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CHAPTERS-II

Non-Siatic Conformally Flat Spherically

Symmetric Perfect Fluid Distributions

in Einstein-Cartan Theory

W Einsteir-Cartan thecry is an even
more beautiful theory than Einstein's
general relativity because of its

relation to the Pocincare Group., ¥
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CHAPTER=ITI

Non-static Conformally Flat Spherically Symmetric -

%
Perfect-fluid Distribution in Einstein-Cartan Theory

1) INTRODUCTION

The Einstein-Cartan theory of space-time has attracted a
lot of interest in recent years. From the cosmologi.al stand
point the interest stems from the fact that non-singular cosmo-
logical models in Einstein-Cartan theory have been constructed
explicitly. In most of these models the spin of the particles
composing the fluid is assumed to be aligned along a particular

direction,

The general theory of relativity.is bedevilled by a number
of unknown functions -~ the ten components of 95 Hence there is
a little hope of getting physically interesting results without
making reduction in their number, In conformally flat—spagé;time
the nuﬁser of unknown functions is reduced to one, The confor-
mally flat metrics are of particular interest since all of the
homogeneous and isotropic osmological models of the universe can
be cast in conformally Minkowskian form, Due to the equglity
of conformal curvature tensors of two conformally related spaces
it is clear that corresponding to the two existing physical
systems; one can generate the others by introducing a conformal

transformation,

% This paper is sent to> Phys.idev,D, for publication,
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A physically significant space-times which are conformally

flat are the Sohwarzschid- internal sclution and Lemaitre universe,

Buchdahl [2] has shown that the only static distribution
of the fluid with pcsitive density 'and pressure which wculd
generate a conformally flat metric through the Einstein's equations
without cosmclcgical term is that described by the Schwarzschild
inferior solution, Burman [3] discussed the motion of the
particles in ccnformally flat space-time, Singh and A>dussattar
[22] has obtained a non-static generalization of the Schwarzschild
interior soluticn which is cenformal to flat space-time, and it has
alsc shown that the model admits cf distribution of discrete parti-
cles and disordered radiation, Nduka [13] generated a closed
analytic solution tc the éinstein's equations for a uniformally
charged fluid sphere by a method similar to that used by Adler [1].
Zalcev and Sikin [27] have obtained ccnformally flat non-static
solutions in general relativity theory and scalar-tensor-theories
of gravitation, Ccllinson [5] has shown that every conformally
flat axisymmetric stationary space-time is static, He has also
proved that if the source is a perfect fluid the space-time is the
interior Schwarzchild field, Gupta [6] has observed that if a
conformally flat space-time describes a perfect fluid distribution
of matter with ¢ # O, then it is necessarily cf embedding class
one and the lines cf flow are normal to the hypersurface
qéxi) = constant, Gurses [7] has shown that the Schwarzschild
interior metric is the only conformally flat static sclution of

the Einstein ficld equations with perfect fluid distributiocn,



Roy and Raj Bali [20] have obtained the solutions of
Einstein's field equations represenéing non-static spherically
symmetric perfect fluid distribution which is conformally flat.
Prasanna [15] has described the Einstein-Cartan equations with
special reference to a perfect fluid distribution following the
work of Trautman and then obtained three solutions adopting |
Hehl's [8,9] approach and Tolman's [23] technique. He has shown
that a space-time metric similar to the interior Schwarzschild
solution will no longer represent a homogeneous fluid sphere in

the presence of spin density,

Recently Kallyanshetti and Waghmode [11] considered the
static fonformally flat spgherically symmetric perfect fluid-dist-

ribution in the frame-work of Einstein-Cartan theory and obtained

the field equations, They have solved these fjeld equations and

discussed the reality conditions in the view of their solutions,
They have observed that the density q will not?f%nstant as observed
by Narlikar {12] for conformally flat spherically symmetric

perfect fluid distribution., But they have shcwn that will be

A

constant,

In this chapter we consider the non-static conformally
flat sperically symmetric perfect-fluid distribution in Einstein-
Cartan theory and obtain the field equations, These field

equations are solved,

In Section 2, we have considered the metric in non-static

conformally flat sphericslly symmetric perfect-fluid distribution,
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By using Cartan structural equations, we have obtained the
curvature forms .fléj, Ricci tensors Rij and the curvature
scalar R, In Section 3, field equations are obtained., 1In
Section 4, solutions of the field equations are obtained by
adopting Hehl's [8,9] approach, In Section 5, the solutions
obtained are compared with those solutions obtained by Singh

and Abdussattar [227, Kallynshetti and Waghmode [11],

2) METRIC AND THE CURVATURE

Let M be a c® four-dimensional oriented connected
Hausdorff differential manifold and g be a Lorentz metric
defined on it, The metric g and the connection w are described

with respect to the co~frame Gi chosen by the metric‘components
e .
and by a set of one forms wt

gij

J
Therefore we have
ds® = 4. .oleo) (2.1)
gij s e o L ]
where wij are determined by
i . i Ak -
W j rkj g - LI (2-4)

The Cartan structural equations are

. CH)l = DQl

= dot + wij/\@J

1.i j k
'inkg N e eee (2,3)
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_fﬁé. =’ dwi. + wh ﬁ\wk.
J J k j
=41 gl k 1 .
=5 R e ‘ oo (2,9)
i i1 i1 i ,
Q5 = 85 Qg = 8k Q4 = -~ kS ee. (2,5)

where D denotes the exterior covariant derivative and Q%k

and R;kl are the torsion and the curvature tensors respectively,

The classical description of spin is defined by the
relation

s} = uls Wk =0 .. (2.6)

= ith S.
k Wl 3

3k k

P

where u' is the four velocity vector and Sjk is the intransic

angular momentum tensor,

We considér a non-static conformally flat spherically
symmetric perfect~fluid distribution represented by the space-
time metric :

ds® = 2N (= dr? - r2de® - r?sin%sdd> + dt?) ees (2,7)

where A 1is a function of r and t alone, The encrgy-momentum
tensor for a perfect-fluid distribution is given by

Tij = (!p +Q )Vivj - pgij’
... (2.8)

together with gijViVj =1,

where p 1is the pressure, Q is the density and V. = (Vl,0,0,V4)
is the fiow-vaector which describes the radial motion of the

fluid,
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We have then the orthonormal tetrad

ol = erdr, 62 = rehdo ‘

3 4 aewae (209)

6° = rsineMd@, Q" = ehdt

The metric (2.7) now becomes -
2 2 2 2

as? = - d(eh)y + (%) + (%) - (8% \g vee (2,10

so that @

933 = diag (-1, -1, -1, 1).

We suppose that spins of the particles composing the fluid
are all aligned in the radial direction alone, Therefore the only
independent non-zero component of the spin Sij is Sp3 = K (say}.

From this the non-static condition, we have the velocity four
vector ul = 5; y 1,3 = 1,2,
a—————"\-——-\_..——-\/\

Thus the non-zero components of sljk are

1 _ 1 -1 = =
823 = - 532 = u 523 =1, XK= XK.

4 __ g4 -4 = =
523 = - S32 = u 523 =1, K= X,

Therefore from Cartan's equations

i i1 i1 i
Qg = 65 Qg = 8 Ay = - kS5

we have the non-zero components of Q%k
J

1 4
Qg == kX and Qy =-k X vee (2,11)

Using (2,11) in (2.3), we get
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297 T 4 _ 1 2. 3
B =®" =-5xxene®
. eee (2,12)
@ - ® = o
From (2,3), we obtain
gt = Mot e ’ ee. (2.13)
de? = e M+ r"l)gl/\ez + e~ Ae*A 2 eee (2,14)

dgs e'}‘(}\' + r-l)Ql)\ o3 + e""}‘Qd’/\ o3
+ e M rlcotoe?N B ... (2.15)

ae® = eM'eth et . vee (2.16)

where a dash and a dot over )\ denote differentiation with

respect to r and t respectively,

Here (2,13), (2.14), (2:15) and (2,16) are Cartan's first
structural equations, Comparing these equations with the

equations (2.3), we obtain the non-zero components of wlj as

wf = - wl2 = SMar + r"l)g2 - %- Kk X035

wp o= -why o= B+ rhe + 1k ke

W 4= w4l = E}‘XQJ’ + 57\7&1941

Wl = - w, = Frleoted® - dk ket + 5k ke

W, = Wy = #Me? + 2k xed cee (2.17)
w‘a3 = w34 = 5;‘7‘\93 - % k J<Q2
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Now from the Cartan's second structural equations

.ﬂ_,lj = dwij + wt wk

k J
we have
1 1 1 4
__{)‘J:l = dw'y +w~ /\w +wl2/\w +w13/\w +w4/\wl
- =A l -Afa s
=d(0) + 0+ [~ e (A" + )Q + 1k x6° IA[e™ (A 43t )Q+
Al = - -
- 2k xSPp-4EhH® - Lk xPRE e +
-Aa -A. T - * iy
+ %— k J<92] + [e"?\e‘ + & 94] n[e"x@‘ + 8 o Ji
=0+0+0+0
(Since Gij\gi = 0 and ei/\. Qj = -Gj/\el )
- l *
=0 .
CLNk

o o1 Loy 1 . I A8 o pod
__('}2 dw2+wl/\w2+w2;\w42+w3)\w2+w4)\N2

daf .- ex@2~57‘r—192+%k£93]+0+0

“lootes® - fk xoe*

1
2

+[- e }\ @3 - ekr 193 l k J(sz i\['é'}‘r

+ sk ket jrEMet v et ARG +

Man)drnare? - SM-A)dtanre? - 3 avdrAQ? -

e xe® 1

H]
l

- 3 V'atAae® - 3M'ae?

MdtArig? - e M (32)drae? - M lag? +

k K'drAe° + %— k KdtAG® + & k Xdo®

-~ Maan)drarie? -

!
(0]]
>
o
[}

3, 4

k X a o°A 0% - Ay

k XKaM ' PAael +

A=l o34 ol L

k XM ig3a 0 - Lk x3Mrl Ao

+
N N N

l\)!t—-' Nio—-
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k XM lcot 06?A &2 + 7 L2 % 2 A o?

kK2 B o%A ot + 322 (3) 2%t A &2 +%~kJ<e rola g3 +

4,2 . 1 =A

L
2
1
q
D 7\ ?\9’\9 +2kJ<e

A e*Ag3

Using (2.9), (2,14) and (2.15), we get

’ - [}
,_q{-z =@M+t - 0% - 3 ® kP Paet 4

+ [0k -k ) - 2 K ]G
+2 k3 [ K +2 xa ~1 , 3 3
2 [ +2 X'l + XX ]e'Ag
+ 5k [ X+ xh - xr! 76%A6°

i

Similarly we can flné the other components of w 5

. P 1
Thus the non-zero components of curvature form w!f;j are

..."\.1..2 = [ g2k {_)\" +arrt - G )2‘35 -ﬁ-kz V'S ] SN
2

+ [ h -2 - 3K K2 ] A6
+2kE [ K'+2 XK +2 XKt o+ Ky JotAS
+2k [ K+ xi-xrl e’
ST = [ e - 02 - 2@ k2 ] %
+ [ - - jk’lxzjg e
+E [ K+ 2 ka2 xeTh ] Pl
+ k& [ K+ XKi- Xt ]ePA 6

...(2,18)
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S, = MR- gt el
kKM (ho+ar + b %A
By o= A an?eatrt o 02786
+é—ké‘"[3<'+x;\'+j<+3<5\]91/\94
2, ;[52"{'7L~(>\) At i -2 k2 1662
£ 18 (A% -3 - 22 x2 760!
+%ké7\[x'+1<;\'+xr'l]91/\e3
+3 k& [ K +2 Xh+XKar Jehe®
B i B N O R N A S I
+ [ g2t (' A - A - l K X2 ] o el
+2 k8 [ XK'+ xA o+ k] PAC!
+2k [x +2x0+ XA ] N6

Comparison of these results with

k

O"A ©

1

immediately yields the following components of the Riemann

tensor :

Ry = Rigy = [ A" +a'r - (02 ] - 1@ x2
Rlpgy = Rliggy = Bppp = By = 8 AR - 1']- 3 1 X2
Rl 3 =R =4 k8 [ X' +2 KA +2 KE + X ]

mg ! N !ml " «nnr.,;,ﬂ L'ﬂmm

BV o, AVEGZL Y fudHarum



Rl 4 = Rlgyy =2 k8 [ X + X} - X' ]
Ry = ém'fifl“]
Rl =k K& [ A"+ + 5t 1 (2.19)
2, =8 [ N2+ 22w - (2 ]
R4 =2 k 8 [ XK' + KA' + K + XK} ]
R2442 = Ry = ol i I XD L S 7K x*
W3 =R, = $k& [ XK' +xn + KE ]
Rous = Rogps =5 k8" [ X +2 XA + XA' ]

The Ricci tensor R;; 1s defined as

Ry, = gkt Ry i1 ... (2.20)

where  Rpiie = G, B -

Also we have 935 = diag (-1, -1, =1, 1) .

LR, = 11 33

22 44,
11 T 9 78311 T 9 Roy10 T 9 Hgyy3 9 iy

=0+52}\ [A“ +?\'f‘l" (i)Z] __%RZ Kz
2

+ 8 e e n's - 02 - 362 %2 - FME - )

.o = -1 102 e 1.2 .2
ce By =BT AT E -20)°-A ] -5k X
Similarly we can obtain the other components of dicci te ;wv .
. \
Avbf TN ’%‘}\
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Therefore the non~zero Ricci tensor Rij are given as

follows :
Ry, = 8 [aas+ el o202 -% 1-46" k2
Ry, = Ryy =82 [ A" + 2092+ an'rl - 2002 - ]
Ry =82 [ - A" -2 - B ] - 20 kP
Ra=28P[ar - h1+402% %2 veo(2,21)

3

Now the scalar of curvature & is given by 3 = glgﬂij
2
)

Cor=- e a6 A%+ 120 TV a6(M)Z -6 ] ... (2.22)

3) THE FIELD EQUATIONS

A non-static conformally flat spherically symmetric perfect

fluid is considered by the space-time metric :

2 0 o2 (L2 - 2462 - 12

ds? = e r2de® - rsined@? + dt?)

o e (301)
where A 1s a function of r and t alone, The energy-momentum
tensor for a perfect-fluid distribution is given by

Ty3 = (P *q)VyVy - pgyy

together with gijViVj =1

.. (3.2)

where p 1is the pressure, q is the density and
Vi = (Vl’ o, O, V4) is the flow=-vector which describes the

radial motion of the fluid., -

4159
A
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« The Einstein-Cartan equations are

1 _
i il il _ i .-

Hence the field equations (3,3) for the metric (3,1) by using
(2,21), (2.22) and (3.,2), we have
Ry, - % Roy, + MNgy, = - 8T
11 = 2 %9 91 11

K2 x2

Dot

Coo 2 am e o202 ] -

32h [62° + 6 (A)2 + 12 A'c7L - 6(3)2- &N ] +A(-1)

Najf—

2
=~ 8r [(p +q)V] - p(-1) ]
JoosPeanel o 202 o s Li? Re?
2 2
=8n [(p+ q)vl +p e? ]
Similarly we can easily obtain the other field equations,

Thus the field equations are

2 2 e2A

3A2 +an' Tl - (M2 + AP+ 5% x

=8 x[(p + g)V% +'p et ] eoe (3.5)

2 A" + (h')2 +2 A" Pl 2‘i - (3\)2 + /\egA

- & npo2! cor (3.6)
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" - (A2 o Il ago? - Ae? + 4 ® k2 P

- 81\; [(p + O\)Vﬁ - pezA ] PN (307)
=22 + 24"y - % K> K2 o2 = 8n(p + %)V1V4 eee (3.8)

4) SOLUTION OF THE FIELD EQUATICNS

Eliminating the cosmological constant term - f\, we gef thé

field equations as

- 2}\“ + Z(A')2+ 2,’\'1‘.—1 + é_ k2 1(262}\ - 81:(10 + Q))V% .o (3.9)
- 2a'rh 4 2% 2+ 5 kP K2 e = en(p + VY ... (3.10)
-+ 'k -2k k2P =enip + QVV, ve. (3.11)

Following Hehl's [8,9] approach by redefining pressurc

and density as
- 2 - 2
p=(p-2n X%, q’=(o)-2n\l( )

the above field equations can be written as

8
-2 o+ ' = (B V2 el (3.12)
o't 2()2 -2 = en (F - A oo (3,13)
-22' + 2% = s8n (P + GV vee (3.14)

Eliminating p, §, V, and V, from the equations (3.12) to

(3.14), we obtain the differential equation
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['i+3‘;'-][A“--}-'--(A')z]*'(i)z[%'-h“]

=2 At -2 a") .e. (3.15)

The solution of this differential equation can be written

in the form

f
A=A (2% - £2) + Bt + C oo (3,16)

where A, B, C are arbitrary constants,

Thus the metric (3.1) can be written as

2 ,2
A(r -t7)+Bt+C

ds [-dr?-r2de?-r?sinZedd®+dt?], ... (3.17)

5) DISCUSSION

(a) If we have nct considered the torsion and spin, then the
model is reduced to a conformally non-static spherically
symmetric perfect—~fluid distribution 5tudied by Singh and
Abdussattar [22], In that case they have shown that the pressure

and density are given by

e—fA(rz—t2)+Bt] 2

gnp = [A%(r°~t2) +ABt+6A - Z1+AN

~[A(r%-t2)+Bt ]
Qe

2 i
8rg = [-3a% (r%-t%)-3mBt - 6a + S 7 LA
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(b) If we take t =0

then (3,16) becomes

A=a® +C .,

{

This shows that A 1is a function of r only. In this
case the model reduces to a static, This further shows that the
study done by Kalyanshetti and Waghmode [11] is a particular

case,
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