CHAPTER - 2

CHAPTER - II

Fixed point theorem a identity mapping

2.1 Let B denote a Banach space with the norm $|\cdot|\cdot|$ and C be a closed subset of B. The transformation $F: C \to C$ is called contraction if there exists a constant K with 0 < K < 1 such that $|\cdot| Fx - Fy / \cdot | \le K / \cdot |x - y / \cdot |$. If K = 1 it is called non-expansive. Banach contraction principle states that a contraction mapping C into C has a unique fixed point. This conclusion is also true for $|\cdot| Fx - Fy / \cdot |\cdot|^2 \le K / \cdot |x - y / \cdot |^2$ but it is no longer true for K = 1. However, Browder [5] has proved that every non-expansive mapping of a closed, bounded and $\frac{1}{2}$ convex subset of a uniformly, convex Banach space has at least one fixed point.

In 1971, Goebel and Zlotkiewicz [15] have proved the following theorem:

2.1.1 Theorem :

If C is a closed and convex subset of B \exists and F : C \rightarrow C satisfies

- (i) $F^2 = I$, I is identity mapping
- (ii) $||F_{X}-F_{y}|| \le K ||x-y||$ where $0 \le K < 2$, then F has at least one fixed point.

In 1991, Sharma and Sahu [42] have obtained the most generalised theorem from the result of Goebel and Zlotkiewicz [15]

2.1.2 Theorem:

Let F be a mapping of a Banach space X into itself and satisfy

(i)
$$F^2 = I$$
, Where I: Identity mapping

(ii)
$$||Fx-Fy|| \le \frac{a||x-Fx|| ||y-Fy||}{||x-Fy|| + ||y-Fy|| + ||x-y||} +$$

$$\frac{b||x-Fx|| ||y-Fy||}{||x-y||} + C\{||x-Fx|| + ||y-Fy||\}$$
+ d\{||x-Fy|| + ||y-Fx|| \} + e ||x-y||

For every $x,y \in X$ and $x \neq y$, a,b,c,d,e > 0a + 4b + 4c + 4d + e < 2, 2d + e < 1. Then F has a unique Fixed Point.

2.1.3 Semi-generalised ν -contraction mapping [25] Definition :

 $\hbox{A mappint T from a closed subset C into C} \\ \hbox{of a Hilbert Space H satisfying}$

$$||Tx-Ty||^2 \le \alpha ||x-Tx||^2 + \beta ||y-Ty|| + \nu ||x-y||^2$$
is called semi-generalised ν -contraction with $0 < \alpha + \beta + \nu < 1$ and $\alpha \beta \cdot \nu > 0$

2.1.4 Parallelogram Law [26] P.130

Let H be a Hilbert space and x,y E H Then

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + ||y||^2$$
.....(i)

From (i) we have.,

$$||x+y||^{2} \le 2 \left[||x||^{2} + ||y||^{2} \right]$$
 (ii)
 $||x-y||^{2} \le 2 \left[||x||^{2} + ||y||^{2} \right]$

Now we recall the definition of Identity mapping

2.1.5 A mapping I : $X \rightarrow X$ is called Identity mapping if I(x) = x for all x in X

Using (2.1.4 and 2.1.5) and the equation(ii) we prove the following Theorem

2.1.6 Theorem:

Let F be a mapping of a Hilbert space H into itself satisfying

(i)
$$F^2 = I$$
; I is the identity mapping

(ii)
$$||Fx-Fy||^2 < \alpha ||x-Fx||^2 + \beta ||y-Fy||^2 + \dots$$

$$v ||x-y||^2$$

For all x,y in H where $\alpha, \beta, \nu > 0$ and $0 < \alpha + \beta + \nu < 1$

Proof: Let x be a fixed point of H.

Set
$$\dot{y} = \frac{1}{2}$$
 (F + I) x, z = $f(y)$
and u = $2y - z$

Then by using (i) and (ii) we get

$$||z-x||^{2} = ||f(y)-x||^{2} = ||f(y)-f^{2}(x)||^{2}$$

$$\leq \alpha ||f(x)-f^{2}(x)||^{2} + \beta ||y-f(y)||^{2}$$

$$+ \nu ||y-f(x)||^{2}$$

$$\leq \alpha ||f(x)-x||^{2} + \beta ||y-fy||^{2}$$

$$+ \nu ||2||y-f(y)||^{2} + 2||f(y)-f(x)||^{2}$$

by 2.1.4

Next,

$$||\vec{F}(y) - \vec{F}(x)||^{2} \le 2||\vec{F}(y) - x||^{2} + 2||x - \vec{F}(x)||^{2}$$

$$\le 4||x - \vec{F}(x)||^{2} \quad \text{proved}$$

$$\cdot \quad ||\vec{F}(y) - x|| \le ||x - \vec{F}(x)||$$

$$\cdot \cdot \quad ||z - x||^{2} \le (\alpha + 8\nu)||x - \vec{F}(x)||^{2} + (32)$$

$$+ (\beta + 2\nu) ||y - \vec{F}(y)||^{2}$$

Now,

$$||u-x||^2 = ||2y-f(y)-x||^2$$

= $||(f+1)|x-f(y)-x||^2$
= $||f(y)| - |f(x)||^2$

$$<\alpha ||x-F(x)||^2 + \beta ||y-F(y)||^2 + \nu ||x-y||^2$$
 $<\alpha ||x-Fx||^2 + \beta ||y-Fy||^2 + \nu ||2||x-Fy||^2 + 2||y-Fy||^2 ||2||$

But

$$||x-Fy||^{2} \le 2||x-Fx||^{2} + 2||Fx-Fy||^{2}$$

 $\le 2||x-Fx||^{2} + 8||x-Fx||^{2}$
 $= 10||x-F(x)||^{2}$

∴
$$||u-x||^2 \le (\alpha+20\nu) ||x-Fx||^2 + (\beta+2\nu) ||y-Fy||^2$$

Hence,

$$||z-u||^{2} \le 2||z-x||^{2} + 2||u-x||^{2}$$

$$\le 2(\alpha + 8\nu) ||x-Fx||^{2} + 2(\beta + 2\nu)||y-Fy||^{2}$$

$$+ 2(\alpha + 20\nu)||x-Fx||^{2} + 2(\beta + 2\nu)||y-Fy||^{2}$$

∴
$$||z-u||^2 \le 4(\alpha+20\nu)||x-Fx||^2 + 4(\alpha+2\nu)||y-Fy||^2$$

∴ $\nu \le 1$

We have,

$$||z-u||^2 = ||u-z||^2 = ||2y-z-z||^2$$

= $4||y-z||^2$
= $4||y-F(y)||^2$

Hence,

$$4 | |y-Fy| |^{2} = | |z-u| |^{2}$$

$$\leq 4(+20v) | |x-Fx| |^{2} + 4(\beta +2v) | |y-Fy| |^{2}$$

$$\therefore | |y-Fy| |^{2} \leq (\alpha +20v) | |x-Fx| |^{2} + (\beta +2v) | |y-Fy| |^{2}$$

$$| |1-(\beta +2v)| | ||y-Fy|| |^{2} \leq (\alpha +20v) | ||x-Fx|| |^{2}$$

$$| ||y-Fy|| |^{2} \frac{\alpha +20v}{1-(\beta +2v)} ||x-Fx|| |^{2}$$
Let $G = \frac{1}{2}$ (F+I), then for all $x \in H$

$$||G^{2}x-Gx||^{2} = ||Gy-y||^{2}$$

$$= ||\frac{1}{2}(F+I)y-y||^{2}$$

$$= \frac{1}{4}||y-Fy||^{2}$$

$$\leq \frac{1}{4}\frac{\alpha+20\nu}{[1-(\beta+2\nu)]}||x-Fx||^{2}$$

$$= \frac{1}{4}\frac{\alpha+20\nu}{1-(\beta+2\nu)}||x-(2Gx-x)||^{2}$$

$$= \frac{\alpha+20\nu}{1-(\beta+2\nu)}||Gx-x||^{2}$$

$$\therefore ||G^{2}x-Gx|| \leq ||Gx-x|| \qquad \therefore \frac{\alpha+20\nu}{1-(\beta+2\nu)} < 1$$

Therefore the sequence $\{x_n\}$ defined by $x_n = G^n(x)$ is a cauchy seeunce in H.

Since H is complete

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} G^n x = x_0$$

Consider,

As $n \rightarrow \infty$, we get

$$||\mathbf{x}_{\circ} - \mathbf{G}\mathbf{x}_{\circ}||^{2} \leq \beta ||\mathbf{G}\mathbf{x}_{\circ} - \mathbf{x}_{\circ}||^{2}$$

$$\Rightarrow \mathbf{G}\mathbf{x}_{\circ} = \mathbf{x}_{\circ}$$

$$\therefore \beta < 1$$

Now,

$$X_{o} = GX_{o}$$

$$= \frac{1}{2} (F+I) X_{o}$$

$$2X_{o} = F(X_{o}) + IX_{o}$$

$$2X_{o} = F(X_{o}) + X_{o}$$

$$F(x_o) = x_o$$

$$x_o \text{ is a fixed point of } F$$

Uniqueness:

Let if possible $\mathbf{x}_{\text{o}} \mathbf{and} \ \mathbf{y}_{\text{o}} \mathbf{are}$ two distinct fixed points of F in H

Then,

$$||x_{o}-y_{o}||^{2}=||Fx_{o}-Fy_{o}||^{2}$$

$$\leq \alpha ||x_{o}-Fx_{o}||_{2}^{2}+\beta ||y_{o}-Fy_{o}||^{2}+\nu ||x_{o}-y_{o}||^{2}$$

$$\cdot ||x_{o}-y_{o}||_{2}^{2} \nu ||x_{o}-y_{o}||^{2}$$

$$\implies (1-v) ||x_0-y_0||^2 \le 0$$

Since v < 1 and $||.|| \not \leq 0$

We have
$$||\mathbf{x}_{\circ} - \mathbf{y}_{\circ}||^2 = 0$$

$$\Rightarrow ||\mathbf{x}_{\circ} - \mathbf{y}_{\circ}|| = 0$$

$$\Rightarrow \mathbf{x}_{\circ} = \mathbf{y}_{\circ}$$

Hence \mathbf{x}_{o} is a unque fixed point of F.