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CHAPTER - 1

INTRODUCTTION

This chapter is introductory in nature
which contains two parts. Part first includes the
basic concepts and fixed point theorems which are
needed for our investigations. Part two deals with

a historical development of the fixed point theorey.
Part - I

1.1 SOME BASIC CONCEPTS
1.1.1 METRIC SPACES
Definition :

Let X be a non-empty set and d be a function from

X x X into RY such that for all x,y and z in X

we have

(i) d(x,y) >» 0

(ii) d(x,y) = 0 if and only if x = y
(iii) d(x,y) = d(y,x)

(iv) d(x,z)g d(x,y) + d(y.z)

Then d is called a metric or a distance
function and the pair (x,d) is called a metric space.
The space (x,d) is also denoted by X if the metric
d is understood.

d(x,y) is called the distance between x and y.



Definition :

Let (x,d) be a given metric space.
Let x,¢e X and a real number r >0 be given.
Then the sets
(1) B (x,;r) ={xe X/d(x,x,)<r} is called

an open sphere.

(i1) B (x,:r) =1{xe X/d(x.xo)<r}is called
a closed sphere.

(iii) S(x,;r) ={ xe X/d(x,x,) = r}is called

a sphere with the centre at x_, and radius r.

Convergent Sequence
Definition

Let (X,d) be a metric space and { xn} is
said to be convergent if there exists a point x in X
such that for each € >0 there exists a positive

integer N such that for all n 3 N

rd

d(xn X) < €

i.e. d(xnx)-*o as n + w

The point x is called the limit of the

sequence {xn} and we write x * x in the form

lim x = x
n")m

we say that {xn}is a convergent sequence with

limit x.



pefinition :

Let (X.d) be a metrig space and {xn} be
a sequence in it. The sequence {xn} is said to be
a cauchy sequence if for every ¢ > 0, there exists
a positive integer N such that

d(x ,x )< € for all m, n > N
m’' n !

TheorX

Every convergent sequence in a metric space

is a cauchy sequence but not conversely.

Complete Metric Space
Definition :

A metric space X is said to be complete
if every cauchy sequence in X converges to a point

in X.
Subsequence

Definition :

A subsequence of a sequence { xn} is a
sequence whose terms are chosen from the terms of
the sequence { xn} and arranged in the same order
as their relative order in {xn};gAvéﬁbseduenge~éﬁj
Lx ]is ofteéen desﬁgnated as{x,, with terms x_ , x ..

n oL o . né' n n
R o 1 2
Note : If a sequence {xn }Converges to x then

any subsequence of {xn} also converges to x.



Bounded Sequence

Definition :

A sequence { x_} is said to be bounded if

there exists numbers ml, m2 such that
'om
m1<<{xn},\<m2 for n € N l 7)7(

Monotonic Sequence

Definition :
A sequence {xn} is said to be strictly

monotonicaly increasing if

X >x , for all n
n+l n '
and strictly monotonically decreasing if

X +1< Xp for all n

A sequence which is either monotonically
increasing or decreasing is called monotonic sequence.

Theorem :

omd
A monotonic sequence is convergent ionnly

if it is bounded.

Compact Metric Space

Definition :

A metric space X is said to be compact if

every sequence in X has a convergent subsequence.
cvely



Open Sct

Definition :

Let (X,d) be a metric space. Asubsat M of X

51
4
-0

is satd. -to be open if and only if to each xg¢ M,
there exists r >0, such S(x,rje M,
Closed Set
Definition :
A subset M of a metric space {X,d) issaidto

be closed if the complement of M in X is open,

1.1.2 NORMRD LINEAR SPACES

Let X be a real or complex vector space or linear <
frems——— - et ’

space of finite or infinite dimension. Let kgbethe

field of complex numberSCfor real numbers R.
Norm of a Space

Definition :
Let X be a linear speca: 0),K.Anorm onX is a
Vokied i

realkfunction [|.]] X+ R dafined on X suchthat

for any x,y €X and ford ¢ K, wehave

(i) [xi] >0
£ii) [|x!]=0 if and only if x=0
o ity Jkxd] o= dad x|
Cav) (vl ¢ Hxl] s vl

Definition :

a A normed linear space is a vectnr with anorm /><A



(}(’\\ 4

and it is denoted by (x,]|]|.]])

Result : what «s X¢
A norm on X defines a metric d on X which is
given by |
d(x,y) = | |x~y}| for all x,y e X

and is§called the metric induced by the norm. Thus
every normed linear space X is a metric space witihthis

metric defined on X.

Theorem :

In a normed linear space, norm is acontinuous

function ‘L'x_n"& S in X.
q 1
l.e If x + x then ||x ||+ |[x]]
Strong Conversion
Definition :
A sequence { X, }in anormed [linzar space

(or normed spaze) X is said to be strongly convergent

(or convergent in the norm) if there exists an Xx g X

such that
lim ||x _-x|] = ¢ i.e 1lim x_ = x or x_-» X
n+ o n ne o n

we say that { xn}converges strongly to x and x is

the strong limit of {x}

1.1.3 Banch Spaces
A normed linear space X is said to be complete if
every cauchy sequence in X converges to an element of )L

-—

A complete normned linear space is called a Banch Space.



Convex Set

Definition :

Let B be an(gggilgggy Banch Space. Aconvex
< 2
set in B is a non-empty suab-set S«With the property

that for all X,y €é§) z= tx+ (1:1)? € S forevery )C:?

real number t such that 0 gt g 1.

Note :

(i) The empty set and thes set containing one point
' 31y, neB

are convex.
(ii) Every subspace of a vector space is convex. Yecttv opacc

I ticul vect 1 “BamadhSpua
n par cuiar every vector space § convex. -
P l y P 2 eloukin -

1.1.4 HILBERT SPACE
Inner Product Space
Definition :

Let X be a linear space over the scalar field K
(real or complex)., A function< > =z X x X+ K
is called an innear product on X if for all x,y,z ¢ X
and A e K we have

(i} < x, x> 30 and <x,x>= 0 if and only if x = 0

q (1i) <x,¥y> - <y,X> where bar denotes complex
conjugates,
(iii) <xx?«.y,> Z==A <X,y > 1°
(iv) <X+y, 2> =<XZ>+<y,z>
An inner product space or pre Hilbert space

is a linear space X with an inner product on it,.

YW\ If K=R, then <x,y> is a real number and if
o d

W



K=C, then it is a complex npumber,

. the-
. : . . ver -
Properties of inner Product Space | (n o™

é,
(i) Every inner proiduct space is anormed space but
not all normed spaces are inner product spaces, L:xo.wf/c?

(ii) In an inner product space, the inner product is

continuous, — 9

-

(iii) 1f % anx y are in an inner product space, then
Hxey 12+ Hx-yl12 = 2 Clixl ] 1yl 1)
which is known as Parallelasgram Law,
(iv) If x,y are in an inner product space)(
then |<x,¥> < |[x|]. |lyl]
which is 65uchy~ﬁbhwarz inequality
(v) Let X be a normed linear spacs in which the
Parallelogram Law holds. Then X can be madse into an
inner product space by defining the given norm

asc x,x > = ||x||?

Hilbert Space

Definition :

A complete inner product space is called a
Hilbert Space.
Result :

Every Hilbert space is a Banch space but

converse is not true.
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Fixed Point
Definition :

Let X be a set and T : X+ X be a self map.

A fixed point of T is a point x ¢ X

such that Tx = x i.e. the -“tmage Tx cotfacides with x.
Example,
(i) A mapping x -+ x3 of R into itself has

three fixed points (0, -1, 1)

(ii) A translation has no fixed point. 9
e TR S '
(iii) A rotation of the plane has a single fixed

point i.e. the centre of rotation,.
(iv) A mapping Tx = x2-6 defined on R has

cAS
X = -2, X = 3dggpffixed points.

The following definitons in Hilbert Space

are due to Browddr: and Petryshyn (7]

Let C be a convex subset of a real Hilbert

Space H and T b2 a nonlinear (possibly) mapping ad
s

from C into H, then we have,
Definition :

T 1is said to be strictly contractive if

there 2xists a constant K with 0 <K< 1 such that

| ITx-Ty|| < X ||x-y|| for all x,ye C
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Defiition :

T is said to be contractive o

(o if for all x,y ¢ C,
| 1Z5-Tyll < |Ix-y]|
Definition :

T is said to be strictly pseudocontractive

if there exists a constant 0< K ¢1 such that

[Tty l ¢ [x=y| 1%+ k|| (-Dx-(-myy| [* T =1

for al x,y,e C
Definition :

T is said to be pseudocontractive if for
all x,yeC,

t "2

|1Tx-Tyl [2¢ 1ix-911% « |1 (1-T)x ~(1-T)y] |

These mappings admit iterative methods for

the construction of their fixed points,

Identity Mapping

Definition :
\‘ 5"
The identify mapping I : X -+ Xﬁdefined

by I(x) = x
Continuous Mapping

Definition
A mapping T of a metric space X into a

metric space Y is said to be continuous at xe X,
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If xn-+ x in X then
T Ty in Y
2, =

Definition :

Let H be a Hilbert Space and C be a convex
subset of H. T bz a mapping from C in to H.
A mapping T is said to be monotone [1] if

Re <Tx-Ty, x-ys > 0 for all x,y in C

Now We mention here some fixed point

theorems.
1.1.5 FUNDAMENTAL FIXED POINT THEOREMS

Brouwer's [8}] and Schayder's [41] fixed
point theorems are fundamental theorems in the fisld
of fixed point theory and its applications. Though
Brouwer obtiined his result in 1912, Poincare
proved a slightily different versiom of it in 1986

which was subsaquently rediscovered Hy Bohl P, in 1904.
Brower's Fixed Point Theorem

Bvery continuous map of the closed unit
ball S={x/||x|| <1} in R", the n-dimentional

Euclidean space :o itself has a fixed point.

Birkhoff and Kellog 13] were the first to
prove fixed point theorems in infinite dinensional

spaces. They considered contdnuous self-maps
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defined on compact subsets of C[0,1] andLLz[O,ll z

and established the existence of fixed points for

them_ﬁéhauder{41] generalissd these results,

Schauder's Fixed Point Theorem
Let C be a non-empty convex compact subset
of a normed linemr space X. Then every continuous

self map of C has 3 fixed point.

Many author's have extended Schauder's theorem
———

in different spaces. Tychonoff [43] extended Brouwer's

result to a compact convex subset of a locally convex 3e$

linear topological space.

1.1.6 “XITERATIVE METHODS

Mann Iteration Process :

Mann [30] gave the following iteration
process. For a self-mapping T of a closed bounded
interval of the real line having a unique fixed point,

the iteration process

Xopp = (- y x +«TX ... (1.1.7)
with
“n = —-E:: , converges to the fixed
n+ 1 .

point of T as n » o«
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Ishikawa Iteration Process

In 1974, Ishikawa [19] itroduced the following

iterptive procedure.

Let C be a non-empty convex subset of a
Hilbert space H and T be a self map on C. Then the
iteration scheme {x }w 0introduced by Ishikawa
n Jn=

is as follows,

For any x, ¢ C,

y, = (-8 ) x +g_ Tx ., n30

..(1.1.8)

X

n+l (1_an)xn * OlnT_)In » 020

2] o
Where {an} n=0 and {Bn }n=0 are sequences of
positve numbers which satisfy the following three

conditions.

(1) Osa $B, <1 -
(ii) lim g = 0

n>e e (1.1.9)
(iii) 2;0 a B == B

Ishikawa Identity
For any x,y,z in a Hilbert space H and a
real number t,
2 2 2
|| tx+ (1-t)y-Z||® = t]]|x-2||" + (1-t)]]y-z]]|
- t(a-t) |[|x-y]|?

... (1.1.10)
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Part - II

1.2 Historical Developments of a Fixed Point

Theory in Hilbert Spaces

The theory of Hilbert spaces is originated
in the year 1912 with the work 'Grundzuge einer
allegemeinon Theorie der linearen Integralqleichungen'
of the great German mathematician D.Hilbert [18].
However, several years elapsed before an axiomatic
basis was provided by the famous mathematician
J.Von Neumann [34]. The modern developments in Hilbert
spaces are concerned largely with the theory of

operator on the spaces.

Browder initiated the study of fixed point
theory of non-expansive mappings in Hilbert spaces
without compactness conditions. In 1965, Browder [5]

proved the following theorem

Theorem :

Let Br be a closed ball of radius r >0 in
a real or complex Hilbert space H. d Br be the
boundary of Brand S be a nonlinear contraction map
of Br into H such that SX- Ax * 0 for all x in Br
and any A #1. Using the theory of monotone operators
developed in [31, 4]. Browder [5] showed that T

has atleast one fixed point in Br.



Petryshyn [{36] studied an iteration method

for the actual construction of fixed points of a
nonlinear contraction map 5 under the additional
assumption that S is demicompact. He has proved

his main result in the following way.
Theorsm :

Let S be a demicompact contraction of Br
into H such that Sx-xx # 0 for all x ¢ 9 Br and
A > 1, then the set of fixed points Fr of S lying
in Br is a nonempty convex set and for any x, e Br
and any B > 0 such that 0<B8 < 1 the sequence

{xn+1}determined by the process

xn""l = Brnsxn + {1- B) X * n= 0’1'2100
n
where the real numbers r;, n= 0,1,2,....

are given by

1 if |sx || s r

S TS

if [[sx || s T

converges to a fixed point Z¢ FrC Br of 8

Browder and Petryshyn [7] introduced the

four <classes of nonlinear mappings(strictly

contractive, contractive, stricly Pseudocontractive

15
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and Pseudocontractive) which admit iterative
methods for the construction of their fixed points.

They established the following basic'existence result,

Theorem :

Let C be a closed bounded convex subset
of the Hilbert space H, T be a contractive mapping
of ¢ into C. Then T has at least one fixed point

in C,.

Based upon this theorem a number of theorems
have been proved by theauthors. We give here a few

of them

Theorem :

If T is contractive (non-expansive) mapping
of C into C, where C is a closed convex subset of
a Hilbert space H and the set F(T) of fixed points
of T in C is non-empty, then the mapping defined
by TA = AI + (1-A) T for any given X with
0< A <1 is a reasonable wanderer from C into C with

the same fixed points as T.

Corollary :

"If T is contractive (non-expansive) mapping
of C into C with non-empty set F(T) of fixed points

of T in C and if the mapping defined by
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Ty = AI + (1-3) T for a given ) with

0< A <1, then T . maps with C into C, 3; has the

A
same fixed points as T and TA' is a symptotically
regular,
Theorem :

Let T be a self-map of a bounded closed
convex subset C of a Hilbert space H. Suppose T
is contractive and demicompact. Then the set F(T)
of fixed points of T in C is a non-empty convex set
and for any given x,e C and any fixed A >0 with
0 <A <1, the sequence {x_} ={T§ Xo} determined by

the process

n Xn_i n-1 ' n = 1'2139

converges strongly to a fixed point of T in C.

Hicks and Huffman [17] generalised theorem
(1.1.4) and (1.2.6) in generalised Hilbert space

{see theorem 6,7 of [17]).

Ishkawa [19] has introduced a new itereation
scheme, calledd as Ishikawa iteration scheme and
proved that a sequencé of Ishikawa iterates for a
Lipschitzian Pseudocontractive maping in a convex
compact subset of a Hilbert space converges strongly

to a fixed point of this mapping.
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Das and Debata [13] have extended and
generalised the result of Ishikawa [19] by taking
simul taneously a more generalised iteration scheme
involving a family of maps and secondly by taking
less restrictive hemicontractive mappings. Their

result states as follows

Theorem :

Let {Tj} sy J =1,2,....K, K22 be a family
of hemicontractive maps defined on a convex, compact
subset C of a Hilbert space H and have at least one
common fixedd point in C. Let the family of maps

{Tj} satisfy

[ITi% = Toyl| <M | |x-y]

for all x,y€C and all pairs (i,j), M being a
positive constant. Then the sequence {xg}converges
to a common fixed point of the family of maps {Tj}
where X, is defined iteratively for each positive

integer n by x1€ C

(n)

X = (1-a) x +.a_T
n n n

n+1 kYk-1

Where,

uo(h] = X_, uj(n) = (1-Bn) xn+8n T, u (n)

n i Tj-1
for j= 1,2,...K and {Gn} s {Bn} are real sequencces

in [{0,1] such that
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(i) ()gan < By 1 forn=1,2,...
(ii) lim B . ¢

N n

T k-1
(iii) )) e, B, = for each k » 2

The authors [13] claimed that for K = 2,
T1 = T2 , the above theorem includes the result of
Ishikawa [19] as a corollary. They further claim

that the Ishikawa iteration can be extended to

Lipschitzian hemicontractive mappings.

In 1976 and 1983, Rhoades [38] and Naipally
and Singh [33] studied the Ishikawa iteration scheme,

respectively, and put forth the following questions : :

<
Can the Ishikawa iteration procedure be
extended to quasi-contractive add hemicontractive

mappings ?

Liu Qihou {27,28] studied the above questions
and proved the convergence theorem of the sequence
of Ishikawa iterates for quasicontractive mappings
and Lipschitzian hemicontractive mappings. After
this, Liu Qihou [29] continue to studied the above

questions and proved the following two theorems.:
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Theorem :

Let C be a convex compact subset of a Hilbert
space and T : C+C, a continuous hemicontractive
mapping. Suppose that the number of the fixed points
of T is finite. Then, for each x, ¢C, the sequence
of Ishikawa iterates {xn r;=o must converge to a

fixed point of T.

Theorem :

.et C be a convex compact subset of a Hilbert

space and T : C+C, a continuous generalized contractive

mapping. Then, for each X, & C, the sequence of
0 .
Ishikawa iterates {x_ |} ., must converge to a fixed

point of T.

Here we complete the brief survey of the
development of the fixed point theory in Hilbert

Space.



