R3 424 = -| k eX [ jc + 2JKX+ JKX* ]

.(2.19)

The Ricci tensor R-y is^defined as

R. / = gkl R, . 
ij * kijl ... (2.20)

where ^ijk = 9ha H\jk •

Also we have g = diag (-1, -1, -1, 1) .

• 11- , 22-, , 33-. . 44„
• • R11 “ 9 Rllll 9 R2112 + 9 R3113 + 9 R4114

= 0 + e2^ [ Xsa + X'r1 - (X)2] - J k2 JC2

+ e2X [X-‘J + X'r1 - (X)2] - | k2 JC2 - c2X[*X - X4"]

. . R = e2X [3XH + 2X’ rx - 2(X)z - X ] - j k‘ JK1 ,.2 v2

Similarly we can obtain the other components of Ricci te
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Therefore the non-zero Ricci tensor are given as 
follows :

R1JL * e2X [ 3X" + 2X,r~1 - 2(x)2 - X ] - ^ k2 JC2

R22 = R33 = ®2X t + 2U')2 + 4X,r”1| - 2(X)2 - X ]

R^ = e2K [3X - Xa - 2(X')2 - 2X* r1 ] - ~ k2 JC2

ft14 = 2 e2X [ X' - X* X ] + j k2 JC2 ...(2.21)

Now the scalar of curvature R is given lay R = g R^j 

n = - e2X [ 6 + 6 (Xf)2 + 12 X* r"1’-6(X)2 -6X ] ...(2,22)

3) THE FIELD EQUATIONS

A non-static conformally flat spherically symmetric perfect
t

fluid is considered by the space-time metric :

ds2 = e2^ (- dr2 - r2d©2 - r2sin29d$2 + dt2) ... (3.1)

where X is a function of r and t alone. The energy-momentum 
tensor for a perfect-fluid distribution is given by

Tij = (P + S )ViVj - P9ij
• • •together with g^V-V^ = 1

where p is the pressure, is the density and
Vi = (V^, 0, O, V^) is the flow-vector which describes the
radial motion of the fluid.

(3.2)

4159
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v The Einstein-Cartan equations are

Rij “ 2 + Agij “ 8irTij

Q*jk 6k^l * kSjk

... (3.3) 

... (3.4)

Hence the field equations (3.3) for the metric (3.1) by using 
(2.21), (2.22) and (3.2), we have

R11 “ 2 ^11 + ^9ll = “ 8*T11

I2X [3x” + 2X* r”1 - 2(X)2 - *X ] - ~ k2 JC2 

- i- e2x [6 Xi; + 6 (\*)2 + I2 k'r'1 - 6(X)2- 6X ] +A(-1)
= " Sic [(p + ^)V2 - p(-l) ]

.'. 3(X')2 + 4 X’r”1 - 2X - (X)2 + e2X + | k2 J?e2X

= Q n [(p + ^)V2 + p e4 ]

Similarly we can easily obtain the other field equations. 

Thus the field equations are

3(X')2 + 4 X'r"1 - 2X - (X)2 + Ae2X + ^ k2 JC2 e2x

= 8 n[(p + tfvf + p e2X ] ... (3.5)

2 XH + (X1)2 + 2 X* r"1 - 2 *X - (X)2 + Ae2X

= 8 itpe^X ... (3.6)

*
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- 2X* - (h')2 - 4Xf r-1 + 3(X)2 - Ae2h + | k2 JC2 e2X

= 8k [(p + ^V2 - pe2X ] ... (3.7)

- 2\' + 2X'x - ^ k2 JC2 e2?v = 8ii(p + ... (3.8)

4) SOLUTION OF THE FIELD EQUATIONS

Eliminating the cosmological constant term - A , we get the 

field equations as

- 2\" + 2(X’)2+ 2X1 r"1 + ^ k2 JK2e2X = 8n(p + £^)V2 ... (3.9)

- 2X,r“1 + 2(X)2- 2X + y k2 J:2 e2X = 8n(p + <j)v| ... (3.10)

- 2X,* + 2X'X - | k2 X2 e2K = 8k (/fc + o^V^ ... (3.11)

Following Hehl’s [8,9] approach by redefining pressure 

and density as

p = (p - 2k JK2), S = (^ “ 2n ^ 

the above field equations can be written as

- 2X“ + 2(X')2 + 2X,r”1 = 8k (p + cj)V2 ... (3.12)

- 2X,r“1 + 2(x)2 - 2X = 8n (p - ^)V2 ... (3.13)

- 2X' + 2XfX = 8ti (p + ^)VXV4 ... (3.14)

Eliminating p, and V4 from the equations (3.12) to

(3.14), we obtain ine differential equation
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U + J-] [ x" - il - (x}2 3 + (X)2 [ i'- X" 3
^ I*

= (X* - 2 x x' ) ... (3.15)

The solution of this differential equation can be written 
in the form

0 o *X = A (r - r) + Bt + C ... (3.16)

where A, B, C are arbitrary constants.

Thus the metric (3.1) can be written as 
2 _ [A(r2-t2)+Bt+C]

ds =*e [-dr2-r2de2~r2sin2ed$2+dt2]. ... (3.17)

5) DISCUSSION

(a) If we have not considered the torsion and spin, then the 
model is reduced to a conformally non-static spherically 
symmetric perfect^fluid distribution studied by Singh and 
Abdussattar. [22], In that case they have shown that the pressure 
and density are given by

-fA(r2—t2)+Btl 2/2 2x B2 a.
8Tip = e L J[A(r -t^)+ABt+6A - | ] + J\

-[A(r2-t2)+Bt] 2/ 2 „ 3B2 a 1
8nq>=eL J [-3A^(r -tZ)-3ABt - 6A + ^ - A
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(b) If we take t = O
than (3.16) becomes 
X = Ar2 + C .

i

This shows that X is a function of r only. In this 
case the model reduces to a static. This further shows that the 
study done by Kalyanshetti and Waghmode [11] is a particular
case
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