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CHAPTERGS-II

Approximate Solution of Steady Laminar
Flow Past a Horizontal Plate embedded
in a Saturated Porous Medium
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1) Introduction

The approximate solution of the velocity boundary
layer based on Karman momentum integral equation was first

obtained by E, Pohlhausen [3].

The exact solution of the velocity Adistribution in
boundary layer flow past a flat plate was investigated
by Blasius (1908) [5] and the corresponding numerical
solution for the thermal boundary layer with and without
frictional heat was studied by B.Pohlhauuen,{i]

Recently B _.C.Chandrasekhara [1] obtained solution
for axial and transverse boundary layer equation in the
case of steady laminar flow past a horizontal plate

embedded in saturated porous medium,

In this problem we assume the governing equation
of motion for two dimensional boundary layer following
B.C.Chandrasekhara [1], Yekta and B.B.Wwaghmode [ 2], where
the properties of the fluid and the porous medium such as
vikogity permeability are constant and 6th degree velocity
profile for the boundary layer flow over a horizontal plate
embedded in a saturated porous medium, The velocity
distribution is some function 1 of the ratio y/§, § being

the boundary layer thickness,
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The aim of this analysis is to find the velocity
nalys e’

1

distribution graphically and obtain the displacement thick»

ness §; momentum thickness §; and shear stress at the wall

“o-

2) Mathematical Pormulation

For mathematical analysis we assume the governing
equation of motion for two dimensiocnal boundary layer £low
following B.C.Chandrasekhara [1] and Yekta and B,B,Waghmode
[2] where the properties of the fluid and the porous medium

such as viscosity, permeability are constant,
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where K : permeability of the porous medium
9 t Kinematic viscosity of the f£luid

The boundary conditions for this problem are

y=0 v=u=0
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3) Analysis of the Problem ;

To sclve the above equation we define a stream

function
R’ oy
U s e QM V E = wom LN (4)
oy o x

Substituting these values 4n (1) we get
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where B = ))/K.

Introducing a similarity transformaticns as
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Putting all the above values in (1) we get

d¢ d¢ v emyem()x?
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where B = ) /k. W@@fany
Dividing both side by U2, x | equation (7) becomes
1 Bx
£7'(n) + 3 £(q) £*(q) =« ( === ) £'(1) = O
Voo
i,e, 2€"'(q) + £(q) £ () -~ 28£'(1) = O ... (8)
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where Re ===-

BB
with the Boundary conditions

"=0, u=0 f=0, £ =0
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The solution of non-linear equation (8)
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~e= =1 for M » 1l where n = y/§
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We have to determine the coefficient ag, aj, 8y,
aj, 8, ag and ag. We prescribe the following boundary and
compatibility conditions
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By using boundary conditions (ll) we get

y=»é u=1VU
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a, + a, + ag + ag = 1
a; + 4a4 + Sa, + 6ag = O eee (12)

12a4 + 20&5 + 30a6 s 0
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24a4 + 60ag + 120ag = O
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Solving the above equations we get
al = 2' 34 - =5 ¢ ‘as b "'20 as = 6 soe (13)

Substituting the values of a, to ag in equation (10) we
obtain the velocity in the form
u

ceem £(n) = 2 - 5N 4 65 - N© .. (18)

Vo

We calculate the displacement thickness §;, momentum

thickness §, and shear stress at the wall (’f; )

1) Displacement thickness (8;)

1l u
51' I(l"'“’)d‘\
o Uoo
61 = 0,2857 § ees (15)

2) Momentum thickness (§,)

1 u u
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3) Shearing stress at the wall (‘T;)
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The momentum integral equation may be solved easily if §,
instead of § is regurded as known function and for this we

write the Karman momentum equation as

2

U as, 83 §5 AU X, 83
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Substituting the values of §; and §, from (15) and (16)
in equation (18) and simplifying we get
» x
6§ = 6.2435/ —wowm ese (19)
Veo
From equation (19) equation (15),(16) and (17) will
take following forms
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Table
] 0 0.1 0.2 0.3 0.4
£(n) 0 0.1995%8 0.39379 0.572622 0.725248
L | 0.5 0,6 0.7 0.6 0.9

£(n) 0.84378 0.925248 0.972622 0,993792 0,.299558

From the table velocity distrtbutioﬁ curve has been

obtained,

4) nfzmeiion st Conclusions i
1) As % increases from 0 to 1 the velocity increases.

2) Displacement thickness, Momentum thickness and

shearing stress at the wall are calculated,
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