```
ARTICLE FOUR
```

n - Dimensional Generalized Hankel Transform of Arbitrary Order

For $\lambda>0$, the n-dimensional generalized Hankel transform of a function $\phi\left(x_{1}, x_{2}, \ldots \ldots x_{n}\right)$ defined by
$\left(h_{\mu, \lambda} \phi\right)\left(y_{1}, y_{2} \ldots y_{n}\right)=\lambda \int_{0}^{\infty} \cdots \cdots \int_{0}^{\infty} \phi\left(x_{1}, x_{3}, \ldots, x_{n}\right)\left(\pi_{i=1}^{n}\left(x_{i} y_{i}\right)^{\lambda-1 / 2}\right.$

$$
\begin{equation*}
\left.J_{\mu}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right)\right) d x_{1} \ldots d x_{n} \tag{4}
\end{equation*}
$$

Where $J_{\mu}(z)$ is the Bessel function of first kind of order μ. In this section we extend this transform to a class of of generalized function when μ is any real number.

I denotes the open set $x \in R^{n}: 0<x_{i}<\infty \quad i=1,2, \ldots, n$. A function on a sub set of R^{n} shall be denoted by $f(x)=$ $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$, then $[x]$ means the product $x_{1} x_{2} \ldots x_{n}$. Thus $\left[x^{m}\right]=x_{1}{ }^{m} x_{2} m_{2} \ldots x_{n}{ }^{m} n$ where $m=\left(m_{1}, m_{2}, \ldots m_{n}\right) \subset R^{n}$. A nonnegative integer in R^{n} means the element in R^{n} whose components are all nonnegative integers. We shall use the following operators :
(1) $\left(x^{1-2 \lambda_{D_{x}}}\right)^{k}=\prod_{i=1}^{n}\left(x_{i}^{1-2 \lambda} \underset{\partial x_{i}}{\partial}\right)^{k_{i}}$
where $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is a nonegative integer in R^{n}.
(2) $N_{\mu, \lambda}=[x]^{\lambda \mu+1 / 2} \frac{\partial^{n}}{\partial x_{1} \partial x_{2} \ldots \partial x_{n}}[x]^{-\lambda \mu-\lambda+1 / 2}$
(3) $M_{\mu,}=[x]^{-\lambda \mu-\lambda+1 / 2} \frac{\partial^{n}}{\partial x_{1}, \partial x_{2} \ldots \partial x_{n}}[x]^{\lambda^{\mu+1 / 2}}$

$$
\left.\frac{\partial}{\partial x_{i}} \quad(\lambda \mu+\lambda+1 / 2)(\lambda \mu-\lambda-1 / 2) x_{i}^{-2 \lambda}\right\}
$$

(4) $N_{\mu, \lambda}^{-1} \phi=[x]^{\lambda \mu+\mu-1 / 2} \int_{\infty}^{x_{1}} \cdots \int_{\infty}^{x_{n}}[t]^{-\lambda \mu-1 / 2} \phi(t) d t_{n} \ldots d t_{1}$ The $N_{\mu, \lambda}^{-1}$ is the inverse of $N_{\mu, \lambda}$. By a smooth function, we mean a function that possesses partial derivatives ((\vec{f}) all points of its domain.

* 4.1 : The Generalized n-Dimensional Hankel Transform of Order $\mu \geqslant-1 / 2$

The results in this section were developed by Ghosh[9], and Choudhary [3]. Let μ be any real number and $\lambda>0$. $H_{\mu, \lambda}$
is the space of complex valued smooth function $\phi(x)$ defined on I such that for each pair of nonegative integers m and k in
$r_{m, k}^{\mu, \lambda}(\phi)=\sup _{x \in I}^{I}\left|\left[x^{m}\right]^{\lambda}\left(x^{1-2 \lambda} D_{x}\right)^{k}[x]^{-\lambda \mu-\lambda+1 / 2} \dot{\phi}(x)\right|<\infty \quad \ldots$ (4.1. We shall list a few properties related to these spaces $H_{\mu, \lambda}$ [9].
(i) $H_{\mu, \lambda}$ is complete countably multinormed space. $H_{\mu, \lambda}^{\prime}$ the dual of $H_{\mu, \lambda}$ is also a complete.
(ii) For any integer p, and for any $\mu, \phi \rightarrow[x]^{\lambda p} \phi$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\mu+p, \lambda}$. Thus the operator $f(x) \rightarrow[x]^{\lambda p} f(x)$ defined by

$$
\begin{equation*}
\left\langle[x]^{\lambda p} f(x), \phi(x)\right\rangle=\left\langle f(x),[x]^{\lambda p} \phi(x)\right\rangle \tag{4.1.2}
\end{equation*}
$$

is an isomorphism from $H_{\mu+p, \lambda}^{*}$ onto $H_{\mu, \lambda}^{\prime}$
(iii) For any $\mu, \varnothing \rightarrow N_{\mu, \lambda} \varnothing$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\mu+1, \lambda}$ the inverse mapping being

$$
\phi \rightarrow N_{\mu, \lambda}^{-1}(\varnothing) \ldots
$$

(iv) For any $\mu, \phi \rightarrow M_{\mu, \lambda} \emptyset$ is continuous linear mapping from $H_{\mu+1, \lambda}$ into $H_{\mu, \lambda^{*}}$. Thus, $M_{\mu, \lambda} N_{\mu, \lambda}$ is a continuous linear mapping of $H_{\mu, \lambda}$ into itself. (v) The weak differential operator $N_{\mu, \lambda}$ defined by $\left\langle N_{\mu, \lambda} f, \emptyset\right\rangle=\left\langle f,(-1)^{n_{M}}{ }_{\mu, \lambda} \emptyset\right\rangle, f \in H_{\mu, \lambda}^{\prime}, \emptyset \in H_{\mu+1, \lambda}$. is a continuous linear mapping from $H_{\mu, \lambda}^{\prime}$ into $H_{\mu+1, \lambda}^{\prime}$ ($v \pm$) The weak differential operator $M_{\mu, \lambda}$ defined by $\left\langle M_{\mu, \lambda} f, \emptyset\right\rangle=\left\langle f,(-1)^{n_{N}} N_{\mu, \lambda} \emptyset\right\rangle, f \in H_{\mu+1, \lambda}^{\prime}, \emptyset \in H_{\mu, \lambda} \quad$ (4.1.4)
is an isomorphism from $H_{\mu+1, \lambda}^{\prime}$ onto $H_{\mu, \lambda}^{\prime}$: Thus, the weak differentia operator $M_{\mu, \lambda} N_{\mu, \lambda}$ is a continuous linear mapping from $H_{\mu, \lambda}^{\prime}$ into itself.
(vii) The Hankel transformation $h_{\mu, \lambda}$ defined by (4) is an automorphism on $H_{\mu, \lambda}$, when $\mu \geqslant-1 / 2$. When $\mu \geqslant-1 / 2$, the n-dimensional, distributional Hanker transformation $h_{\mu, \lambda}^{\prime}$ on $H_{\mu, \lambda}^{\prime}$ if defined as follows : For $\emptyset \in H_{\mu, \lambda}$ and $f \in H_{\mu, \lambda}^{\prime}$, the Hanker transform $F=h_{\mu, \lambda}^{\prime}$ is defined by

$$
\begin{equation*}
\left\langle h_{\mu, \lambda}^{\prime} f, \phi\right\rangle=\left\langle f, h_{\mu, \lambda} \phi\right\rangle \tag{4.1.5}
\end{equation*}
$$

(viii) If $\mu \geqslant-1 / 2$, the distributional Hankel transformation $h_{\mu, \lambda}^{\prime}$ is an automorphism on $H_{\mu, \lambda}^{\prime}$.
*4.2 : The Generalized n-Dimensional Hanker transformation of arbitrary order :
Let μ be any real number, $\lambda>0$ and p any positive integer such that $\mu+p \geqslant-1 / 2$. We define the transformation $h_{\mu, p, \lambda}$ and $h_{\mu, p, \lambda}^{-1}$ on $H_{\mu, \lambda}$ as follows

$$
\begin{align*}
& h_{\mu, p, \lambda}(\phi(y))=(-1)^{-n p}[x]^{-\lambda p} h_{\mu+p, \lambda^{N}}^{\mu+p-1, \lambda} \ldots N_{\mu, \lambda} \phi(y), \phi \in H_{\mu, \lambda} \\
& \text { (4.2.1 } \\
& h_{\mu, p, \lambda}^{-1}(\phi(x))=(-1) \sum_{\mu, \lambda}^{n N_{\mu+1}^{-1}, \lambda^{-1}} \ldots N_{\mu+p-1, \lambda^{-1}}^{N_{\mu+p}^{-1}, \lambda} \\
& \left.h_{\mu+p, \lambda}\left([x]^{\lambda p} \phi(x)\right)\right\} \quad \phi \in \cdot H_{\mu, \lambda} \tag{4.2.2}
\end{align*}
$$

Lemma 4 : Let μ be any real number, $\lambda>0$ and p any positive integer a such that $\mu+p \geqslant-1 / 2$. Then
(a) $h_{\mu, p, \lambda}$ defined by (4.2.1) is an automorphism on $H_{\mu, \lambda}$
(b) $h_{\mu, p, \lambda}^{-1}$ defined by (4.2.2) is the inverse of $h_{\mu, p, \lambda}$, and (c) When $\mu \geqslant-1 / 2, h_{\mu, p, \lambda}$ coincides with $h_{\mu, \lambda}$ as defined by (4). Proof :- In view of property (iii), sec. 4.1, the mapping

$$
\phi \longrightarrow N_{\mu+p-1, \lambda} \cdots N_{\mu, \lambda} \phi \text { is an isomorphism from } H_{\mu, \lambda} \text { onto }
$$

$H_{\mu+p, \lambda}$. By virtue of properties (vii) and (ii), Sec. 4.1,

$$
\begin{aligned}
& \phi \rightarrow h_{\mu+p, \lambda} \phi \text { is an automorphism on } H_{\mu+p, \lambda} \text {, and } \\
& \phi \rightarrow[x]^{-\lambda p} \phi \text { is an isomorphism from } H_{\mu+p, \lambda} \text { onto } H_{\mu, \lambda},
\end{aligned}
$$ and hence (a) follows. when $\mu+p \geqslant-1 / 2, h_{\mu+p, \lambda}^{-1}=h_{\mu+p, \lambda}$ is clear from [9]. Hence, (b) follows from the properties (ii) and (iii) again. To reprove (c), let $\mu \geqslant-1 / 2$ and $\emptyset \in H_{\mu, \lambda}$. First suppose $p=1$, then

$$
\begin{aligned}
& h_{\mu, 1, \lambda} \phi=(-1)^{n}[x]^{-\lambda} h_{\mu+1, \lambda} N_{\mu, \lambda} \phi(y) \\
& =(-1)^{n}[x]^{-\lambda} \int_{0}^{\infty} \cdots \int_{0}^{\infty}[y]^{\lambda \mu+1 / 2} \frac{\partial^{n}}{\partial y_{1} \cdots \partial y_{n}} \\
& {[y]^{-\lambda \mu-\lambda+1 / 2} \phi(y) \prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{\lambda-1 / 2}} \\
& J_{\mu+1}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right) d y_{1} \ldots d y_{n} \\
& =\int_{0}^{\infty} \cdots \int_{0}^{\infty} \phi(y)\left(\sum_{i=1}^{n}\left(x_{i} y_{i}\right)^{\lambda-1 / 2} J_{\mu}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right)\right) d y_{f}, \ldots . . d y_{n} \quad \text { (4.2.3) }
\end{aligned}
$$

Equation (4.2.3) is obtained by an integration by parts through each variable $y_{1}, y_{2} \ldots, y_{n}$ and using the identities

$$
\frac{\partial}{\partial y_{i}} y_{i}^{\lambda(\mu+1)} J_{\mu+1}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right)=\lambda x_{i}^{\lambda} y_{i}^{\lambda(\mu+2)-1} J_{\mu}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right)
$$

The limit terms vanish since $D_{y}^{k} \phi(y)$ is of rapid descent for each non-negative integer k in R^{n}, by [9] and $\left\{\left(x_{i} y_{i}\right)^{\lambda-1 / 2}\right.$ $\left.J_{\mu+1}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right)\right\}$ remains bounded as $y_{i} \rightarrow \infty$ while $\left\{\left(x_{i} y_{i}\right)^{\lambda-1 / 2}\right.$
$\left.J_{\mu+1}\left(x_{i}^{\lambda} y_{i}^{\lambda}\right)\right\}=O\left(y_{i}\right), \quad \phi(y)=O(1)$ as $y_{i} \rightarrow 0$, for each i. Thus, when $\mu-1 / 2, h_{\mu, 1, \lambda}=h_{\mu, \lambda}$. The general statement for larger values of p follows by induction from this result.

Consequences of the Lemma : (i) $h_{\mu, p, \lambda}$ is independent of the choice of a positive integer p, so long as $\mu+p \geqslant-1 / 2$. That is $h_{\mu, p, \lambda}=h_{\mu, q, \lambda}$ if p and q are positive integers such that $\mu+p \geqslant-1 / 2$ and $\mu+q \geqslant-1 / 2$.
(ii) $h_{\mu, p, \lambda}^{-I}=h_{\mu, \lambda}$ if $\mu \geqslant-1 / 2$, and (iii) $h_{\mu, p, \lambda}^{-1}$ is independent of the choice of p so long as $\mu+p \geqslant-1 / 2$. In view of these consequences, it is reasonable to define the generalized Hansel transformation $h_{\mu, \lambda}$ for $\mu \geqslant-1 / 2$ on $\varnothing \subset H_{\mu, \lambda}$ by $h_{\mu, \lambda} \emptyset=h_{\mu, p, \lambda} \emptyset$ where p is a positive integer no less than $-\mu-1 / 2$. The inverse of Handel transformation $h_{\mu, \lambda}^{-1}$ is defined by $h_{\mu, \lambda}^{-1} \phi=h_{\mu, p, \lambda}^{-1} \emptyset, \phi \in H_{\mu, \lambda}$ When $\mu \geqslant-1 / 2, h_{\mu, \lambda}^{-1}=h_{\mu, \lambda}$ but this is not true when $\mu<-1 / 2$.

We now define the distributional Hankel transformation $h_{\mu, \lambda}^{\prime}$ of any real crder μ^{\prime}
Definition : Let μ be any real number, $\lambda>0$ and $f C H_{\mu, \lambda}^{\prime}$. Let p be any positive integer such that $\mu+p \geqslant-1 / 2$. Then, the distributional Hankei transformation $h_{\mu, \lambda}^{\prime}$ is defined as the adjoint of $h_{\mu, \lambda}=h_{\mu, p, \lambda}$ of $H_{\mu, \lambda}$. That is for $\Phi \subset H_{\mu, \lambda}$ and $\phi=h_{\mu, \lambda} \Phi=h_{\mu, p, \lambda} \Phi$, the Hankel transformer $F=h_{\mu, \lambda}^{\prime} f$ of $f \in H_{\mu, \lambda}^{\prime}$ is defined by $\left\langle h_{\mu, \lambda}^{\prime} f, \Phi\right\rangle=\left\langle f, h_{\mu, p, \lambda} \Phi\right\rangle \quad$ (4.2.4)

- Theorem - 4.2 : The generalized Hankel transformation $h_{\mu, \lambda}^{\prime}$ is an automorphism on $H_{\mu, \lambda}^{\prime}$, whatever be the real number μ_{0}, and λ $\lambda>0$. The equation(4.2.4) also defines the inverse of $h_{\mu, \lambda}^{\prime}$ as the adjoint of $h_{\mu, p, \lambda}^{-1}:\left\langle E, h_{\mu, p, \lambda}^{-1} \phi\right\rangle=\left\langle\left(h_{\mu, \lambda}^{\prime}\right)^{-1} F, \phi\right\rangle(4.2 .5)$ where $F=h_{\mu, \lambda}^{\prime} f$ and $\phi=h_{\mu, p, \lambda} \not$. When $^{\prime}$. $\geqslant-1 / 2$, the definition (4.2.4) of $h_{\mu, \lambda}^{\prime}$ coincides with (4.1.5).
$: 4,3$: An Operation-Trasform Foumula :
In view of property (vi) Sec. 4.1, the weak differentiai operator $M_{\mu, \lambda} N_{\mu, \lambda}$ is a continuous linear mapping from $H_{\mu, \lambda}$ into itself. If $\mu \geqslant-1 / 2$, for $f \in H_{\mu, \lambda}^{\prime}$,

$$
\begin{equation*}
h_{\mu, \lambda}^{\prime}\left(M_{\mu, \lambda^{N}}{ }_{\mu, \lambda}\right)=(-1)^{n \lambda^{2}}[y]^{2 \lambda_{h}}{ }_{\mu, \lambda^{\prime}} \tag{4.3.1}
\end{equation*}
$$

The same thing is also true for any real number μ if extended function of $h_{\mu, \lambda}^{\prime}$ is used. To establish this, by using the
integration by parts through each variable, differentiation under the integral sign and the same technique used in the case of one dimensional [30], we can obtain

Lemma 4. $1:$ Let $\lambda>0$ and μ be any fixed real number and p a positive integer $\geqslant-\mu-1 / 2$. Then, for every $\emptyset \in H_{\mu, \lambda}$,

$$
\begin{equation*}
M_{\mu, \lambda} N_{\mu, \lambda^{\prime}} h_{\mu, p}, \quad \Phi=h_{\mu, p, \lambda}\left((-1)^{n}[y]^{2 \lambda} \Phi\right) \tag{4.3.2}
\end{equation*}
$$

Theorem 4.3: For arbitrary real $\mu, \lambda>0$ and $f \in H_{\mu, \lambda}^{\prime}$, then

$$
\begin{equation*}
\because h_{\mu, \lambda}^{\prime}\left(M_{\mu, \lambda^{N} \mu, \lambda^{\prime}}\right)=(-1)^{n}[y]^{2 \lambda} h_{\mu, \lambda}^{\prime} f \tag{4.3.3}
\end{equation*}
$$

Proof : Let $\Phi \in H_{\mu, \lambda}$ and p any positive integer $\geqslant-\mu-1 / 2$. By definition of $M_{\mu, \lambda} N_{\mu, \lambda}$ and Lemma 4.1 we have

$$
\begin{aligned}
& \left\langle h_{\mu, \lambda^{\prime}}^{M_{\mu, \lambda}}{ }^{N_{\mu, \lambda}}{ }^{f}, \Phi\right\rangle=\left\langle M_{\mu, \lambda} N_{\mu, \lambda}{ }^{f}, h_{\mu, p, \lambda} \Phi\right\rangle \\
& =\left\langle f, M_{\mu, \lambda} N_{\mu, \lambda} h_{\mu, p, \lambda} \Phi\right\rangle \\
& =\left\langle f,(-1)^{n \lambda^{2}}[y]^{2 \lambda} \Phi\right\rangle \\
& =\left\langle h_{\mu, \lambda^{\prime}}{ }^{f},(-1)^{n^{2}} \lambda^{2}[y]^{2 \lambda} \Phi\right\rangle \\
& =\left\langle(-1)^{n} \lambda^{2}[y]^{2} \lambda_{h_{\mu, \lambda}}^{\prime}{ }^{f}, \Phi\right\rangle
\end{aligned}
$$

which implies (4.3.3.)
Remarks : (1) When $n=1$, the results in this work reduce to the one-dimensional case [9].
(2) When $\lambda=1$, the results in this work reduce to [3]
(3) When $n=1$ and $\lambda=1$, the results in this work reduce to [30].

