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CHAPTER -

14

Approximate Solution of Pohlhausens
Problem- of Free Convection on a

Heat Vertical Plate
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Introduction

Approximate solution of Pohlhausen's problem of
free convection on a heat vertical plate was obtained by
Pohlhausen [4]. Purther the equation are solwed by Squire
[2] anq Eckert [3].

In this problem the equation of motion is solved
and calculated the Nusselt numbers for different Prandtl

mmbers,

Also for different Prandtl numbers the boundary
Layer thickness is obtained.,

It is also shown by graphically that as Prandtl
number increases the boundary layer thickness decreases

and Russelt mumbers increases,
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Nomenclature

a = K/SC, s thermal diffusivity
K : coefficient of thermal conductivity
cp s Specific heat at constant pressure

Pr 3 Prandtl number ﬁcp/k

orT
- (3-;),,0:!

Ru(x) s Russelt number

2 1 Kinematic viscosity
T /6
U and v 3 Velocity components in x and y directions.

Ugo & Free-stream velocity in x-direction

8 3 === ~== _ dimensionless temperature,

§ 1 podadpipiwmemr: thickness

U;{x) s Any arbitrary function

Cj, C5 ¢t Any two constants,

Tw-T
Gr = Sf,___f,?_)__ . x3, Grassof's number

2
gy
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IX) Solution of Problem

The equatioh governing the motion of the fluid in
the neighbourhood heated vertical plate are given by

ou dv
- & v - O L N (1)
ox oy
ou ou d32u o 2)
Q| e W e = =amme o g¢ eve
ox oy /9 oy?
) 20 % o
L B + V-~ = g - eoe
dy dy?
vy T,-T
Tw-T oo T oo

with the boundary conditions

y=0 u=20, vs 0 =1
LA K 4 (‘)

Nt Sat? St

y=68, u=0 @8=0

Wwe have assumed that the thickness of the thermal boundary

Layer is same as that of the wvelocity boundary Layer

Integrating equation (2) and (3) with respect to
y between the limits y = 0 to vy = § we get from equation (2)
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? ou s ou J§ d2u
u - dy + - gy = - dy +
0 ox oI 'byay ) ) byz'dy
8
+ 9% ( edy wes (5)
Consider
J? du s ]y-d' .? ov
V - = vu - u -4
0 oy Y y=0 0 oy o
5 Bv;
= v, -y - u -
Yyes T VUm0 T fu Ay
by equation (1)
;5 bud (6 ou
V-~ dy = u ~= dy
0 oy 0 ox

Consider the first part of R, H.S. of equation (5)

8§ 2% B yup
)’ofg;;dv" » (g;)y_e

= ~3 ( 5; Jgmo + I §;f)?"6

., du
= - -
D =)
Then equation (5) will take the following form

6§ ou ? du (au) s ?eay
¢ "m Tt "R ) 3y T O 0
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? nzdy s =3 ou ) + 9« ? € ay 4(6)
0 ay ro o LR K ) |
Integrating the equation (3) between the limits y = 0 to

Yy = § we obtain

f 28 5 o8 56 o%e -
n - dy + VvV = dy = a bty dY ewve 7
0 ox Oj dy 0 oy?
5 28 ™ 5 o
ia - = 9@ - eo — dY
Consider 05 v 5 ay ]y_o 6( 3y

oy
6 ou
= ( 8@ =~=-day by (1)
0 oy
and
gsb‘e_ [be v=5
aO Byzdy aby y=0
o8 E-1)
-[as;]y_b "[ls;]y.o
kL)
--a(g;)y‘o

Substituting this in equation we get

4 B“d ?931: (ba)
- - --va -_—
i A e oy ™0
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te. = ¢ (ue) (22, (8)
e, == uwe)dy = ~a ( == ees (B
ax 0 3y YO

solving the above integral equations by taking the following
polynomals in %1 = y/§ for the distributions of u and 6,
satisfying the respective boundary conditions,
u= uwix) n1-u* ; )
and @=(1-m)% )
where u;(x) is an arbitrary function which has the dimen-

sion of velocity to be Aetermined,

Row putting the values of u and & 1in equation (6)

we get
1 a 2 1 uy
105 ax 6

Now putting the values of u and 6 in equation (8) we get

a [ 12 ] 2a
- (x) ==- § = ==
dx " 360 é
l a 2a
i,e, == == (uls) n - ees (11)
30 a&x 8

Now we will find the solution of above equatién in terms
of
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Putting the values of u; and § in equation (10) and (11)

we get
1 e | 1 u
108 é&x 3 5
1 4 1 Cyx™
1.9. _—e—— == [c% gz‘ cha ] L g gﬁ:n - )) .3—--
105 dx 3 c x"
1 1 c1
1.e, — [(2m + n)x2@+o-1 ce ] == 9aC.x® - ) -=x"70
172 3 9.
105 c,
2m+n 1 c
l.e. ——== CIcx?™0-1l o - ggcyxB - -2 ) £ ee. (13)
108 3 c,
equation (11) becomes
1l s | 2a
i.e, == — (9yh) = -~
30 ax .3
l a 2a
-— == [P cic, ] = =
30 &x 8
m+n m+ el 2a -n
—— clc x - - x eees (14)
30 12 cy

must be identically satisfied.,

This gives
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2m+ n~-l=n=um-n

2m + N~ 1 = n

C.mw=1/72, n=1/48

We find the value of C; and C, by putting m and n,

%« 20 -
Lee. Cy = 5,084 ) (=312 (= 4 p)”V/? ... (15)
y 21
and
- 20 9a ~1/4
c, = 3.9% e 2 (pr 4 — /% ¢ -3 ) / ... (16)
21 y
from § = szn
3 |
me=> -= =C2 puta= 1/4 in this we get
x
8 1/ 178 & -1/a

2 (Pr + 0.95) o ( ===

;-)7-‘- = 3,94 Pr >

Yt

Dividing by x3/‘ we get

5 S -
- = 3,95 Pr 1/2

Ja x°
(Pr + 0.95) 174, 5 y~1/4

dir, -T.) x> 9a x°
But Gr = bt ® = oeee

2T »?

172

6 - -
i,e, - = 3 9% Pr (Pr + 0.95)1/‘ ( 1/4

x

Gr)

The temperature gradient of the wall is given by
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0= (1 -9)2

. 08
e o = 2(1"‘“)(-1)
o

o8
(5 im0 = - 2

The local Russelt number for the heat transfer, in the

present case is given by

(E
dy y=0° 06 x
Ru(x) = -- - (== )g . -
T, - Too 5
Nu(x) = 2. g
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T rsinTe o srd Cobclusions

From the table 1 as Prandtl nusber increases the
Nusselt number increases (Gr is constant), Hence the
temperature of the plate decreases as Prandtl number

increases and Rate of heat transfer increases as Prandtl

number increases,

Therefore, rate of heat transfer in water is
greater than that in air,Result is also shown by graphi-
cally [Fig.1 ana Pig.2].
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Table 1

Sr.No. Pr ot = 2 (6r)1/4

Ru(x) = 2 x x/8

1 0.6 5.66108 0.3534
2 0.7 5.32371 0.3757
3 0.8 5.05367 0.3957
4 0.9 4.83130 0.4140
5 1.0 4.64409 0.4306
6 1.1 4.59179 0.4355
7 1.2 4.54681 0.4398
8 2 3.64194 c.54§1
9 3 3.19875 0.6252
10 4 2.930%8 0.6823
11 5 2,74496 0.7286
12 6 2.60503 0.7617
13 7 2.49422 0.8018
14 8 2.40327 0.8321
15 9 2.32662 0.833%
16 10 2,26071 0.9078
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