ARTICLE FOUR

ener um Traumien derstagen underen einerschrittigen einer der Bergen under Leisen under Steinen in dem Steinen

برايحي ويسويونه شرايطهم بساله الحرابي والمرايع

n - Dimensional Generalized Hankel Transform of Arbitrary Order

ատարություններություններություններությունները է ենքին են երանությունը երանությունը կարունների երանքին երանությո

egenerative and the end of the state of the state

For $\lambda > 0$, the n-dimensional generalized Hankel transform of a function $\emptyset(x_1, x_2, \dots, x_n)$ defined by

$$(h_{\mu,\lambda}\emptyset)(y_{1},y_{2}\dots y_{n}) = \lambda \int_{0}^{\infty} \cdots \int_{0}^{\infty} \emptyset(x_{1},x_{3},\dots,x_{n}) (\prod_{i=1}^{n} (x_{i}y_{i})^{\lambda-1/2} J_{\mu} (x_{i}^{\lambda}y_{i}^{\lambda})) dx_{1} \cdots dx_{n}$$
(4)

Where $J_{\mu}(z)$ is the Bessel function of first kind of order μ_{\bullet} . In this section we extend this transform to a class of of generalized function when μ is any real number,

I denotes the open set $x \in \mathbb{R}^n : o \langle x_i \rangle o (i=1,2,...,n)$. A function on a sub set of \mathbb{R}^n shall be denoted by $f(x) = f(x_1, x_2, ..., x_n)$. If $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, then [x] means the product $x_1 x_2 \cdots x_n$. Thus $[x^m] = x_1^{m} 1 x_2^{m} 2 \cdots x_n^{m}$ where $m = (m_1, m_2, ..., m_n) \subset \mathbb{R}^n$. A nonnegative integer in \mathbb{R}^n means the element in \mathbb{R}^n whose components are all nonnegative integers. We shall use the following operators :

(1)
$$(x^{1-2\lambda}D_x)^k = \prod_{i=1}^n (x^{1-2\lambda}_i \frac{\partial}{\partial x_i})^{k_i}$$

where $k = (k_1, k_2, \dots, k_n)$ is a nonegative integer in R^n .

(2)
$$N_{\mu,\lambda} = [x]^{\lambda\mu+1/2} \frac{\partial^n}{\partial x_1 \partial x_2 \cdots \partial x_n} [x]^{-\lambda\mu-\lambda+1/2}$$

(3)
$$M_{\mu,} = [x]^{-\lambda\mu-\lambda+1/2} \frac{\partial^{n}}{\partial x_{1}, \partial x_{2}...\partial x_{n}} [x]^{\lambda\mu+1/2}$$
Thus $M_{\mu,\lambda}N_{\mu,\lambda} = \prod_{i=1}^{n} \left\{ \frac{2(1-\lambda)}{x_{i}} \frac{\partial^{2}}{\partial x_{i}^{2}} + 2(1-\lambda) x_{i}^{1-\lambda} \right\}$

$$\frac{\partial}{\partial x_{i}} (\lambda\mu+\lambda+1/2)(\lambda\mu-\lambda-1/2)x_{i}^{-2\lambda} \left\}.$$
(4) $N_{\mu,\lambda}^{-1}\phi = [x]^{\lambda\mu+\mu-1/2} \int_{\infty}^{x_{1}} ... \int_{\infty}^{x_{n}} [t]^{-\lambda\mu-1/2}\phi(t)dt_{n}...dt_{1}$
The $N_{\mu,\lambda}^{-1}$ is the inverse of $N_{\mu,\lambda}$. By a smooth function, we mean x_{i}^{k} a function that possesses partial derivatives (of all points of its domain.

* 4.1 : The Generalized n-Dimensional Hankel Transform of Order $\mu \ge -1/2$

The results in this section were developed by Ghosh[9], and Choudhary [3]. Let μ be any real number and $\lambda > 0$. $H_{\mu,\lambda}$ is the space of complex valued smooth function $\phi(x)$ defined on I such that for each pair of nonegative integers m and k in \mathbb{R}^{P}

$$\gamma_{m,k}^{\mu,\lambda}(\phi) = \sup_{x \in I} \left[\begin{bmatrix} x \end{bmatrix}^{\lambda} \begin{pmatrix} 1-2\lambda \\ x & D_x \end{pmatrix}^k \begin{bmatrix} x \end{bmatrix}^{-\lambda\mu-\lambda+1/2} \phi(x) \right] \langle \infty \dots \langle 4.1. \rangle$$

We shall list a few properties related to these spaces $H_{\mu,\lambda}$ [9].

- (i) H_{μ,λ} is complete countably multinormed space. H[']_{μ,λ} the dual of H_{μ,λ} is also a complete.
- (ii) For any integer p, and for any μ , $\emptyset \longrightarrow [x]^{\lambda p} \emptyset$ is an isomorphism from $H_{\mu,\lambda}$ onto $H_{\mu+p,\lambda}$. Thus the operator $f(x) \longrightarrow [x]^{\lambda p} f(x)$ defined by

$$\langle [x]^{\lambda p} f(x), \phi(x) \rangle = \langle f(x), [x]^{\lambda p} \phi(x) \rangle$$
 (4.1.2)
is an isomorphism from $H^{\dagger}_{\mu+p,\lambda}$ onto $H^{\dagger}_{\mu,\lambda}$

(iii) For any μ , $\emptyset \longrightarrow N_{\mu,\lambda} \emptyset$ is an isomorphism from $H_{\mu,\lambda}$ onto $H_{\mu+1,\lambda}$ the inverse mapping being $\emptyset \longrightarrow N_{\mu,\lambda}^{-1}(\emptyset)$.

(iv) For any μ , $\not{\phi} \rightarrow M_{\mu,\lambda} \not{\phi}$ is continuous linear mapping from $H_{\mu+1,\lambda}$ into $H_{\mu,\lambda}$. Thus, $M_{\mu,\lambda}N_{\mu,\lambda}$ is a continuous linear mapping of $H_{\mu,\lambda}$ into itself. (v) The weak differential operator $N_{\mu,\lambda}$ defined by $\langle N_{\mu,\lambda}f, \phi \rangle = \langle f, (-1)^{n}M_{\mu,\lambda}\phi \rangle$, $f \in H'_{\mu,\lambda}, \phi \in H_{\mu+1,\lambda}$. (4.1.3) is a continuous linear mapping from $H'_{\mu,\lambda}$ into $H'_{\mu+1,\lambda}$. (v1) The weak differential operator $M_{\mu,\lambda}$ defined by $\langle M_{\mu,\lambda}f, \phi \rangle = \langle f, (-1)^{n}N_{\mu,\lambda}\phi \rangle$, $f \in H'_{\mu+1,\lambda}, \phi \in H_{\mu,\lambda}$ (4.1.4) is an isomorphism from $H'_{\mu+1,\lambda}$ onto $H'_{\mu,\lambda}$. Thus, the weak differential operator M, N is a continuous linear mapping from $H'_{\mu,\lambda}$ into itself.

(vii) The Hankel transformation $h_{\mu,\lambda}$ defined by (4) is an automorphism on $H_{\mu,\lambda}$, when $\mu \ge -1/2$. When $\mu \ge -1/2$, the n-dimensional, distributional Hankel transformation $h'_{\mu,\lambda}$ on $H'_{\mu,\lambda}$ if defined as follows : For $\phi \in H_{\mu,\lambda}$ and $f \in H'_{\mu,\lambda}$, the Hankel transform $F = h'_{\mu,\lambda}$ is defined by

$$\langle h_{\mu,\lambda}^{\dagger}f, \phi \rangle = \langle f, h_{\mu,\lambda} \phi \rangle$$
 (4.1.5)

(viii) If $\mu \ge -1/2$, the distributional Hankel transformation $h_{\mu,\lambda}^{i}$ is an automorphism on $H_{\mu,\lambda}^{i}$.

Let μ be any real number, $\lambda > 0$ and p any positive integer such that $\mu + p \ge -1/2$. We define the transformation $h_{\mu,p,\lambda}$ and $h_{\mu,p,\lambda}^{-1}$ on $H_{\mu,\lambda}$ as follows

Lemma 4 : Let μ be any real number, $\lambda > 0$ and p any positive integer a such that $\mu + p \ge -1/2$. Then

- (a) h defined by (4.2.1) is an automorphism on H μ_{λ}
- (b) $h_{\mu,p,\lambda}^{-1}$ defined by (4.2.2) is the inverse of $h_{\mu,p,\lambda}^{-1}$, and

(c) When $\mu \ge -1/2$, $h_{\mu,p,\lambda}$ coincides with $h_{\mu,\lambda}$ as defined by (4). Proof :- In view of property (iii), sec. 4.1, the mapping

 $\emptyset \longrightarrow N_{\mu+p-1,\lambda} \cdots N_{\mu,\lambda} \emptyset$ is an isomorphism from $H_{\mu,\lambda}$ onto $H_{\mu+p,\lambda}$. By virtue of properties (vii) and (ii), Sec. 4.1,

 $\phi \longrightarrow h_{\mu+p,\lambda} \phi$ is an automorphism on $H_{\mu+p,\lambda}$, and $\phi \longrightarrow [x]^{-\lambda p} \phi$ is an isomorphism from $H_{\mu+p,\lambda}$ onto $H_{\mu,\lambda}$, and hence (a) follows. When $\mu + p \ge -1/2$, $h_{\mu+p,\lambda}^{-1} = h_{\mu+p,\lambda}$ is clear from [9]. Hence, (b) follows from the properties (ii) and (iii) again. To rprove (c), let $\mu \ge -1/2$ and $\phi \in H_{\mu,\lambda}$. First suppose p = 1, then

$$h_{\mu,1,\lambda} \phi = (-1)^{n} [x]^{-\lambda} h_{\mu+1,\lambda} N_{\mu,\lambda} \phi(y)$$

$$= (-1)^{n} [x]^{-\lambda} \int_{0}^{\infty} \cdots \int_{0}^{\infty} [y]^{\lambda\mu+1/2} \frac{\partial^{n}}{\partial y_{1} \cdots \partial y_{n}}$$

$$[y]^{-\lambda\mu-\lambda+1/2} \phi(y) \prod_{i=1}^{n} (x_{i}y_{i})^{\lambda-1/2}$$

$$J_{\mu+1} (x_{i}^{\lambda}y_{i}) dy_{1} \cdots dy_{n}$$

$$= \int_{0}^{\infty} \cdots \int_{0}^{\infty} \phi(y) (\prod_{i=1}^{n} (x_{i}y_{i})^{\lambda-1/2} J_{\mu} (x_{i}^{\lambda}y_{i})) dy_{1}, \dots dy_{n} (4.2.3)$$

÷

)

$$\frac{\partial}{\partial y_{i}} \begin{array}{c} \chi_{i}^{\lambda(\mu+1)} \\ J_{\mu+1}(x_{i}^{\lambda}y_{i}^{\lambda}) \\ = \lambda \begin{array}{c} \chi_{i}^{\lambda}\chi_{i}^{\lambda(\mu+2)-1} \\ J_{\mu}(x_{i}^{\lambda}y_{i}^{\lambda}) \end{array}$$

The limit terms vanish since $D_y^{\kappa}\phi(y)$ is of rapid descent for each non-negative integer k in \mathbb{R}^n , by [9] and $\{(x_i, y_i)\}$ $J_{\mu+1}(x_i^{\lambda}y_i^{\lambda})$ remains bounded as $y_i \rightarrow \infty$ while $(x_i y_i)^{\lambda-1/2}$ $J_{u+1}(x_i^{\lambda} y_i^{\lambda}) = O(y_i), \quad \phi(y) = O(1) \text{ as } y_i \rightarrow 0, \text{ for each i. Thus,}$ when $\mu = -1/2$, $h_{\mu,1,\lambda} = h_{\mu,\lambda}$. The general statement for larger values of p follows by induction from this result. Consequences of the Lemma : (i) $h_{\mu,p,\lambda}$ is independent of the choice of a positive integer p, so long as $\mu + p \ge -1/2$. That is $h_{\mu,p,\lambda} = h_{\mu,q,\lambda}$ if p and q are positive integers such that $\mu + p \ge -1/2$ and $\mu + q \ge -1/2$. (ii) $h_{\mu,p,\lambda}^{-\perp} = h_{\mu,\lambda}$ if $\mu \ge -1/2$, and (iii) $h_{\mu,p,\lambda}^{-1}$ is independent of the choice of p so long as $\mu + p \ge -1/2$. In view of these consequences, it is reasonable to define the generalized Hankel transformation $h_{\mu,\lambda}$ for $\mu \ge -1/2$ on $\emptyset \subset H_{\mu,\lambda}$ by $h_{\mu,\lambda} \emptyset = h_{\mu,p,\lambda} \emptyset$ where p is a positive integer no less than - μ - 1/2. The inverse of Hankel transformation $h_{\mu,\lambda}^{-1}$ is defined by $h_{\mu,\lambda}^{-1} \phi = h_{\mu,p,\lambda}^{-1} \phi$, $\phi \in H_{\mu,\lambda}$. When $\mu \ge -1/2$, $h^{-1}_{\mu,\lambda} = h_{\mu,\lambda}$ but this is not true when $\mu < -1/2$.

We now define the distributional Hankel transformation $h_{u,\lambda}^{(1)}$ of any real order $\mu_{u,\lambda}$

Definition : Let μ be any real number, $\lambda > 0$ and f C H[']_{μ,λ}. Let p be any positive integer such that $\mu + p \ge -1/2$. Then, the distributional Hankel transformation h[']_{μ,λ} is defined as the adjoint of h_{μ,λ} = h_{μ,p,λ} of H_{μ,λ}. That is for \oint C H_{μ,λ} and $\oint = h_{\mu,\lambda}\oint = h_{\mu,p,\lambda}\oint$, the Hankel transformer $F = h'_{\mu,\lambda}f$ of $f \in H^{*}_{\mu,\lambda}$ is defined by $\langle h'_{\mu,\lambda}f, \oint \rangle = \langle f, h_{\mu,p,\lambda} \oint \rangle$ (4.2.4) Theorem - 4.2 : The generalized Hankel transformation $h'_{\mu,\lambda}$ is an automorphism on $H'_{\mu,\lambda}$, whatever be the real number μ . and λ

 $\lambda > 0.$ The equation(4.2.4) also defines the inverse of $h'_{\mu,\lambda}$ as the adjoint of $h^{-1}_{\mu,p,\lambda} : \langle F, h^{-1}_{\mu,p,\lambda} \phi \rangle = \langle (h'_{\mu,\lambda})^{-1}F, \phi \rangle$ (4.2.5) where $F = h'_{\mu,\lambda} f$ and $\phi = h_{\mu,p,\lambda} \phi$. When $\mu \ge -1/2$, the definition (4.2.4) of $h'_{\mu,\lambda}$ coincides with (4.1.5). \approx 4.3 : An Operation-Transform Foundla :

In view of property (vi) Sec. 4.1, the weak differential operator $M_{\mu,\lambda} \stackrel{N}{\mu,\lambda}$ is a continuous linear mapping from $H_{\mu,\lambda}$ into itself. If $\mu \ge -1/2$, for $f \in H_{\mu,\lambda}^{'}$,

$$h'_{\mu,\lambda}(M_{\mu,\lambda}N_{\mu,\lambda}) = (-1)^{n\lambda^2} [y]^{2\lambda} h_{\mu,\lambda} f \qquad (4.3.1)$$

The same thing is also true for any real number μ if extended function of $h'_{\mu,\lambda}$ is used. To establish this, by using the

integration by parts through each variable, differentiation under the integral sign and the same technique used in the case of one dimensional [30], we can obtain

Lemma 4.1: Let $\lambda > 0$ and μ be any fixed real number and p a positive integer $\ge -\mu - 1/2$. Then, for every $\phi \in H_{\mu,\lambda}$,

$$M_{\mu,\lambda}N_{\mu,\lambda}h_{\mu,p}, \quad \Phi = h_{\mu,p,\lambda}((-1)^{n} [y]^{2\lambda} \Phi) \quad (4.3.2)$$

Theorem 4.3: For arbitrary real μ , $\lambda > 0$ and $f \in H_{\mu,\lambda}^{\prime}$, then $h_{\mu,\lambda}^{\prime}(M_{\mu,\lambda}, h_{\mu,\lambda}) = (-1)^{n} [y]^{2\lambda} h_{\mu,\lambda}^{\prime} f \qquad (4.3.3)$

Proof : Let $\Phi \in H_{\mu,\lambda}$ and p any positive integer $\geq -\mu - 1/2$. By definition of $M_{\mu,\lambda} = N_{\mu,\lambda}$ and Lemma 4.1 we have

$$\langle {}^{h}_{\mu,\lambda}{}^{N}_{\mu,\lambda}{}^{f}, \Phi \rangle = \langle {}^{M}_{\mu,\lambda}{}^{N}_{\mu,\lambda}{}^{f}, {}^{h}_{\mu,p,\lambda} \Phi \rangle$$

$$= \langle f, {}^{M}_{\mu,\lambda}{}^{N}_{\mu,\lambda}{}^{h}_{\mu,p,\lambda} \Phi \rangle$$

$$= \langle f, (-1)^{n\lambda^{2}} [y]^{2\lambda} \Phi \rangle$$

$$= \langle {}^{h}_{\mu,\lambda}{}^{f}, (-1)^{n\lambda^{2}} [y]^{2\lambda} \Phi \rangle$$

$$= \langle (-1)^{n\lambda^{2}} [y]^{2\lambda} {}^{h}_{\mu,\lambda}{}^{f}, \Phi \rangle$$

which implies (4.3.3.)
Remarks : (1) When n = 1, the results in this work reduce to
 the one-dimensional case [9].

- (2) When $\lambda = 1$, the results in this work reduce to [3]
- (3) When n = 1 and $\lambda = 1$, the results in this work reduce to [30].