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XHTRQPUCTIOS

The purpose of this chapter Is to give the historical 
background for the investigations of this dissertation.

1) History

Fluid mechanics is a part of applied mathematics, 
physics and of many branches of engineering particularly 
civil, mechanical, chemical and aeronautical engineering 
and of naval architecture and geophysics, with astrophysics 
and biological and physiological fluid dynamics to be added. 
Significant contributions to the theory of airfoils came 
early in the century. During the whole of the first half of 
the century applied aerodynamics was to be probably the major 
incentive, dealing with questions which was important also 
in mechanical and civil engineering; but geophysical ques­
tions, certainly not without charm and fascination, received 
much attention.

Curiosity about at least two of the branches of fluid 
mechanics and their applications have a long and distinguished 
history, for in the proverb of Solomon, the son of David, 
who was the king of Israel, which was stated in the words 
of Agur, the son of Jaken that "There be three things which 
are too wonderful for me, * Yea four which I know not", 
of which two were, "The way of an eagle in the air" and



"The way of a ship in the midst of the sea*, which I take 
to be questions of aerodynamics and naval architecture, 
questions that concern as still.

Until the turn of this century the study of fluids 
was undertaken essentially by two groups hydraulicians and 
mathematicians. Hydraulic ians worked along empirical lines 
while mathematicians concentrated on analytical lines. The 
vast and often ingenious experimentation of the former 
group yielded much Information of indispensable value to 
the practicing engineer of the day. However lacking the 
generalising benefits of workable theory, these results 
were of restricted and limited value in novel situations, 
mathematicisns, meanwhile, by not availing themselves of 
simplified as to render their results very often completely 
at adds with reality.

It becomes clear to such eminent investigators as 
Reynolds, Froude, Prandtl and Van Karman that the study of 
fluids must be a blend of theory and experimentation. Such 
was the beginning of the science of fluid mechanics as it 
is known toddy. Our Modern research and test facilities 
employ mathematician, physicists, engineers and skilled 
technicians, who working in terms, bring both view points 
in varying degrees to their work.

Boundary layer theory is the oldest branch of modern



fluid dynamics. Essentially three branches of fluid dynamics 
have become particularly well developed during the lfeftt 
ninety years, they include boundary layer theory, gas 
dynamics and areofoil theory. Since about the beginning of 
the current century modern research in the field of fluid 
dynamic^ has achieved great successes and has been able to 
provide a theoretical clarification of observed phenomena 
which the science of classical hydrodynamics of the procee­
ding century failed to do.

Boundary Layer theory was found by L.Prandtl [ 3 j] in 
his 1904 lecture to the International Congress of Mathematics,

A

on the boundary layer condition of no slip and circumstances
IJin a thin layer of fluid near a solid wall. This concept 
made it possible to clarify many phenomena which occur in 
flows and which had previously been incomprehensible. Most 
important of all it has become possible to subject problems 
connected with the occurrence of drag to a theoretical 
analysis. In 1908 Blasius [5] published in a more accessible, 
more conventional, medium of communication a fuller account 
of the derivation of the boundary layer equation and a 
detailed investigation of the flow along a flat plate parallel 
to a stream, but even after that there was not exactly a 
rush of acceptance, exposition or further investigation of 
boundary layer theory. Later on Toffer [4t] and Howorth [l9]
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tackled the sane problem by using numerical methods to 
obtain the solution.

With the publication in 1921 of Karman's [24] momen- / 
turn equation and the Karman-Pohlhausen [ 3$] approximate
method of integration, and published in 1924 of the experi­
ments of J.M.Burgers [e]. bandar? \cxyer +*eor? «J U\osT 

\,<cor»< suW/Vet Of c-Wcnh'en and accept"

The science of aeronautical engineering was making 
rapid progress and was soon able to utilize these theoretical 
results in practical applications. It did on the other hand, 
post many problems which could be solved with the aid of 
the new boundary layer theory. In the other fields of machine 
design in which problems of flow occur, in particular layer 
made much slower progress, but in modern times three new 
concepts have come to the fore in such applications as well.

Flows through porous media occur in filtration of 
fluids and seepage of water in river beds. Movements of 
underground water and oil are some other important examples 
of flow through porous media. An oil reservoir mostly consists 
of porous sedimentary formation such as limestone and sand­
stone in which oil is entrapped, oil can be obtained from 
such reservoirs by drilling wells in oil bearing area down 
to the oil reservoir and then either allowing or causing 
the oil to flow through porous oil bearing rocks Into the
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well. To study the undergound water resources also one 
needs to investigate the flow of fluid through porous Media 
is the seepage under dan. There are numerous other practical 
uses of fluid flow through porous Media.

The theory of energy (heat) and mass transfer is one 
of the domains of contemporary science, it is of great 
practical Importance for Increasing the process rate in 
heat-power engineering, power engineering, and chemical 
engineering in various branches of industry and agriculture. 
Heat and mass transfer have become especially important in 
Modern technology, particularly atomic power engineering 
and space research, whose rapid development gave rise to 
the theory of energy and mass transfer.

For the past two decades this branch of science has 
been considerably extended and advanced, numerous applica­
tions of the theory may be found in power plane and indus­
trial power engineering, technological processes, chemical 
engineering the construction industry and agriculture. It 
should be noted that the level of scientific research and 
development varies in different branches of engineering 
whereas in the newest fields of scientific research the 
development of hea$ and mass transfer theory is at a rather 
high level, applications in other fields lag far behind.



In heat transfer problems involving porous media 
such as high temperature reactor technology, heat technology, 
chemical technology and geothermal energy extraction, the 
working medium is subjected a high temperature and will 
have high optical density, when the medium has high optical 
density, then the optical mean free path is commensurate 
with the molecular mean free path. In such cases thermal 
radiation also serves as a model of heat transfer. Hence 
the transfer of thermal energy is governed by convective and 
radiative components which represents the most general 
case of heat transfer with heat being transferred not only 
by radiation but also by conduction and convection.

Convective heat transfer in a porous medium has 
attracted considerable interest in recent years due to its 
numerous applications in industrial and geo-physical problems.

Sparrow and Chya [ 3-T] and Sunden [ 3§|} concluded that 
although the conventional fin theory model based on the 
prescribed uniform heat transfer coefficient gives a good 
estimate of the overall heat transfer rate from the fin 
substantial errors could arise in the prediction of the 
local heat transfer rate. The conjugate mixed convection 
conduction heat transfer problem for a plate fin enbedded 
vertically in a saturated porous medium has recently been 
analysed by Liu [26].
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B.C.Chandrasekhara and P.Nagaraju [9] studied the 
composite heat transfer in case of steady laminar flow of 
a gray fluid with large optical density past a horizontal 
plate embedded in a saturated porous medium and obtained 
velocity and temperature distribution by using series method 
and observed that the ratio of heat fluxes increases with 
increase inji^Jthe porous parameter).

A.K.Kolar and V.M.K.Sastri [2l] studied the numerical 
and experimental investigation into the upstream transpira­
tion problem in free convection* and obtained that the down­
stream heat transfer depends not only on the upstream 
transpiration velocity, but also on the length ever which 
transpiration is applied. A. Nakayama and H.Koyama [ so ] 
investigated the free convective heat transfer over anoniso- 
thermal body. .
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BASIC CONCEPTS

The basic concepts, required for the discussions ^ 
of our problems have been explained.

i) Fluid

All materials exhibits deformation under the action 
of forces. The matter is usually divided into two classes 
namely, the fluids and the solids, when some external 
force is applied, it is the deformation which is important, 
i.e. there is a relationship between the external forces

/ 9and the deformation caused in the matter is called a solid.j \ 
If the deformation in the material Increases continuously 
without limit under the action of shearing forces, however 
small the material is called a fluid.

Another criterion for the classification of the 
matter between solids and fluids is, in solids the different 
particle of the matter (volume elements) have definite 
relative position and these elements change their relative ? 
position only when some external forces is applied. In 
fluids the different elements can change their positions 
even without any external forces and therefore when a fluid 
is put into a container the elements rearrange themselves 
so as to take the shape of the container.
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A fluid may be either a liquid or a gas. A liquid 
can have a free surface, that is a surface from which all 
pressure is removed except that of its own vapour. A liquid 
has interamolecular forces which hold it together so that 
it possesses volume but no definite shape, a liquid is 
relatively incompressible. A g&ssconsists of molecular in 
motion which colldlde with each other tending to disperse 
it so that a gas has no set volume or shape. A gas is very 
compressible, and when all external pressure is removed, it 
tends to expand indefinitely. A gas is therefore, in equi­
librium only when it is completely enclosed.

ii) viscosity

The viscosity of a fluid is a measure of its resistance 
to shear or angular deformation. Consider two parallel 
plates as in Fig.(1) sufficiently large so that edge condi­
tions may be neglected, placed a small distance y apart, 
the space between being filled with the fluid. Assume that 
the upper one is moved relative to the lower one with a 
velocity U by the application of a force F corresponding to 
some area A of the upper plate. Such a condition is approxi­
mated in the clearance space of a flooded journal bearing. 
Particles of fluid is contact with each plate will adhere 
to the surfaces, and if the distance y is not too great or 
the velocity U too high, the velocity gradient will be a
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straight line. The action is much as if the fluid were made 
up of a series of thin sheets, each of which would slip of 
little relative to the next. Experiment has shewn that for 
a large class of fluids P AU/y.

It may be seen from similar triangles that U/y can 
be replaced by the velocity gradient du/dy. If a constant 
of proportionality P is introduced, the shearing stress

bubetween any thin sheets of fluid is T * p/a * XP/y * P 
which is called Newton's equation of viscosity.

T

a r

u=U

R9 -1
By transformation p

u = o

rr / du
dy which is called coefficient

of viscosity, the absolute viscosity, or the dynamic viscosity.

Shearing stress 
Velocity gradient

Force/area -lp-1
Velocity/length

In the metric absolute, or physicists*, system the dimen­
sions of absolute viscosity are dyne-second per square
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centimeter. This unit is celled the poise (the metric 
gravitational system is rarely used).

At most fluids have low viscosities, the centipoise 
( * 0.01 poise) is frequently a more convenient unit. It 
has the further advantage that since the viscosity of water 
at 68.4°P is 1 centipoise, the value of viscosity in centi- 
poises is an indication of the viscosity of any fluid 
relative to that of water. Therefore the value in centi- 
poises is numerically equal to the specific viscosity 
(a dimensionless ratio) of the fluid relative to that of 
water at 68. 4°P.

ill) Kinematic viscosity «

In many problems involving viscosity, there frequently 
appears the value of viscosity divided by density. This 
quotient is called kinematic viscosity because no forces 
is involved, the only distensions being length and time.

)) • MirV"1

ML“3 lV1

In the metric system viscosity in poises divided by density 
in gram per cubic centimeter gives kinematic viscosity in 
square centimeters per second and its unit is called stoke. 
The centistoke (■ 0.01 stoke) is often a more convenient 
unit and is obtained by dividing centipoises by gram per
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cubic centimeter.

iv) Steady and Unsteady Fluid* s

A fluid flow is called a steady flow if the velocity 
field which does not depend upon time, and if it depends 
on time then the flow is called an unsteady flow. If the 
flow variables like velocity, pressure etc. oscillate then, 
the flow is called quasi-steady. The steadiness and un- 
steadiness of a flow depend upon the observer. To some 
observer a flow may appear to be steady, while to another 
the same flow may appear to be unsteady. In practice, we 
always try to choose, if possible, the frame of reference in 
such a manner that the flow should appear to be steady, 
because this simplifies the calculations to a great extent.

v) Non-dimensional Numbers 

a) Reynolds Number i

The aimensionless quantity Re defined as
UI*9 UI»

where U, L, g and P are some characteristic values of the 
velocity. Length, density and viscosity of the fluids 
respectively, is known as the Reynolds number in honour of 
the British scientist Osborne Reynolds who in 1883 demonstra­
ted the importance of Re in the dynamics of viscous fluids.
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It can be easily seen from the equation of notion that the 
inertia forces [terms like $u gj ] are of the order of

*% m 2..and the viscous forces [terms like P ] are of 
the order of W/L2

Therefore
Inertia forces 0 U2/L ul
------- --------- i -- * a Re
Viscous forces VULZ V

For this reason Reyholds number is sometimes spoken of as 
the ratio of inertial to viscosity forces. It is in fact 
a parameter for viscosity, for if Re is small the viscous 
forces will be predominant and the effect of viscosity will 
be felt in the whole flow field, on the other hhnd, if 
Re is large the iinertial forces will be predominant and 
in such a case the effect of viscosity can be considered to 
be confined in a thin layer, known as boundary layer, 
adjacent to a solid boundary.

b) Prandtl Humber

The ratio of the kinematic viscosity to the thermal 
diffusiVity of the fluid, i.e.

Kinematic viscosity )) P/o t Cp
m------- m — m Pr.

Thermal diffusivity a K/gCp K

is designated as the Prandtl number named after the German
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scientist Ludwig Prandtl. It is a measure of the relative 
importance of heat conduction and viscosity of the fluid.
The Prandtl number like the viscosity and thermal conduc­
tivity, is a material property and is thus varies from 
fluid to fluid. Por air Pr ■ 0.7 (approx.) and for water 
at 60°F, Pr ■ 7.0 (approx.). Por liquid metals the Prandtl 
number is very small e.g. for mercury Pr * 0.044, but for 
highly viscous fluids it may be very large, e.q. for glycerine 
Pr - 7250.

c) Dimensionless Coefficient of Heat Transfer
(Husselt number)

In the dynamics of viscous fluids one is not much 
interested to know all the details of the velocity and 
temperature fields but would certainly like to know quantity 
of heat exchanged between the body and the fluid. This 
quantity of heat transfer can be calculated with the help 
of coefficient of heat transfer a(x), which is defined by 
Newton's law of cooling as follows t

If q(x) is the quantity of heat exchanged between 
the wall and the fluid, per unit time, at a point Xt 
then q(x) « «(x) (Tw-To) (Newton's Law of cooling) where 
(Tw-To) is the difference between the temperature of the 
wall and heat of the fluid. Since at the boundary the heat
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exchanged between the fluid and the body is only due to 
conduction, according to Fourier's Law, we have

q(x) K [ iff ]n-o
where H is the direction of the normal to the surface of the 
body. From these two laws we can define a dimensionless 
coefficient of heat transfer which is generally Icnown as 
the Nusselt number as follows x

a(x)L
Nu -----—

K
L &T

______ r — ] „
(Tw - To) c^|

where L is some characteristic length in the problem.

Vi) Flow Through Porous Media

A porous medium is literally a solid which contains 
a number of small holes distributed throughout the solid. 
These holes may be effective or ineffective. By effective 
holes we mean those holes through which the fluid can 
actually pass. It is these holes which contribute towards 
the porosity of the material. By ineffective holes we mean 
those holes through which the fluid cannot pass. These holes 
may either be so fine that fluid cannot move through them 
due to surface tension or the holes may not be interconnected. 
If the holes are not interconnected then the fluid cannot 
pass through them and thus these become ineffective. In
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future by holes we shall mean only the effective holes. The 
holes may be very small or moderately large. Some of the 
examples of porous media are spuncles, a pack of sand, 
cotton and woolen pa dings, wood dust, soil, wood leather, 
sandstone and foamed plastics.

vii) Permeability

The permeability of a porous medium is its most 
useful fluid.flow property. The permeability is a measure 
of the ease with which a fluid will flow through a medium; 
the higher the permeability, the higher the flow rate for 
a given pressure gradient. The permeability is a statistical 
average of the fluid conductivities of all the flow channels 
in the variations in size, shape, direction, and inter* 
connections of all the flow channels.

The most commonly used unit of permeability ii^the 
darcy. The American petrolium Institute defines a darcy as 
follows t

"A porous medium has a permeability of one darcy when a 
single phase fluid of one centipoise viscosity that com­
pletely fills the voids of the medium will flow through it 
under condition of viscous flow at the rate of one cubic 
centimeter per second equivalent to hydraulic gradient of 
one atmosphere per centimeter.*
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For linear, horizontal, isothermal flow fluid, the 
KA dpequation is q ■ ~ in which the common laboratory units

are used :

q * flow rate cm3/sec
K * permeability, darcys

2A » Cross-section area cm*
% » Viscosity, centipoises,
§2 ■ Pressure gradient. dL

viii) Porosity t

The porosity of a porous medium is defined as the void 
volume, or volume of pore space divided by the total volume 
of the medium. Void, or pore, volumes are usually determined 
by measuring either gravimetrically or volumetrically the 
amount of liquid needed to saturate the dry medium. Pore 
volume is determined from measurements of the external 
dimensions of the medium or from the volume of liquid dis­
placed by immersion of the saturated medium. Porosities are 
expressed as either in fractions or in percentage.

The average porosity of a very large porous medium 
such as a oil-bearing sand may be determined from the 
porosity of a number of small core samples of the reservoir 
rock. A simple-arithmetic average will suffice when sufficient
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samples are available to get a statistical distribution 
of porosities in the core samples.

The porosity of material is defined as the fraction 
of the total volume of the material which is actually 
occupied by the holes. To obtain the apparent density of a 
porous material we first calculate the density of the pore- 
free material ^s and then the density ^a of the dry porous 
material. From this the porosity is defined as € * 1 - ^a/ $s.

ix) Two-dimenslonals Boundary Layer Equations »

The Prandtl boundary layer equations for a two 
dimensional unsteady incompressible flow are

&u bn bn &0 ba b2 u
ST + u& *VS}~ Si *',ss *ysp

, bf „and -r— + r— * 0 ox oy
The bouhdary conditions, under which these equations are 
usually integrated are t

y * 0* u “ v ■ 0 i y —>co * u « U(x,t)

in which the first is the no slip condition and the condition 
of non-porous wall and the second is obtained from the 
consideration that the velocity u, in the boundary layer 
must Join smoothly on to the main stream velocity.
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x) Characteristic Boundary Laver Parameters

a) Boundary layer thlclrness (6)

Although the transition from the velocity in the 
boundary layer to that of potential flow takes place 
asymptotically, a value which is very close to the potential 
flow velocity is practically attained in a small distance 
from the boundary. Hence the boundary layer thickness has 
tentatively been regarded as that distance from the wall 
where the velocity in the boundary layer (i.e. *u*) differs 
from the potential flow velocity U(x) by 1%.

Thus 6 « (yJu.ggxjj 

In the case of flat plate

6 » [ n

It can be seen that u ■ 00% Uc at ■$_ * 5 (approx.). Hence 
the boundary layer thickness on a flat plate is given by

v'fce xUo
It may be noted that the growth of the boundary layer 
thickness with x is parabolic since the definition of the 
boundary layer thickness is somewhat arbitrary, a more 
physically meaningful thickness via., *displacement thickness* 

is introduced.
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b) Displacement thickness (6j)

The defect is the volume rate of flow, at a section 
x * constant caused by the action of friction is given by 

ooS (U-u)dy 
0

If we denote this defect in the volume rate of flow by 
then 5^ is known as the displacement thickness. Thus

ooU5, . £ (D-u)dy
0

A physical significance to the displacement thickness may 
be given in the following manner.

In the adjoining figure, for the velocity distribution, 
drawn a line DE such that are CCD - area CEB, then OD * 6j 
since area OAED * area OA3CO

or D&2 « £ (U-u)dy
0

ooor » $ (l-uAT)dy
0

Thus signifies the distance by which the stream lines of



the potential flow are shifted owing to the formation of 
the boundary layer (the velocity ) causes the displace­

ment of the potential flow stream lines).

In anology to the displacement thickness another 
thickness, known as momentum thickness, is also introduced 
in boundary layer calculations which will be used later.

c) Momentum thickness (&2)

The loss of momentum in the boundary layer, as 
compared with the potential flow, is given by

oo CO
y £u U dy - $ ©u.u dy
0 0
CO

or 9 5 «(U-u)dy.J 0
9If U &2 denotes the loss of momentum, then 62 is 

known as momentum thickness.
Thus

0% CO? *>262 * ? J u(U-u)dy 

00 u u
or - J 5 U - 5 )ay .

d) Sic tn-r fiction

The shearing stress on the plane boundary is given by



In the case of flow past a flat plate

> /gl 0.332 2^ /f,
Hence the dimensionless shearing stress, which is also known 
as local skin-friction is given by

rfi, 0.664
Cf ? °o /2 s/tee^x

The drag per unit with, for one side of the plate of length 
£ is calculated as

1, , /TTD - J'Twdx- 0.664. 9 U* V  
0 U0

This shows that the drag-coefficient in this case is

CD - 2D/ $ Ul 1 1.328
s/Sel

where Re f * M0t/ ))

xi) ' Thermal Boundary Layers.

The fluid at a large distance from the surface is 
not raaterially effected by the heated body. This narrow 
region (thin layer) near the surface of the body is known
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as thermal boundary layer anologous to the concept of 
velocity boundary layer. The problem of thermal boundary 
layers may be classified into two categories t viz., 
i) Forced convection and ii) Free convection. By forced 
convection we mean the flow in which the velocities arising 
from the variable density (i.e. due to the force of bouyancy) 
are negligible in comparison with the velocity of the main 
or forced flow, whereas in free convection, also known as 
natural convection, the motion is essentially caused by the 
effect of gravity on the heated fluid of variable density.
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