
39

CHAPTER - IV

FREE GRAVITATIONAL FIELD

OF

INFINITELY CONDUCTING FERROFLUID
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1 . INTRODLC TION :

The physical interpretation of the Riemann Curvature 

tensor is given by Pirani (1956). the Riemann Curvature
f

tensor emboids the effects of the gravitational field due

to matter and -free gravi tat i ona I field (Jeorden et al.,1960).

The interpretation of the Weyl conformal tensor as free

gravitational field is due to Pirani and Shield (1961).

The electric type and magnetic type components of the

Weyl tensor are introduced and used to form Maxwell like

equations by Hawking (1966). Kund and Trumper (1962) has

investigated a property of radiative gravitational field

through relativistic perfect fluid distribution. The

interaction of the free gravitational field with the

source is examined by Szekeres (1964). The formulation

of Maxwell like equations by employing electric type and

magnetic type components of the gravitationaIfieId is

utilized by Glass (1975) and Da-£e_ (1976) Asgeker (1979)

to study relativistic magnetohydrodynamicaI aspects.

Analagous to Weyl tensor the concept of Weyl projective

tensor is introduced by R. R. shaha (1974) during the

investigations of definite material scheme. The properties

of Weyl conformal tensor are reexamined by Carmelli (1982)

by using Newman Pensore formalism. It is proved by Barnes

(1984) that if Weyl tensor is purely electric type or purely
(,>Tro4-tx-t^rK«A

magnetic type then the flow vector is 4-^rationa4 unless
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the space-time has constant curvature.

The space-time in which the divergence of Weyl f

tensor vanishes is designated here as C-space»^of infinitely ^lC^s 

conducting ferrofluid are examined in this section.

2. THE CONFORMAL CURVATURE TENSOR AND ITS PROPERTIES i

The conformal curvature tensor is defined through 

Riemann curvature tensor, Ricci tensor and Ricci scalar 

as given by Carmelli (1982).

C = R - £[g R - g R - g R +gR] 
abed abCCj ac bd ad be be ad bd ac

+ ^9 J - 9 9 ]R .
6 ad be ac bd

By employing Einstein Field Equations (I 4.1) we can 

also rewrite the conformal tensor in the form

(2.1 )

^abed ~ ^abed + ^"b tc9<k + 9 bCc cQi
+ -

3 9 9
b[d eja (2.2)

The Weyl conformal tensor has the same properties 

as the Riemann Curvature tensor, given by

c ii

oiii (2.3)
abed bacd abdc 5

C = c (2.4)
abc d edab

C + C + C = 0 . (2.5)
abc d aedb adbc

In addition, the Weyl tensor satisfies the important

property that it is traceless,

i. e., j
C 1 m _

— g c = o . (2.6)
alb maIb

5747
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Thus it is irreducible.

The Weyl tensor can also be written in terms of the 

tracefree Ricci tensor (Carmel li, 1982)

S ab ab i9abR>

as in the form

(2.7)

R-... = C' +2-(g S abed abed ac 54 ~ad bc
g S - g SaH +g S ) y • ad yad bc'bc

+ 2<gadg - g g ). (2.8)
bc ac bd

This is actually a statement of the fact that the

Riemann Curvature tensor decomposes into its irreducible

components like Weyl Conformal tensor Cabcd , the trace-

free Ricci tensor S . and Ricci Scalar curvature R. Thisab

decomposition can symbolically be written as

R = C ©S ©R. (2.9)
abed abed ab

No new quantities can be obtained from any of the 

above three irreducible components by contraction of 

their indices.

From the properties of Riemann curvature tensor 

and Weyl conforms I ,tensor it follows that Riemann 

Curvature tensor has 20 independent components whereas 

the Weyl Conformal tensor has only ten independent 

components given by the nine independent components 

of the tracefree Ricci tensor Sab and the single
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components of the Ricci Sealar Curvature R.

The significance of the Weyl Conformal tensor 

can be seen from the following claim.

C I aim : The Weyl Conformal Curvature tensor is preserved 

under conformal transformation.

Proof t Two Reimannian spaces V and V are called confor­

mal spaces if their metric tensors g and gau are relateda b u
by

gab(x) “ 9ab^X^* (2.10)

where Is a real function of the co-ordinates. The 

correspondence between the spaces V and V is then called 

a conformal mapping.

The line elements of the two spaces V and V are 

related by

ds^ - ds^ ,

If one uses the same co-ordinates system in both spaces 

since the angle between two vector A and B is given by

A Ba
Cos(A,B) = —a----------- ---------- (2.11 )

(AaAa)(BaBa)

We see that the angles are preserved under a conformal 

mapping.

In the following we find the corresponding relations 

between the Riemann Curvature tensor and the Weyl Conformal 

tensor in the two spaces V and V .
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From equation (2.10) we see that the contravariant 

metric forms in the two spaces V and V are related by

g°k (x) = e~ <r*<x) . (2.12)

Christoffel symbol of the first kind in the two spaces are 

related by

r,
Imn

2-<S" . _ 
e ( p + 4 ) *

Imn Imn

where
A = ( g ■ 
/ I, Imn Im

+ ^
-Bx" ’mn

)•
~2>x'

(2.13)

(2.14)

The Christoffel symbols of the second kind are related by

a = gaA — = --a + a ^ (2.15)
I be — ' ^ be ’ h<- •be be

where

a

be
= g

a^
A

i .e.,

A be
ra + g g

a *
c>xb bc

We may now calculate the Riemann Curvature tensor R 

of the space V .

It has the same expression as that of R

(2.16)

a be d

of the
abed

space V, except the metric tensor gab and the Christoffel 

symbols 3

R
abed

rep lacing g and ,ra i n
bc ab ' bc

2. 2__
-4- r 9ad - ^9bc ^9bd

A *«V

1 9
ac )+-

*4’
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+ giml r'ad - r^c rmbd> • (2-,7)

We find then

8abcd "" 6 L^abcd + ^ad^bc+9bc<*ad“^ac^bd”^bd^ac ^

+ (9ad9bc-9ac9bd> 1 Va^ VdT > J • <2*18>

In the above equation we have been using the notation 

according to which

(fab “<n,a - ^a V ^ ^ >l ^ >• (2-,9)

^a<r va<sr = gab var "7^ .
l.e., \J/ W=9al — ^ . (2.20)

' a <-\ a ~ b

The Ricci tensor is consequently given by

R = glm R
_a b _ lamb

^b - Rab-Kb -[n^2 Wj]9.b J I2-2') 

65 Uy*. □<=YcVV' =9abVaVb^ * (2,22)

The Ricci scalar curvature can n«w be calculated from the 

Ricci tensor as

i e.,

8 - iab Sb .

r = R-s-ns'-fy <r vV n-*• L* 3 (2.23)

From equations (2.21) to (2.23) we can eliminate the expression
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©f and find

^ab - "t + ^<2 iab- « «,„>

+ *< V <S" ) 9ab • (2.24)

Raising now the first index of the Riemannian Curvature 

tensor, given by (2.18) gives the following relation between 

the mixed components of curvature tensor.

4“

+ ga (v<rld-5bd6'lc) +

+ l<rX-t£ 9bd; (va^v> (2.25)

On substituting the expression for ^b derived in (2.24) 

we finaIly obtain

*** - *( ^ ^d- <rd *bc - v2ad + 9bdeV
- S( <f* ibc - c/ca£bd>2

Ra
bed

a
V

9bd,R‘

g Ra + g R3 ) 
be d bd c

(2.26)

Equation (2.26) expresses the relation between the Riemann 

tensor, the Ricci tensor and the Ricci Scalar in the two 

spaces V and V .
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Comparing now the equation (2.26) with the definition of 

Weyl conformai tensor Ca£>ccj obtained (2.2) by raising 

the first index i , we see that the left hand and right 

hand sides of the above equation are equal to

Ca . and Ca respectively.
- bed bed

In other words, we obtain

U . . = O , , *— bed bed

Thus under the conformal mapping the Weyl conformal 

is preserved.

(2.27)

tensor

3. SOME ASPECTS OF FREE GRAVITATIONAL FIELD SIMILAR TO 

ELECTROMAGNETIC FIELD :

(A) Matter Current s This concept of Matter Current 

introduced by Szakers (1964) as similar to the electric 

current in electromagnetic field. He defined it as the 

divergence of the conformal curvature tensor,

i. e., .jj,
J . . = 2C . . j a •bed bed ’

i s

(3.1 )

If we use the expression of C3^^ given by (2.2) then we 

derive the expression for the matter current as follows. 

We start with the expression

lu = Ra - g R - g Ra _+ § ga R , (3.2)
bcd bed £d c3b b£c d^ 3 £d cj b

i. e.,

//$■ / ' ■, 'o»\\
U3RARy:



This with Einstein Field Equations (I 4.1) produces

2Ca = 2 Ra . 
bed bed

* [?*- ‘ Tbc ’ iT 9bc> "

-ga ( Tkj T 9hjl + 9* g - ga g )
c bd bd -J > « q ^ q db

- fgh ( t3h "* T9a ) - 9.. ( Ta - iT ga f] 
be d d bd c c

i • e. j

2C' bed
2 Ra + cl fg ( T - iT g

bed d be 2 be

+ 9. ( Ta
be d

_ iT—r* 2 1 g Jd - g (T 
bd

c bd 

a _ It „a \

bd

T/ a a v+ *(g j - g g ) •
-5 d cb c db

From this we wri-fce

2C‘
bed; a

2 Ra . + ga (T - |T g )
bed;a * d bc;a 2 ;a be

- g (t
c bd;a 

a

iT
?a bd 

.a

g ) + g (Ta - iT ga ) 
be d;a ;a d

9bd^T c;a “ 2T;a9 + 3*a d9cb~ 9 c9db^ 3

i • © • i

2Ca bed; a 2 Rc + Tlbed;a ' be

- iT,d ’be

;d “ aT;d 9bc_Tbd;c+2T;c 9
bd

+ ^ d;a 9bc” 21•A 9

+ 1 g T - 1 T g 
3 cb ;d 3 jc db

9bdra^ + ^T*c 
uu c;a »c bd

(3.3)

We simplify this by using the relation
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R^ A + ^hH + R®. = 0 ,
bcd;a bda;c bac;d

i • e • i
Rabcd;a - -‘R3 . „ + rS ) .bda;c bacjd

t .e •» pa _ p p
n bed;a - "bejd ‘ bd;c * (3.4)

in the form 
a

2C“ ^ =2bed; a
Tr - R 1 
L bc;d bd;c]

+ T -T
be;d bd;c

*T,h 9 + iT g + «*»a «—»a9 T -g T
;d be ;c bd be b;a bd c;a

g + ig T +iT g 4T • (3.5)
;d be bd ;c 3 ; d cb 3 ;c db

Again by using Field equations in Is* term we get

2Ca ,2 f (T, -iT 9 ) + O’ -l-T g ) +
bed,a u be be bd bd jc_

+ Th ,-T -{T j g + JrT g
bc,d bd;c ;d be ;c bd

+ i9hHT „ + 3-T . g -IT g 
2ybd ;c 3 Id acb 3 ;c ydb

i • 6 • |
2Ca , = -2 T + T g +2T -T g

bed,a be;d ;d be bd;c ;c bd

+ Tu T -£T g + }T g 
be»d bd;c ;d be ;c bd

+ g Ta - g Ta - £T g
be d;a bd c;a ;d be

+ i g. . T + 1 g T - It g ,
bd ;c 3 acb ;d 3 ;c db

This after simplification can be put as

2C' be d; a T, . - T -It g + It g 
be;d bd;c 3 ;d cb 3 5c abd



This for infinitely conducting ferrofluid yields

J* ^ = [AUUU - B g -/Uhuh ] bed L be sbc 1 b cJ ;d

- ["AU U - B gUJ -/*h h ]
L b d bd ' b dJ ;c

1 g 
3 be

- \ tA-48 +'Uh 9bd [A-AB+/^h2].(

i • e • y

J* ^ = A . U.U - A. _U U + AU Ubed ;d be ;c b d b;dc

-AU. U + AU U - AU. U b;c Qj bc;d bd;c

+ U. h. h . - u ,hhh +Ah. h -^w-h h -f- ' \c b d A;d b c ^ b; c db;d c

+/thhh -yKh h — It g + It g A (3.7)
^ h d;c 7 b c; d 3 ;d V 3 ;c bd 

^3 c 'fat “ ®J ^ c-

where the value of the rest mass is

T = (r-3p-2/h2+2/ich2) (3.8)

Claim s The Matter Current is always conservative .

Proof : For the fluid with particles at zero rest mass 

(Radhakrishna 1973)» we have T=0 .

This constraint with equation (3.6) yields

J* . = T. . - T bed be; d bd;c

so

Hence we write the expression for the matter current through 

stress energy tensor.

vo.~oX
I

cno
I—

T
-lrocr C

L
«• n

i

v>
*-

*

C
L U

3
O cro C

LII -4

cr n C
L

(3.9)
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This gives

J*D = T - t
cd;b c;db d;cb

It follows from contracted Bianchi identities and Ricci 

identities that

(3.10)

y b y b
c;mn c;nm

Tb Rd _ jd Rb

d cmn c dmn 

Hence from equations (3.9)and (3.11) we get

i-b _ yb
cd;b ~ m cdb

J*u ,= T°_ (Rm_JU - Rm ) + TmJRv_a
deb d T!* ca

^m_ f" o a.
e da *

As the stress energy tensor is symmetric we have

i .e.,

_ -pT R
m

- T
cd; b me d d

j*b R Rm - Rcd; b = me d md

J*b R Rm - R
cd; b md c me

„m

-.m

(3.11 )

(3.12)

C onsequentIy,

J* cd;b = 0 •

Hence the proof is complete.

(B) C - Space : The concept of C-Space has been introduced 

by Szekers (1964) as the space in which the matter current 

vanishes.

Mathematically C-Space is characterized by 

J*bcd = 0 (3.13)
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Rab = 0. (3.14)

imply

J* = R 1 g _ Rcta ?bla be ' 'c £a; b^

On using the Einstein Field Equations (I. 4.1) the above

(3.15)

expression becomes

a be Tc[a;b\+ 3 • (3.16)

For the Infinitely Conducting Ferrofluid described by 

the stress energy tensor (I. 2.9)» the value of the matter 

current is given by

J*h . = A U U - A UU+AU U - AU U 
* ^" ; d b c *c bcJ b * c d

+ AU Ub c; d
- AU U

b d;c + A. hbhd 
* c

+/A h h
b;c d

-At h h
' b; d c

+ Jd h h
b d;c

- C . g + C g + 8 g»b be »c bd ;c bd
B g , (3.17) 

; d be

where C = l(r-3p-2/u.h2+2,K h2) .

Hence the condition of C-Space for Infinitely Conducting 

Ferrofluid by using equation (3.13)and (3.17) gives,

A ,U.U - A. U.U. + ; d b c ; c b d AUk.hU b;d c - AU U + AU U .
b;cd b c »d

- AU U + M h h -/I h h +Ath h -/A h h
b d;c • .c b a / ; d b c b;c d bjd c

+AA-h h -/Ah h - C g + C g + B g
b d;c b c;d ; d be ,c bd ;c bd

(3.18)
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bed d beIf we contract this equation with U U h , h g we get

, ( , • d • 2 o(A-3B-3C) ,Hhd - AU h° -hk h nc + -_______
»a d ' ;c 0,

i • s • ,
(p+ hA - AU hd -ACh2hC Jd!L- = 0 * (3.19)

2 ;d d ;c 2

and 1 o ju^h2 d • d
M2r+3p+2Wr+"- ) h - (r+p)U ha = 0 . 
3 2 ?d d

(3.20)

Also we recall the equation

Tab h = 0 (vide, II 29),
J b a

^ (r+pJU^^ *" )h2~^j ; +
, h2 hdd ,/^h :dh

0. (3.21 )

And the consequence of Maxwell equations (vide, II 7),

d .d r.d.
s^;dh +^h ;d+U hd> = °' (3.22)

Theorem s For the C-Space of InfiniteIy Conducting Ferrofluid 

the Magnitude of the magnetic field remains invariant along 

magnetic lines if and only if the magnetic permeability 

is invariant along these lines .

Proof s The substraction of equation (3.19) from (3.21) 

gives ,
UCh2-/£h2) hd +>Ui2U hd -jkh2hc.c -AMi2. hd = 0.

i ^ ^ ^ y d

This after simplification yields,

(A2) hd=
; d

0 (3.23)
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This then provides

(3.24)

This proves the required result.

Theorem 2 s For the C-Space time of Infinitely Conducting

Ferrofluid the Isotropic pressure is preserved along the
-foUV

magnetic lines if and only if the f-t-ew- acceleration is 

normal to these lines.

Proof : By substracting the value given by (3.23) in (3.19) 

and then using the Maxwell equation (3.22) we obtain

p hd = (r+p) U hd . 
;d d

(3.25)

This result proves the theorem.

Theorem 3 : For the C-Space of Infinitely Conducting

Ferrofluid, the matter energy density is conserved along 

magnetic lines if and only if the magnetic permeability 

is consreved along these lines.

Proof i By utilising the value given by (3.23), the equations 

(3.20) and (3.21) provides the equation

0

(2r^h2).dhd + 3^h2;dhd = 0 3
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i • s • j

i • © • $

2r;y +

P!dhd =/<-;dhdh2 •

^h2
2

h
Id

d
0 (vide 3.23)

From this equation the theorem follows.

(3.26)

NOTE : We observe from the above three theorems that the 

dynamical quantities like matter density r, isotropic pressure 

p and magnitude of the magnetic field h^ a I I become conserved 

quantities along magnetic lines if and only if the magnetic 

permeability is conserved along these lines. This shows the 

direct effect of the conservation of the magnetic permaebility 

on the conservation of the above stated dynamical quantities.

(C) Electric type and Magnetic type components }

"&4,electric type component F ^ and magnetic type component 

Hab are def'necl by Glass (1975) in the form

F = C UbUd , (3.27)
“ac abed

Hab - * WjVHVb. UpUS> * <3-28)

Wft note from these definitions, the properties

tab = £ba ’ Hab = Hba £Symmetry p™perty]

Fa s Ha = 0 , [Trace free] 
a a

H^U3 = FabUa = 0 . [U-orthogona I property]
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Hence we can express the Weyl tensor through these components

c . . a (g g -T) )UeU9Efh_
abed abef edgh cibef n;dgh

- (g . ^0 + V 9 )UeU9Hfh , (3.29)yabef Ccdgh tabef edgh

where

g,=g g - g g
abed ac bd ad be

(3.30)

Theorem : For the essentialy expanding flow^-cf the electric 

type component is given by £ • N/ * C\a.S S f

F = i (JLr -lP PCdR ) . 
ab ab D ab cd

i • e. ^

i |

.a b 1o „ab£E = * (Pa p R - ;p „p R K > . 
cd c a ab 3 cd ab

F = j-R fPa Pb - ip pabl .
“cd ab L c d 3 cd J

(3.31 )

8ut we have

i • 6 • y

PVbd - <9ac - UX ><9bd,- u\> ,

oh o b ab ba abPa PD = ga g + U U U U - g U U - g U U 
cd ac d cd c c d

So that (3.31 ) reduces to

i • 6 • 9

- * Rap £«\ 9bd + uVucUd - g^U, - 9b/ue 

- I <9cd - W <9ab-UaUb)],

F = | R u[ga gb - 2 UaUbU U . - ga UbU. . 1 g gab 
“cd 2 ab Ly c d 3 c d a c Gl 3 cd

+ 1 g uaUb + 1 U U gab] , (3.32)
3 cd 3 c d -1
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This after simplification implies that

F = - £ h h . (3.34)
cd 2 c d

Sp that
F = 0 h = 0 .
“c d ' a

Thus the claim is proved.

REMARK j It is proved by Asgekar and Date (1979) for 

Relativistic Magnetofluid that the gravitational tidal 

force is due to magnetic field only. Hence we note that 

the same result remains true even for relativistic 

Infinitely Conducting Ferrofluid.

For Infinitely Conducting Ferrofluid we have

Rab = A UaUb - *B 9ab -^ahb • <3.33)

So that (3.32) produces
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