CHAPTER - IV

FREE GRAVITATIONAL FIELD
OF
INFINITELY CONDUCTING FERROFLUID
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1e INTRODUCTION

The physical interpretation of the Riemann Curvature
tensor is given by Pirani (1956). ?he Riemann Curvature
tensor emboids the effects of the gravitational field due
to matter and freegravitational field (Jeorden et al.,1960).
The interpretation of the Weyl conformal tensor as free
gravitational field is due to Pirani and Shield (1961).
The electric type and magnetic type components of the
Wey| tensor are introduced and used to form Maxwell like
equations by Hawking (1966). Kund and Trumper (1962) has
investigated a property of radiative gravitational field
through relativistic perfect fluid distribution. The
interaction of the free gravitational field with the
source is examined by Szekeres (1964). The formulation
of Maxwell like equations by employing electric type and
magnetic type components of the gravitationalfield is
utilized by Glass (1975) and Date (1976).—Asgeker (1979)
to study relativistic magnetohydrodynamical aspects.
Analagous to Wey!l tensor the concept of Weyl projective
tensor is introduced by R. R. shaha (1974) during the
investigations of definite material scheme. The properties
of Weyl conformal tensor are reexamined by Carmelli (1982)
by using Newman  Pensore formalism, It is proved by Barnes
(1984) that {f Wey! tensor is purely electric, type or purely

LYo sowed
magnetic type then the flow vector is 4rratdonat unless
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the space-~time has constant curvature.
The space-time in which the divergence of Weyl R
‘naddmzwwﬁh*“MJ‘Q“QWK,X}"T°
tensor vanishes is designated here as C-space]kf infinitely s

conducting ferrofluid are examined in this section.

2. THE CONFORMAL CURVATURE TENSOR AND ITS PROPERTIES

The conformal curvature tensor is defined through
Riemann curvature tensor, Ricci tensor and Ricci scalar

as given by Carmelli (1982).

C = R ~-4fg R ~«g R ~-g R +g R
abcd abcd L ac bd ad bc bc ad bd ac
+1g g -9 g IR, (2.1)

6 ad bec ac bd
By employing Einstein Field Equations (I 4.1) we can

also rewrite the conformal tensor in the form

Wi

C = R + T g + T + .
abcd abcd b {c dla gb(b &}a gb[qgc]a (2.2}

The Weyl conformal tensor has the same properties
as the Riemann Curvature tensor, given by
c - - = =C (2.3)
abcd bacd abdc

o = C . (2.4)
abcd cdab

C + C + C "—‘Oo (205)
abed acdb adbc

In addition, the Weyl tensor satisfies the important
property that it is traceless,

ioe., ’
Cc = g C = 0 . (2.6)



Thus it is irreducible.
The Weyl tensor can also be written in terms of the

tracefree Ricci tensor (Carmelli, 1982)

Sab = Rab - %gabR’ (207)

as in tha form

R. = C 1 S - S - 8 + 8
abcd abcd * z(gac bd gad be gbc ad gad bc)

+ %(gadg -g g Je (2.8)
bc ac bd

This is actually a statement of the fact that the
Riemann Curvature tensor decomposes into its irreducible
components like Weyl Conformal tensor Cabcd , the trace-
free Ricci tensor Sab and Ricci Scalar curvature R, This
decomposition can symbolically be written as

FQa\bcd ) C::.-abc:d®8ab<9R. (2.9)

No new quantities can be obtained from any of the
above three irreducible components by contraction of
their indices.

From the properties of Riemann curvature tensor
and Weyl conformal tensor it follows that Riemann
Curvature tensor has 20 independent components whereas
the Weyl Conformal tensor has only ten independent
components given by the nine independent components

of the tracefree Ricci tensor Sab and the single
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components of the Ricci Scalar Curvature R,
The significance of the Weyl Conformal tensor

can be seen from the following claim,

Claim ¢ The Weyl Conformal Curvature tensor is preserved

under conformal transformation,

Proof ¢ Two Reimannian spaces V and V are called confor-
mal spaces if their metric tensors gab and g,p are related
by

25 (x)

Eab(X) =e g, (2.10)

where & is a real function of the co-ordinates. The
correspondence between the spaces V and V is then called
a conformal mapping.

The line elements of the two spaces V and V are

related by

?

ds? = &6 gs2

If one uses the same co-ordinates system in both spaces

since the angle between two vector A and B is given by

A_B2
Cos(A,B) = 2 . (2.11)

(A;A%)(B,8%)

We see that the angles are preserved under a conformal
mapping.

In the following we find the corresponding relations
between the Riemann Curvature tensor and the Weyl Conformal

tensor in the two spaces V and vV .
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From equation (2.,10) we see that the contravariant

metric forms in the two spaces V and V are related by

7 (x) = ) . (2.12)

.

Christoffel symbol of the first kind in the two spaces are

related by
f}hn

h
! eZ‘“ (g ’b6n + gmr}_q: - gmnq( ). (2.14)
imn Im 3 x ~ o ~ x'

The Christoffel symbols of the second kind are related by

i

s
( ) (2.13)
[1mn ¥ Zilmn

a aA — a a
= dg = + [} (2015)
rbc - J)\bc rbc Abc :
where
A
Do ™A
bc Abc
ieBay
a a anN g
A b " f}‘f 5‘3}( g o2, (2.16)
bc c}x bc D xA
We may now calculate the Riemann Curvature tensor Rab g
o
of the space. V ,
It has the same expression as that of R of the

abcd
space V, except the metric tensor 91 and the Christoffel

symbols r? replacing g and r3 in the equation
bc be

ab
- y -
R -L('Bgad ‘Bg ?gbd _r}gac )+
abcd i ‘)xc P éx Bxagxc BXM Xd
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i m m
+glm(rad rbc‘,Jac rbd ) . (2.17)

We find then

26
abcd = [_Rabcd + (934%c90c%ad™%acCbd™ b abac )

—

+ (92495 92c9pg’ (Va6 s ) ;] - (2.18)

In the above equation we have been using the notation

according to which

b =6pa =V Ve - ( ¥V, 60V, 6 ), (2.19)

vag V¢ - gab \VAY ng !

. a ab 96 Qs
1e€s = . .?—
’ 'T]aér i? & g ~ _.a b (2.20)
o X } X
The Ricci tensor is consequently given by
R = R .
ab 9 lamb

—
S— w——

Ti‘b = R =26, -E[_'J6+2 V.6 v%_ﬂgab ¥ (2.21)

i.0a,

where [ Je= V. VZ/ - ¢*° IVAAVACE (2.22)

The Ricci scalar curvature can new be calculated from the

Ricci tensor as

R:gab fiﬁb ’
.0,
R-2(r-¢Q6-6V 6 Vi )] . (2.23)

From equations (2.21) to (2.23) we can eliminate the expression
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of géb and find

1
(‘ab = --%— (Rab-Rab) + T-é(R gab-' R gab)
+ %(\‘ZC 6& G ) 9p ° (2.24)

Raising now the first index of the Riemannian Curvature
tensor, given by (2.18) gives the following relation between

the mixed components of curvature tensor.

a _ pa a a
B bcd ~ R bed +c§d Ebe +5c 6bd +
al
- +
*9 (gbc Cld gbd g‘lc)
a a a
_ . 2.2
Pl e T Gy (V6 VS (8250

On substituting the expression for S ab derived in (2.24)

we finally obtain

a a a a a
B.bcd-é-(JcR -c{dB -g R +g9 R )

~bd bc be™ d bd™ ¢
1( a a )
-1 - R
3 O(d Zbe chbd“‘
-R® -3 SR - -g R® +g R)
bcd °© Jc bd é‘d be be d bd ¢
a
"1 a g )Rc (2026)

Equation (2.26) expresses the relation between the Riemann
tensor, the Ricci tensor and the Ricci Scalar in the two

spaces V and V.
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Comparing now the equation (2,26) with the definition of
Wey!l conformal tensor Cabcd obtained (2.2) by raising
the first index | , we see that the left hand and right

hand sides of the above equation are equal to

gabcd and Cabcd respectively.

In other words, we obtain

a _ na .
€% hcd = Cpeyg (2.27)

Thus under the conformal mapping the Weyl conformal tensor

is preserved.

3. SOME ASPECTS OF FREE GRAVITATIONAL FIELD SIMILAR TO

ELECTROMAGNETIC FIELD

(A) Matter Current ¢ This concept of Matter Current is

introduced by Szakers (1964) as similar to the electric
current in electromagnetic field. He defined it as the
divergence of the conformal curvature tensor,
ie@oy 4 a

Veq = € bed 3 2 ¢ (3.1)
If we use the expression of cabcd given by (2.2) then we
derive the expression for the matter current as follows.

We start with the expression

a a a
c - R - R -
bed bed ~ J Cd b

ioeo,
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c? 4= R2 -

a a
be bed [o°y R, -9 R T-}[g R -g R®]

cb ¢ db bc d bd ¢

nojes

R a a
% Lg dJcp 7 9 cgdb] ’

This with Einstein Field Equations (I 4.,1) produces

a _ a - a - 1 —
=C bcd 2 R bcd [9 d ( Tbc 2T gbc)

a T, a a
- (T 1T {] + = ( - )
g c by 5 gbd 3 g d gcb g ngb
a a a a
- T _s T - T - ‘l‘T .
[gbc( g 29 d) gbd( c "8 c{]
i.e-,
a a a a
2C = 2 R T - lT - -3
bed bed 9 ¢ Tpe 7 gbc) 9l Ty 2T ?bg
a a a
-+ T 4-‘1‘T - T bl l’T a
9ol Tgm 2T 9 ) =g (T° = 2T 9" )
T,.a a
+ - L]
30979, = 9. 9,
From this we write
oc? - 2 R® (T -
bcdsa bcdsa 9 d( bcsa  * ;a gbc)
a a a
- g (T - 37 g )+ (T - 1T )
¢ bdja ° 3a “pq e dsa ° ;ag d
gbd(T csa 2T;ag c) + 33a (g d9cp™ 9 cgdb) 2
i.e.,
a - a -1 - 1
2 bcdja = 2 R bcdja t Tbc;d 2T;d Ibc de;c+2T;c gbd

+1..,g T;d-%T g - (3-3)

We simplify this by using the relation



a a a _
R bcdza T R bdajc R bacjd 5
ieoy
a a a
R = -(R + R
bcdsa ( bdajc bac;d
ie€oy
R2 = R - R .

bcdsa bcsid bdsc

in the form

= 2 \R - R + T -T
bcdsa {ibc;d bd;;} bcyd bdjc

-3T g +4T g +g T -g

oc?

Again by using Field equations in 18t term we get
2c? =2 | (Tp-37 + (T 3T

+ T

This after simplification can be put as

AN~
-
Q.

(e}

Q
o

A

-
O

o

Q.

a
2C -bcd;a = Tbc;d - de;c...
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Hence we write the expression for the matter current through

stress energy tensor,

J =T aT, - %T'd 9
b}

bcd bcs;d bdsc cb+ 3T;(:gbd

This for infinitely conducting ferrofluid yields

#* = - -
Pocd = [Aubuc Akhb 1,

- LAV U= B gpy '”thhdj s

2 2
-1 - +1 -
3 9, . [A-4B +ach ];d 3 9 4 [A-4B+ath ];c

fe€e,
J*bcd = A;d UbUC - A3CUbUd + Aub;duc
-AUb;cUd + AUbUC;d - AUbUd;c
+ 6( Moy /& q bh +/Lh 7,» b d

T

-
b

1 1
+Mhph h — =T + -
MNpPg;c M b csd 3 3d gbc. 3

i'&;c.?@d.—‘ggci %<

where the value of the rest mass is

T = (r-3p-2mr+2pCh2)
Claim ¢ The Matter Current is always conservative .
Proof ¢ For the fluid with particles at zero rest mass

(Radhakrishna 1973), we have T=0 .

This constraint with equation (3.6) yields

(3.6)

(3.7)

(3.8)

(3.9)
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This gives

b
J* = T - .
cdsb csydb T dscb ' (3.10)

It foliows from contracted Bianchi identities and Ricci

identities thaf

0 - b =P Rrd o qdgb ) (3.11)

csmn csnm d cmn c dmn

Hence from equations (3.9)and (3.11) we get

b b m m m o. &
J¥ ;b:Tm(R - R Cb)+TdRm

cdb d ca

" R @ (3.12)

- T e n da *

As the stress energy tensor is symmetric we have

J¥ = T R - T R
cds;b mc d d me ’
LIPR -
#b m m
PPdsh = RneRy = Rl
JxP =R R" -rR R" .
cd3b md ¢ mc d

Consequently,
b
J* cd;b = 0
Hence the proof is complete,

(B) C -~ Space : The concept of C-Space has been introduced
by Szekers (1964) as the space in which the matter current
vanishes,

Mathematically C-Space is characterized by

J (3.13)

¥bed = O -
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The well known Bianchi identities

R.p (cdse ) = 0. (3.14)

imply

J# (3015)

= R faad 1 R [
abc C{??ﬁl 6 %ca ;b
On using the Einstein Field Equations (I. 4.1) the above

expression becomes

J# (3.16)

= =T + L T
abc c[asb) 33c{a pb]

For the Infinitely Conducting Ferrofluid described by
the stress energy tensor (I. 2.9), the value of the matter

current is given by

= A Uu - A Uuu + AU U - AU U
bcd 3d b ¢ ¢ b d b3;d ¢ bjc d

+AUU - AU hohg = h_h
b csd o P M M. 4o

b4 ,
+M h -mh h +Hhn -Mhghe g

bs;d c b djc

J¥

bsc d

where 1 5
= =(r-3p-2mh +2Mh ) .

(|

Hence the condition of C-Space for Infinitely Conducting

Ferrofluid by using equation (3.13)and (3.17) gives,

- - AU v
A;dUbUc A;cubud + AU, gU, - A b;cud + A bUc;d
- AU u + h h - hh +Mmh h -Mh h
5C A& /(kd b ¢ bjc d bsyd C
+M-h_h -Mh h - C g +¢C g +B g
b dsc b csd sd bc sC bd sc bd
- B, g =0 . (3.18)



3d

bec d
If we contract this equation with U U h |, hdgbc we get
2 d
h h
ioeo, d
2 2 2.4h
r AL h&e.
(p+ Manh h& - AU nY -A&hghc + 3d =0+ (3.19)
T2 sd d o 2
and - 2 d .
Liore3pionn+2 ) v (rep)U % = 0 . (3.20)
3 3d d
Also we recall the equation
3% h = 0 (vide, II 29),
.b a
14
2 d
] . 2 d a"
e,  (ram)Uhy - [pem1-")n } nd o408 ol (o)

And the consequence of Maxwell equations (vide, 11 7),

/UL‘dhd+AA(h +Udh ) = 0. (3.22)

Theorem ¢ For the C-8Spacz2 of Infinitely Conducting Ferrofluid
the Magnitude of the magnetic field remains invariant along
magnetic lines if and only if the magnetic permeability

is invariant along these lines .

Proof : The substraction of equation (3.19) from (3.21)
gives ,

2 .
(an®-mwh?) hd s un?d n? - unPhC, o omn? pd oo,

3d 3 ;d

This after simplification yields,

(/3/52)_dhd =0 . (3.23)
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This then provides
h9h2 +4%n2 pd _ 0 . (3.24)
/(’L;d X sd

This proves the required result,

Theorem 2 ¢ For the C-Space time of Infinitely Conducting

Ferrofluid the Isotropic pressure is preserved along the
wy

magnetic lines if and only if the #£dew acceleration is

normal to these lines.

Proof : By substracting the value given by (3.23) in (3.19)

and then using the Maxwell equation (3.22) we obtain

P hd = (r+p) U hd . (3.25)
3d d

This result proves the theorem,

Theorem 3 ¢ For the C-8pace of Infinitely Conducting
Ferrofluid, the matter energy density is conserved along
magnetic lines if and only if the magnetic permeability

is consreved along these lines,

Proof s By utilising the value given by (3.23), the equations

(3.20) and (3.21) provides the equation

L(ar+3ps2in®) nd - (pmn?) nd 4+ 39 _ o,
3 3d 3d 2
i.e.’
2 d M2 . d
(2rn) 4h- + 37507 4jh" = 0



fecey,

d d,2 M, 2 d
2r h” - h"h™ +7xh h =20 vide 3,2
;d }/L; q 3 ;d ’ ( 3 3)

ie€ay
d d 2
r;dh =/4}dh h . (3.26)

From this equation the theorem follows.

NOTE ¢ We observe from the above three theorems that the
dynamical quantities like matter density r, isotropic pressure
p and magnitude of the magnetic field h? all become conserved
quantities along magnetic lines if and only if the magnetic
permeability is conserved along these lines, This shows the
direct effect of the conservation of the magnetic permaebility

on the conservation of the above stated dynamical quantities.

(C) Electric type and Magnetic type components § R

Theelectric type component Eab and magnetic type component

H,p are defined by Glass (1975) in the form

F =cC T (3.27)

ac abcd

H

|

pgr | 8
ab = 3 G v (3.28)

We note from these definitions, the properties

Fp = Eba , Hab = Hba [Symmetry Property]
F? = H® -0, [Trace free]
a a
a a
H pU" = Eabu = 0 ., [U-orthogonal property]
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Hence we can express the Weyl tensor through these components

e g.fh
c - - U'U'E
abcd (gabef gcdgh 1labe%71cdgh)

yWeuIH™ | (3.29)

as

- +
(gabefqzcdgh 2Zabef‘ gcdgh

where

= - . (3.30)
gabcd gac gbd gad gbc

Theorem s For the essentialy expanding floy)of the electric

type component is given by E -N. C\aSSQ‘(}S'),

F =1 (lr =-1vp pCdR ) .
ab ab 3 ab cd
fe@ay,
b 1 ab
F - ( a p R - P p R )
—d t(p c a ab 3 cd ab ’
i.eo, F‘ _ _l_R [Pa pb - lp pab] (3 31)
—~d ° ab c d 3cd ) .

PP R0 = (a? - Ul )M - WU
ie€ay, Pacpbd _ gac gbd'+ UanUcUd _ gbduauc _ gacubud .
So that (3.31) reduces to
Eeq = 3 R, [gac gbd + uaubucud - gacubud - gbduauC
- 1 (g = U uy) (-0,
e Etd =1 Rab [gac gbd - % UanUCUd - gaCqud - % gcdgab
+ % gcduaub + % Ucud gab] ’ (3.32)



For Infinitely Conducting Ferrofluid we have

RabzAUan.-%Bbgab -Mhahb .
So that (3.32) produces
F =A\lUU +2UU -UU =-UU L
~cd [ cd 3 cd_ cd cd "3 9y
+ 1 +luu-1-3£ +28UU =-UU
3 9cq z ¢ dl °? %4 73 ¢4 cd
4 1 4
- UJu -2 + = + = U U
cd 3 9cd 3 gcd 3 ¢ d] ’
This after simplification implies that
F :"/!'Lh .
“cd 2 ¢cd
Sp that
F =O h:O.
L & n,

Thus the claim is proved.

REMARK : It is proved by Asgekar and Date (1979) for
Relativistic Magnetofluid that the gravitational tidal
force is due to magnetic field only. Hence we note that
the same result remains true even for relativistic

Infinitely Conducting Ferrofiuid.
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(3.33)

(3.34)



