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CHAPTER - I

INTRODUCTION

This chapter is introductory in nature 

which contains two parts. Part first includes the 

basic concepts and fixed point theorems which are 

needed for our investigations. Part two deals with 

a historical development of the fixed point theorey.

Part - I

1.1 SOME BASIC CONCEPTS

1.1.1 METRIC SPACES

Definition :

Let X be a non-empty set and d be a function from 
X x X into R+ such that for all x,y and z in X 

we have

(i) d(x,y) >> 0

(ii) d(x,y) =0 if and only if x = y

(iii) d(x,y) = d(y,x)

(iv) d(x,z)^ d(x,y) + d(y,z)

Then d is called a metric or a distance 

function and the pair (x,d) is called a metric space. 

The space (x,d) is also denoted by X if the metric 

d is understood.

d(x,y) is called the distance between x and y.
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Definition :

Let (x,d) be a given metric space.
Let xQe X and a real number r>0 be given.
Then the sets
(i) B (x0;r) = { xe X/d(x,x0) < r } is called 

an open sphere.

(ii) B (x0;r) = { xe X/d(x,xc> r } is caiied
s

a closed sphere.

(iii) S(xQ;r) = { xe X/d(x,xQ) = r } is called
a sphere with the centre at xQ and radius r.

Convergent Sequence 

Definition

Let (X,d) be a metric space and { xn} js 
said to be convergent if there exists a point x in X 
such that for each e>0 there exists a positive 
integer N such that for all n ^ N

d(x x) < e n
i.e. dfx x) 0 as n »' n

The point x is called the limit of the

sequence {x } and we write x -*■ x in the form n n
1 im x = x 
n-+00 n
we say that {xn}is a convergent sequence with
limit x.
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Definition :

Let (X.d) be a metrip space and {x^} be 

a seauence in it. The seauence {x^J is said to be 

a cauchy sequence if for every g >0, there exists 

a positive integer N such that

d(x ,x }< e for all m, n > N m n

Theory j_

Every convergent sequence in a metric space 

is a cauchy sequence but not conversely.

Complete Metric Space 

Definition :

A metric space X is said to be complete 

if every cauchy sequence in X converges to a point 

in X.

Subsequence 

Definition :
A subsequence of a sequence { xfi } is a

sequence whose terms are chosen from the terms of
the sequence { xn } and arranged in the same order

as their relative order in {x }'„ .A s'ubseduerige of

with terms x , x
nl n2

Note ; If a sequence { xr } converges to x then 

any subsequence of { xj also converges to x.

lxn,jis often designated as{x^«
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Bounded Sequence

Definition :
A sequence { xr} is said to be bounded if 

there exists numbers , m2 such that
m. {x } £ m„ for n e N 1 n &

Monotonic Sequence

Definition :
A sequence {x^} is said to be strictly 

monotonicaly increasing if

x - >x , for all n n+1 n
and strictly monotonically decreasing if

x a ^ -x for all n n+l< xn

A sequence which is either monotonically 

increasing or decreasing is called monotonic sequence. 

Theorem :

A monotonic sequence is convergent 

if it is bounded.

if onlyA

Compact Metric Space 
Definition :

A metric space X is said to be compact if 

q every sequence in X has a convergent subsequence.



Open Sat 
Definition

Let (X,d) be a metric space. A subset M of X 

is said to be open if and only if to each xG M, 

there exists r >o, such S(x,r)C M.

Closed Set 
Definition :

A subset M of a metric space (X,d) is said to 

be closed if the complement of M in X is open.

1.1.2 NORMgD LINEAR SPACES
Let X be a real or complex vector space or linear ^

.. .....1---------- - r
space of finite or infinite dimension. Let J(be the 

field of complex numbers or real numbers R.

Norm of a Space

Definition :
Let X be a linear sgaua ojo-K. A norm

*
real function ||.|| X -»■ R+ defined on X 

A.
for any x,y eX and for X e K, we have

onX is a 

such that

( i ) M x! I 0
fii) ||x|j=0 if and only if x*0
(iin | iXx| | - lx! INI
(iv) ||x+y|\ 4 ||x|| f ||y\ \

Definition :
A normed linear space is a vector with a norm



and it is denoted by (x,||.||)
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Result : wVk*/- -is AT
A norm on X defines a metric d on X which is 

givfen by
d(x,y) = ||x-y|| for all x,ye X 

and isz-called the metric induced by the norm. Thus 
every normed linear space X is a metric space withthiJs 
metric defined oh X.

Theorem :

Irr a normed linear space, norm is a continuous
function lt-

\v
i.e If x -► x then Ilxll
Strong Conversion 
Definition :

A sequence { xr } in a normed linear space 
(or normed sprite) X is said to be strongly convergent 
(or convergent in the norm) if there exists an xe X 
such that
lim I lx -x| | = 0 i.e lim x = x or x -*• x _. _ n 1 1 _ n n

in ><

we say that { xr}converges strongly to x and x is 
the strong limit of {xn}

1.1.3 Banch Spaces
A. normed linear space X is said to be complete if 

every cauchy sequence in X converges to an element of 
A complete normed linear space is called a Banch Space.
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Convex Set 
Definition :

Let B be an arbitrary Banch Space. A convex 
" c4- B

set in B is a non-empty sab-set S with the propertyA.
that for all x,y e^x) z= t*+ e S for every ^

real number t such that 0 £ t ^ 1.

Note :

(i) The empty set and the set containing one point
5^ , xe8are convex. v J J

(ii) Every sabspace of a vector space is convex. VjflACc,

In particular every vector space is convex.

1.1.4 HILBERT SPACE

‘k. *3 a/y»G.<X5|*<w«

Inner Product Space 

Definition :

Let X be a linear space over the scalar field K 

(real or complex). A function < , >' r X x X K 

is called an innear product on X if for all x,y,z e X 

and X_ e K we have

(i) < x». x> ^0 and < x,x > = 0 if and only if x = 0

(ii) <x^y> -<y^x> where bar denotes complex
%

conjugates.

( iii) 

( iv)

is a
^If

<lx,y > = X <x, y >

< x+y, z> = <x,z>+<y.,z>

An inner product space or pre Hilbert space 

linear space X with an inner product on it. 

K=R, then <xJy> is a real number and if



8

k tf * v5"
Every inner product space is anormedspace but

K=C, then it is a complex number.

Properties of inner Product Space :

(i)
not all nocmed spaces are inner product spaces. ir?ccL>*y/e 7

(ii) In an inner product space, the inner product is

continuous. «—■

tle1

(iii) If ^anx y are in an inner product space, then
ll**y||2 * ll*-y||2 - 2 tl|x||2U|y||2)

which is known as Parallelogram Law.

(iv) If x,y are in an inner product space X

then |<x^y>| 4 | |x| | . | |y| |
which is Cauchy-Schwarz inequality

(v) Let X be a normed linear space in which the 

Parallelogram Law holds. Then X can be made into an

inner product space by defining the given norm
oas< x„x > = | Ix| |

Hilbert Space 
Definition :

A complete inner product space is called a 

Hilbert Space.

Result :
Every Hilbert space is a Banch space but

converse is not true.
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Fixed Point 

Definition :

Let X be a set and T : X X be a self map.

A fixed point of T is a point x e X

such that Tx = x i.e. the -fmage T$ coincides with x. 

Example,

3(i) A mapping x x of R into itself has 

three fixed points (0, -1, 1)

(ii) A translation has no fixed point. 9

(iii) A rotation of the plane has a single fixed

point i.e. the centre of rotation.
2

(iv) A mapping Tx = x -6 defined on R has
cAS

x = -2, x = 3 jJ£P"fixed points.

The following definitons in Hilbert Space 

are due to BrowddE/ and Petryshyn [7]

Let C be a convex subset of a real Hilbert

Space H and T be a nonlinear (possibly) mapping 9
-......................... .......... (

from C into H, then we have,

Definition :

T is said to be strictly contractive if 

there exists a constant K with 0 <K< 1 such that

||TX-Ty|| < K ||x-yj | for all x,ye C
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Definition :

T is said to be contractive . : 

(or if for all x,y e C,
ll*x-Tjj|| < l|x-y||

Definition :

T is said to be strictly pseudocontractive 

if there exists a constant 0< K <1 such that

||Tx-Ty||2« | |x-y| |2+ K| I (I-T)x-(I-T)y| I2

for al x,y,e C

Definition :

T is said to be pseudocontract ive if for 

all x,y e C,
||Tx-Ty||2^ Hx-yM2 + | |(I-T)x ~(I-T)y| |2

These mappings admit iterative methods for 

the construction of their fixed points.

Identity Mapping 

Definition :
v
13"

The identify mapping I : X -*■ X defined4
by I(x) = x 

Continuous Mapping 

Definition

A mapping T of a metric space X into a

metric space Y is said to be continuous at xe X,
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If x x in X then n
TX - Tx in Y

■ n ^ •

Definition :

Let H be a Hilbert Space and C be a convex 
subset of H. T be a mapping from C in to H.
A mapping T is said to be monotone [1] if 

c, Re <Tx-Ty, x-y> > 0 foe all x,y in C

Now We mention here some fixed point
theorems,

1.1.5 FUNDAMENTAL FIXED POINT THEOREMS

Brouwer's [8] and Schayder's [41] fixed 
point theorems are fundamental theorems in the field 
of fixed point theory and its applications. Though 
Brouwer obtained his result in 1912, Poincare 
proved a slightly different version of it in 1986 
which was subsequently rediscovered by Bohl P. in 1904.

Brower’s Fixed Point Theorem

Every continuous map of the closed unit 
ball S*{x/||x|| < l} in Rn, the n-dimentional 

Euclidean space to itself has a fixed point.

Birkhoff and Kellog 13] were the first to 
prove fixed point theorems in infinite dimensional 
spaces. They considered comfrdnuous self-maps
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9 /*jdefined on compact subsets of C[0,1] and.L[0,1] 7

and established the existence of fixed points for
them ^ehauder[41] generalised these results.

Schauder's Fixed Point Theorem
Let C be a non-empty convex compact subset 

o' a normed linewr space X. Then every continuous 

self map of C has i fixed point.

Many author's have extended Schauder's theorem 

in different spaces. Tychonoff [43] extended Brouwer's 

result to a compact convex subset of a locally convex 

linear topological space.

1.1.6 ITERATIVE METHODS

Mann Iteration Process :

Mann [30] gave the following iteration 

process. For a self-mapping T of a closed bounded 

interval of the real line having a unique fixed point, 

the iteration process

d.1.7)
wi th

a n ---— , converges to the fixed
n + 1

point of T as n > oo
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Ishikawa Iteration Process

In 1974, Ishikawa [19] itroduced the following 
iterative procedure.

Let C be a non-empty convex subset of a 
Hilbert space H and T be a self map on C. Then the 
iteration scheme { o introduced by Ishikawa
is as follows.

For any xQ e C,
y = (1-8 ) x + R Tx , n >,0 ■^n Mn' n p n „n '

n+ „ = (1-a )x + a Ty , n>. 0 1 n n n - n '
. (1.1.8)

. . 00 - .00Where {a n } n_Q and |8n Jn_g are sequences of 
positve numbers which satisfy the following three 
conditions.

(i) 0^ a 3
(ii) lim 8 = n— n

00
(ill) I a_B _n«0 n "

Ishikawa Identity
For any x,y,z in a Hilbert space H and a 

real number t,
||tx+(l-t)y-z||2 = 11|x— z||2 + (1-1)||y-z||2

- t(l-t) ||x-y||2

... (1.1.10)
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Part - II

I. 2 Historical Developments of a Fixed Point
Theory in Hilbert Spaces

The theory of Hilbert spaces is originated 
in the year 1912 with the work •Grundzuge einer 
allegemeinon Theorie der linearen Integralqleichungen' 
of the great German mathematician D.Hilbert [18]. 
However, several years elapsed before an axiomatic 
basis was provided by the famous mathematician
J. Von Neumann [34]. The modern developments in Hilbert 
spaces are concerned largely with the theory of 
operator on the spaces.

Browder initiated the study of fixed point 
theory of non-expansive mappings in Hilbert spaces 
without compactness conditions. In 1965, Browder [5] 
proved the following theorem

Theorem :

Let Br be a closed ball of radius r>0 in 
a real or complex Hilbert space H. 3Br be the 
boundary of Brand S be a nonlinear contraction map 
of Br into H such that Sx- Xx * 0 for all x in Br 
and any X + 1. Using the theory of monotone operators 
developed in [31, 4], Browder [5] showed that T 
has atleast one fixed point in Br.
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Petryshyn [36] studied an iteration method 

for the actual construction of fixed points of a 

nonlinear contraction map S under the additional 

assumption that S is demicompact. He has proved 

his main result in the following way.

Theorpm :

Let S be a demicompact contraction of Br 

into H such that Sx-^x $ 0 for all x e 3 Br and 

X > 1, then the set of fixed points Fr of S lying 

in Br is a nonempty convex set and for any xQ e Br 

and any 8 > 0 such that 0 < 8 < 1 the sequence 

{xn+^}determined by the process

Xn+1 " ®rnSxn + (1-8) xn . n= 0,1,2...

where the real numbers r~, n= 0,1,2,....n
are given by

1 « I |SxJ | 4 r

converges to a fixed point 2e F^C B^ of S

Browder and Petryshyn [7] introduced the 

four classes of nonlinear mappings(strictly 

contractive, contractive, stricly Pseudocontractive
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and Pseudocontractive) which admit iterative 

methods for the construction of their fixed points. 

They established the following basic existence result.

Theorem :

Let C be a closed bounded convex subset 

of the Hilbert space H, T be a contractive mapping 

of c into C. Then T has at least one fixed point 

in C.

Based upon this theorem a number of theorems 

have been proved by theauthors. We give here a few 

of them

Theorem :

If T is contractive (non-expansive) mapping 

of C into C, where C is a closed convex subset of 

a Hilbert space H and the set F(T) of fixed points 

of T in C is non-empty, then the mapping defined 

by T^ = AI + (1- X) T for any given X with 

0 < X <1 is a reasonable wanderer from C into C with 

the same fixed points as T.

Corollary :

If T is contractive (non-expansive) mapping 

of C into C with non-empty set F(T) of fixed points 

of T in C and if the mapping defined by
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= Xl + (1-A) T for a given A with 
0 < X <1, then T maps with C into C,

A

same fixed points as T and T is a symptotically
A

regular.
Theorem :

Let T be a self-map of a bounded closed
convex subset C of a Hilbert space H. Suppose T
is contractive and demicompact. Then the set F(T)
of fixed points of T in C is a non-empty convex set
and for any given x0e C and any fixed A % 0 with
0 < A < 1, the sequence {x } = {T^ x0} determined by1 nj 1 a J
the process

xn ~ »v + (1-*) x . n - 1 2 3n xn_1 n_i • n - 1,/,o,...

converges strongly to a fixed point of T in C.

Hicks and Huffman [17] generalised theorem 
(1.1.4) and (1.2.6) in generalised Hilbert space 
(see theorem 6,7 of [17]).

Ishkawa [19] has introduced a new itereation 
scheme, calledd as Ishikawa iteration scheme and 
proved that a sequence of Ishikawa iterates for a 
Lipschitzian Pseudocontractive maping in a convex 
compact subset of a Hilbert space converges strongly 
to a fixed point of this mapping.
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Das and Debata [13] have extended and

generalised the result of Ishikawa [19] by taking 

simultaneously a more generalised iteration scheme 

involving a family of maps and secondly by taking 

less restrictive hemicontractive mappings. Their 

result states as follows :

Theorem :

Let {Tj } , j = 1,2,....K, K >,2 be a family

of hemicontractive maps defined on a convex, compact 

subset C of a Hilbert space H and have at least one 

common fixedd point in C. Let the family of maps
{Tj} satisfy

I I - T j y j I « M I | x-y | I

for all x.yEC and all pairs (i,j), M being a

positive constant. Then the sequence i x^ converge 

to a common fixed point of the family of maps {t^.}

where xr is defined iteratively for each positive 

integer n by x^e C

Where,

in [0,1] such that
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(i) 0 $ « ^ n “n '■* •'n 1 for n = 1,2,...

(ii) Hm B = o n -*• ao n

(iii) V ok_1l an Pn s m for each k ^ 2
n=l
The authors [13] claimed that for K = 2,

T = T1 2 , the above theorem includes the result of
Ishikawa [19] as a corollary. They further claim 
that the Ishikawa iteration can be extended to 
Lipschitzian hemicontractive mappings.

In 1976 and 1983, Rhoades [38] and Naipally 
and Singh [33] studied the Ishikawa iteration scheme,
respectively, and put forth the following questions : _

<

Can the Ishikawa iteration procedure be 
extended to quasi-contractive add hemicontractive 
mappings ?

Liu Qihou [27,28] studied the above questions 
and proved the convergence theorem of the sequence 
of Ishikawa iterates for quasicontractive mappings 
and Lipschitzian hemicontractive mappings. After 
this, Liu Qihou [29] continue to studied the above 
questions and proved the following two theorems.^
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Theorem :

Let C be a convex compact subset of a Hilbert 
space and T : C-*-C, a continuous hemicontractive 
mapping. Suppose that the number of the fixed points 
of T is finite. Then, for each xQ GC, the sequence 
of Ishikawa iterates {xr }”_q must converge to a 
fixed point of T.

Theorem :

Let C be a convex compact subset of a Hilbert 
space and T : C-*-C, a continuous generalized contractive

mapping. Then, for each x0 g C, the sequence of 
Ishikawa iterates {xr must converge to a fixed
point of T.

Here we complete the brief survey of the 
development of the fixed point theory in Hilbert 
Space.


