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For »70, the-'n-dimensional generalized Hankel transform

of a function @ (xl, Xpy seenes X ) defined by

n
, I a~1/2
(hy (@ (Y1sYp eeyy) = ;\ff B(X]1Xg500easX, )(n l(xiyi)
0.
A A
Jp <X1Yi) ) dxl...dxn (4)

Where Ju(z) is the Bessel function of first kind of
order y#, In this section we extend this transform to a class of

of generalized function when p is any real number,

I denotes the open set X aRn : o(xi<oq i=l,2,,..,0 .
A function on a sub set of R” shall be denoted by f(x) =
f(xl,xz,...,xn). If x = (xl,xz,;..,xn) € B", then [x] means

the product X1 X5 ens Xpe Thus [xm] = xlmlx2m2...xnmn where

m= (ml,m2,...mn) C Rn, A nonnegative integer in R” means the

element in R" whose components are all nonnegative integers,

We shall use the following operators :

1-2 k n 1-2 K.
KDX) = 1 (x, » 2 y 1
i=

(1)  (x LA
107 Bxi

where k = (kl’ k2’ cens kn> is a nonegative integer in R",

AP+1/2 “KP’A+1/2
(2) Nﬂ’h = [x] ‘q-awuiilm'__ [x]

dxl 2...3x
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'—Ap~k+l/2 n +1/2
(3) M, = [x] LR % o
axl,ax2...axn
Thus M, N _ = = [ a2 LA
us M, . izl Xs 3;% + 2(1=y) X3
, L 2
2 emtl2) (a-1/2)x; ]
BX.
i
-1 aptp-1/2 51 o pe1/2
» — e | :
(4) N, &= [x] [ [ B(t)dt_...dt,
© o)
-1
The N is the inverse of N, ., By a smooth function, we mean
s\ RaA i
X

a function that possesses partial derivatives éf]all points of
its domain,
4,1 : The Generalized n-Dimensional Hankel Transform

of Order w3 -1/2 |

The results in this section were developed by Ghosh[9],

and Choudhary [3], Let g be any real number and > O, Hu \
?

is the space of complex valued smooth function ¢(x) defined

on I such that for each pair of nonegative integers m and k in 3

Kok SR | 1-2) k ‘KP‘A+1/2,
Yok (@ = sup [x T D) [x] B(x)|{¢w ... (4.1,

We shall list s few properties related to these spzces Hu \ [91.
3
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(i) H N is complete countably multinormed space,

t} H . is al te,
Hu’x ne dual of HP’A is also a complete

AP
(ii) For any integer p, and for any 4, ¢'—*[x] @ is

an isomorphism from Hu,x onto Hp+p;k' Thus the

AP
operator f(x)=~> [x] f(x) defined by

< < E0, 30> = (£00, kY B0 (4.1.2)

!
s an isomorphism from H onto H
is an i phiLsm © WP, A oA

(iii) For any p, @ -ﬁrN# Kd is an isomorphism
’

from H onto H the inverse mapping being

RPN pl,

-1
¢ ——— N}L’A(d)' .

(iv) For any y, d-—»Mu \ @ is continuous linear
’

into H .. Thus, M, N '
}L“‘l,}\ 1nto p"}\ us }h)\ P-)}\ 1ls a

continuous linear mapping of Hp \ into itself,
?

mapping from H

(v) The weak differential operator NP \ defined by
y
Ny (B 0D = (- nt My 7\(25)’ ch A PEH L
(4.1.3)

4
. . . . into H
is a continuous linear mapping from HF:A into pl,o

(vi) The weak differential operator My,y defined by

£,8 5= € H 4,1.4
4“%,?\ B y=L £,(-1)" N, ®> feH 7\’¢ o ( )
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LA . .
p+l,A°nt° HP:A' Thus, the weak differentii

1
operator M - N is a continuous linear mapping from H
P Bon A apping A

into itself,

is an isemorphism from H

(vii) The Hankel transformation h defined by (4) is an

B
sutomorphism on H, ., when p>-1/2, When p2-1/2, the

' 1
n-dimensional, distributional Hankel transformation hp \ on
4

] A . H
Hp’?\ if defined as follows : For ¢ € Hw\ and f € Hp,}\, the

Hankel transform F = h; N is defined by
-y

{hyfr 8% = (£, h, @5 (4.1.5)

¢viii) If p » - 1/2, the distributional Hankel transformation

;»A is an automorphism on HM x

k4

%4,2 : The Generalized n-Dimensional Hankel transformation
of arbitrary order :

Let p be any real number, ) >0 and p any positive

integer such that p + p:;—l/Z. We define the transformation

-1
h
5P oA and hU’P:A on HP,A as follows
. -np =-\P
=\ I sas \I
p,A(Gﬁ(y)) (-1)  [x] hp‘*'p,}\Np"‘P-l,;\ I d(v) ¢€ w\
(4.2.1
-l

-1 -1
= (~1 N
hy.p, ?\(\d(x) (-1) {I\u AptL, a0 Nurp-1, 3Nt

_([xjkpd(x))‘} dﬁ),H}‘L \ (4.2,2)

?

h
BHP A



Lemmg 4 : Let p be any real number, 3> O and p any positive
integer a sueh that p + p3» - 1/2, Then

) b . .
(a) hP:P'K defined by (4,2,1) is an automorphism on HP,A

1
et ] .
. efined by (4.2,2) is the inverse of hu’p,A, and

{c) When p2- 1/2, hp,p,h coincides with hu,x as defined by (4).

Proof :- In view of property (iii), see, 4,1, the mapping

(b) hp

M*P'l,x"’NP:A @ is an isomorphism from HP,A onto

By virtue of properties (vii) and (ii), Sec., 4.1,

—
¢ hp+pyk

“A

G~—>N

HP*P!A'

¢ is an automorphism on H , and

B+P,A

p
@ is an isomorphism from Hp+p,x onto HP’A’

-1 .
L P

¢—[x]
and hence (a) follows, When p + p 3 -1/2, h

clear from [9], Hence, (b) follows from the properties (ii)

and (iii) again, To rprove (c), let p> ~1/2 and @ € HH X
] ’

First suppose p = 1, then

hu1a? © (,-l)n [T P My, n 8O
LT = N A A N Ve S
© °© 3Yl...3Yn
~\ =y +1/2 -1/2
rI 6w gy

i=1
A A
Ty (%3Y3) Ve 0y,

o o0 ,
_ 4 n a~-1/2 A A
- f a8 e / (Y) ( igl(xlyi) Ju(xiyi))dyl,....dyn (4.2-3)
(¢] 0
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Equation (4.2,3) is obtained by an integration by parts through

each variable Y10 Yo eeven¥y and using the identities

3 Al(ptl)
—= ¥ Jp,+l

Y4

(A AAMp+2)-1 A A

i¥i) = A X5y; 3, (x5v;)

The limit terms vanish since Dy¢(y) is of rapid descent for

a-1/2
each non-negative integer k in R", by [9] and{(xixg

( )\ A . b d 3 . > { }\-1/2
Jp+l XY X}remalns ounded as y; —» e whllek(xiyi)
A A ‘
Jp+l(xi yi)}= O(yi), @(y) = 0(1) as y; =0, for each i, Thus,

ualon = hp'k' The general statement for larger

values of p follows by induction from this result,

when p ~1/2, h

Consequences of the Lemma : (i) h” P is independent of the
] 4

choice of a positive integer p, so long as p+ p ¥ - 1/2, That

is hp,p,x = hu’q,k if p and g are positive integers such that

. -1
p+p3=1/2 and p + q $-1/2, (ii) h h if

. BiPaA | RIA
B2 =-1/2, and (iii) h@ oo is independent of the choice of p
1M

s0 long as p + p,;,-l/?. In view of these consequences, it
is reasonable to define the generalized Hankel transformation

for p3» ~1/2 on ¢ CH by h, #§=nh @ where p is a

hp:h Pl XY HaDoA

positive integer no less than - p = 1/2, The inverse of Hankel

. -1 . . -1 -1 1 [
t f d = h o
ransformation hi . is defined by hP:A¢ P»P’AQ’ o Hy o

Wnen p 2 -1/2, h™l = h  but this is not true when p€ -1/2,
WaA LEXN
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We now define the distributional Hankel transformation
i

h f d .
Hod of any real order u.

t
Definition : Let y be any real number, 3 >0 and f C Hp X
14

Let p be any positive integer such that p + p?-1/2, Then,

f
the distributional Hankel transformation hu \ is defined as
]

That is for $ CH_ . and

the adjoint of h = h of H
PoA

Brh RoPax Bt

'¢ ;-hPaA§:=hu,p,A @, the Hankel transformer F = h' f of

Wl

!
£ €H | is defined by <hpﬂ}‘f, > = <f,hp'p,;\ &y (4.2.4)

Theorem - 4,2 : The generalized Hankel transformation hp Kis
1 4

an automorphism on H y Whatever be the real number p, and )

oA
x> 0. The eqguation(4.2, 4)also defines the inverse of h as

-1 —l
the adj t of h F
he adjoint o Web o ( h WeD s 7\¢> <(hp \ F, ¢> (4 2.9)
here F = h! f and 3 = . Wh ~ 1/2, th
wher Lon an huyp,x¢ en p 2 /12, e

definition (4.2,4) of h{» \ coincides with (4.1.5).
b

2 4,3 ¢ An Operation-Traisform Foumuls :

In view of property {vi) Secc. 4.1, theo weak differential

operator M N is continuous linear mapping from H into
pere BoA BaA O * pping TR

itself, If p» -1/2, for £ €H _,
PoaA

N = 2 2}\}1 4,3.1
h%?\(m}‘s?\l P"?\) (-1) [Y] 3] ?\ ( )

The same thing is als? true for any real number p if extended

!

function of h; N is used, To establish this, by using the

s
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integration by parts through each variable, differentiation
under the integfal sign and the same technique used in the

case cf one dimensional [30], we can obtain

Lemma 4,1: Let . > O and p be any fixed real number and p a

positive integer 2= p - 1/2, Then, for every @ € Hyao

NP 4.3.2
Mp.x‘p.x T o b = p P, A( (- l) [Y] @ ( )
Theorem 4,3 : For arbitrary real ja, A>0 and f € H; X then
s
! n
h (M N _f) = (el
L Pua Wl P = (B vI hy o f (4.3,3)

Proof : Let J e H,,, @d p any positive integer3- -1/2,
4

By definition of M, N and Lemma 4,1 we have
X oA

T
< h}h?\Mp!?\Nu’kf, §> 3 <MP:?\N3‘"Af' hp,p,;\ g)

= {1, MM e U
= £, (WA FD
= <h;’)\f, -1)M2[y A 8D
= DMy 6 §)
which implies (4.3.3.)
Remarks : (1) When n = 1, the results in this work reduce to
the one-dimensional case [9],
(2) When 5 = 1, the results in this work reduce
to [3]
(3) hen n = 1 and 5 = 1, the results in this
work reduce to [30].



