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A Conformally flat electromagnatic mass models 
in Einstein Cart an Theory.

1. D tN¥ROEDtUCTD PIN

Recently Trautman by considering a Friedmann type 
of universe in Einstein Cartan theory has shown that the 
gravitational singularities may be averted . Hehl et al have 
discussed the generalization of Einstein's general theory of 
relativity in which the spin of matter couples to Cartan's 
torsion tensor. The predictions of Einstein-Cartan theory 
differ from those of general relativity only for matter 
filled regions. An important application for Einstein-Cartan 
theory is relativistic Astrophysics which deals with the 
interiors of stellar objects like neutron stars. With this 
view Prasanna, Kuchowicz, Hehl, Kerlick, Singh et. al. have 
considered the problems of static fluid spheres in Einstein 
Cartan theory. Non-singular cosmological models have been 
constructed by Kopezynski, Kuchowiez and Tsoubelis. Static 
charged fluid spheres in Einstein-Cartan theory have been 
considered by Krori et. al and Naduka.

Here we consider a static, charged conformally 
flat perfect fluid distribution in Einstein-Cartan theory 
and obtain the new solutions which are free from 
singularities.
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2. CflRTTAW E©©&¥0©INS ©F S¥K©€¥©KE fiiNID ¥FE 1ME¥RDC

WD¥F C<UtRWA¥©KE

The cartan equations of structure are

©l * De1

* d^ + wl A eJ
J

4- 8* A2 jk (2.1)

ax - dwl + w** a wk
J ) k 1

J— Rl2 jki ek a g1 (2.2)

Qjk 6l Q1 - St Q1J ik k j i - K Sjk (2.3)

Here D denotes the exterior covarient derivative and Q isjk

the torsion tensor and K = 811.

The classical description of spin, we define by the relati

Sl, = utS., with S uJ = O (2.4)
Jk. jk «. J

Where uv is the veloci ty four—vector.

We consider a static conformally flat spherically symmetric 
metric in the form

ds2 =-e 2^(drZ+ rZd©2 + r2sinZ© d<£2 - dtZ) ... (2.5)

Where p is a function of r only.
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We have then the orthonormal tetrad

e1 = dr, eZ = re^dS,

03 ~ rsin© e^d0, 6* = e^dt

The metric (2.5) now takes the form

ds2 * - [ (01)2 + (02)2 + W3)2 -

So that

g. . = diag { -1, -1, -1, 1 )

We assume that the spins of the particles composing the 

fluid are all aligned in the radial direction only and then 

we get the only indepedent non-zero component of the spin

tensor S.. to be S__ = K (say).l j 23 J

The velocity vector uv = 6^ , since from the static

condition. Thus the components of s\ which are non-zero,jk

S* = - S4 = K ... ... (2.8)
23 32

Hence from Cartan's equations (2.3), we get the non-zero 
components of S^ as

IjJ kK ... ... (2.9)
23 32

From (2.1) on using (2.8) we have

€>* = 0, ©2 = 0, ©3 = 0 and

©4 = - kK e2* ea .... ... ... (2.io)

(2.6)

(64)2] ... (2.7)
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Following Kalyanshetti and Waghmode the Ricci tensor R_and 

the curvature scalar R are given by

r = «»-2^ <3fj" + 2-^— ) ... ... (2.11)
11 r

r = R = e 2fJ </j" + 2Ai'2 + 4—^— )
22 33 i- i- j. (2.12)

44
e Cm" + 2/u'2 + 2—^—)---i—k2K2

r 2 (2.13)

and

-ce“2Ai (6ju" + 6/u'2 +12—^—) 1 2 2 --k K) (2.14)

3. EINED?C'tT EM©(MECN¥QJ01—¥ECNS<DCR A IN ID THE E<GKU&¥fl ©INS

The Einstein - Maxwell equations for the perfect

fluid are

R «• J Rgvj = 8/r T . (3.1 )

_ . .1/2 _1J _ . Ti . .1/2C (-g) F 3, . = 4jtJ (-g)■3 (3.2)

F r . n » 0Lij;kJ (3.3)

where R. . is the Ricci tensor. T. . is the energy momentumij tj

tensor and F. . is the electromagnatic field tensor and J1, is 
ij

the current four vector.
For the system under the study energy momentum

tensor Tl splits into two parts tl and Ev for the matter J j j
part and for the charge part respectively.

Tv = tl + El (3.4)
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The nonvanishing components of t^ are

t1 s t2 
1 2

t3 = -P and t4 = p
a 4

The non vanishing component of FlJ is

<3.5)

.14 .41

Therefore the non-zero components of E^ are

2 3 1- E = - E =-- H-2 s Bn
/t-4 1 . g g (F )44 ii4 1

Equation (3.3) is obviously satisfied by this choice of F 

whereas (3.2) reduces to

.41 Q (r) -2p----  e (3.6)

where Q(r) is the charge upto redius r,

Q(r) = 4n J J r4 2 ~2fJ dr (3.7)

From the equation (3.7) we see that Q(r) is a constant Qo

(say) out side the fluid sphere. Then from (3.6) we find the
2asymptotic form of the electric field as Qo/r .

The Einstein—Maxwel1 equation for the metric (2.5) 

using (2.11), (2.12), (2.13), (2.14) along with (3.4) and

(3.5) give us

e 2AJ (3p'2 + 4-^1 ) + -i— k2K2 = BjtP - BfrE* 
r 4 i

e“2#J (2/j"+ aj'2+ 2—^—) + k2K2

e~2AJ (2p" + 2p'2+ 4-^

= BrrP
1 2 2 ) + -=— k K

BrcE

(3.8)

(3.9)

= Brrp + 8ttE^
where dashes denote differentiation with respect to r.

(3.10)
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These field equations take the form
e“2^ [ Zp‘* + ±HL ] = 8nP - 8* Ej ... (3.11)

e~2fJ ^ 2+ 2_£^ J _ Qn- _ Bn ^ ^ (3.12)

and - e”2AJ £ 2p" + 2jj'2 + 4-^- J ■ Qnp + Bn E* (3.13)

= 2After redefining pressure and density as P = (P - 2rr K ) and 

p = (p — 2rr K2) by following Hehl.

4. S<DD_QJ¥D<DINS <DF ¥ME FOOJD E<D¥»&¥DOfNS.

Eliminating P between the equations (3.11) and 
(3.12) we get

p” - p‘ + Bn E2 = 0 r 2

But E2 = -i- g g <F41)2
2 Bn

(4.1)

(4.2)

Hence in view of this relation the equation (4.1) reduces to
—.2

A*' ,, 2 (4.3)

To solve the equation (4.3) we assume that
Q = Ar3 (4.4)

where A is a constant of proportionality, we have then

p" “ p' 2 - - A2r2 = 0 ... (4.5)

Equation (4.5) is non-linear differential equation. To solve 
this non-linear differential equation we make the 
substitution

y (4.6)
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Then the equation <4.5> takes the form

y" — ... + A2r2y = O

1. e, rf2y
dr2 R dy

1 dr F^y <4.7)

2 2where Rj = — 1/r and R^ = A r , -

Which is a second order linear differential equation.

We solve it by changing the independent variable 

from r to z, the relation between which is to be obtained. 

The equation (4.7) may be written in the form

where

d2y
dz2

+ T dy .—£— + T v 1 dz 2y

T1 =

t — 1 dr
d2z
dr2

(-&)'

(4.8)

and
R

T2 - (-sr
<4.9)

We assume the relation between r and z such that 
2T^ = constant = A

Therefore,
AZr2

(-sr
= A or dz

dr = r

which on integration gives
2

z = (4.10)
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Then turns out to be

(4-8) will become
d2y
dz2

+ AZy O

zero and the equation

(4.11)

Equation (4.11) is a linear differential equation with 

constant coefficients whose solution is

y = e_AJ = (C'cosAZ + C' sinAZ) ... (1.12)J 1 2

where and are arbitrary constants. The metric (2.5), 

now can be written in the form

ds2 =
(C' cosAZ + C' sinAZ) 1 2

•{x-i dr2 + rZd©2+ r2sin2# d<£2 - dt '}

(4.13)

5. TD-I1E DIPPED. S<D(UU¥DOIN ( When r << 1 ).

When r << 1, cosAZ = 1 and sin AZ = AZ. The metric 

(4.13) then will take the form

ds (Aj + B1r2)2
, 2 , Z ,rt2 , 2 . 2 Zx< dr + r d& + r sm 0 d<p - dt !}

(5.1)

where we have set

A1 = C' . Bj * — A (5.2)
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The pressure in the model is giben by the equation (3.11)

Thus we have

EtaP = 4 B2r2+ AZr2 - BB^A^ + 16jtZKZ ... (5.3)

The density in the model is

8np = 12 BjAj - AZr2 + 16rr2KZ ... (5.4)

The spin density K is given by 

K = A2

= A_( A + B,r2) ... ... (5.5)
iC 1 1

and Brr E4 « Bn E* = - Bn E2 = - 8n E3 = AZrZ (5.6)4i 2 a

The costants A, , B, appearin9 in the solutions can be

evaluated by using the central and the boundry conditions.

The constant A2 appearing in the solution can be

evaluated in terms of density p at o the centre from the

equation (5.4).

At r = 0, we have

2pe ) r O 1

Hence A^ = 0 __ ..... (5.7)

Pressure P at the boundary r = rD * must vanish.
Therefore from (5.3) we get

4 BZr2 - 8 B4 + AZr2 = O ... (5.8)1 o 1 o

where A = Gfo / r3 ... (5.9)o
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and Qo is the total charge on the sphere of redius rQ. On 
solving the equation (5.8) for ,we have

Bt = | 2 ± ( 4 - r* AZ)1/Z | ^ 2 rZ ... (5.10)

The constant A^ can be evaluated from the equation (5.4)

Qnp » 12 B. + 16jt2AZO 1 2

Hence A = —!=- ( 2np - 3B, )1/Z ... (5.11)2fT O 1

6. PROPEPTIDES <DF TTHE S<DDJU¥fl<D!NS .

We have obtained the non-singular solutiions for a 
static charged conformally flat fluid sphere in Einstein 
—Cartan theory. The pressure and the density are both finite 
for the model even at r = 0 , leading to a satisfactory model 
for point charge.

In obtaining the solutions we have assumed that the 
spins of the particles composing the fluid are all aligned in

3the radial direction only and the charge Q = Ar , where A is
arbitrary constant. Tiwari et al have obtained the result. 

4 aq (r) = n p& r in their electromagnatic mass models in OR
where pressure is negative. Wang recently has given a class 
conformally flat solutions for a charged sphere by assuming
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the mass density. If we get a set A ~ O and B = 1 in his

solutions for the case n = 2, we get

e = < 1 - cr ) where X = cr

The pressure and density at r = O in his case are

BrcP = - 80 and Qnp = 120 
Here pressure is negative and density is positive .

In our case the pressure and density at r = 0 are
given by

BnP = - 8B.. A« + 16fi2A2A2O 11 2 1

Bnp = 12 B«A, + 16fT2A2A2O 11 2 1

The second term is due to the spin of the charge particle.
2 2 2The pressure is positive if 16?t AgAj ~ SB^Aj — ® • Thus the

pressure and density are both positive satisfying the reality

conditions P > 0 and p > 0. In absence of spin our

solutions are particular solutions of Wang.

In the absence of charge we have A = O, A_2
on taking

B 1 C 4 4 -2.1/2r A ) o

O and

We get Bj = O. The vanishing of the charge implies the
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vanishing of spin, the gravitational mass, the pressure and 
the density. Thus there exists no sphere and every thing 
would be electromagnetic in origin and we get electromagnatic 
mass model in Einstein—Cartan theory.

It is interesting to note that in the absence of

spin i.e. 0* we get = 0 and = 0. This leads to the

important conclusion that the charged particle at the centre 
of the sphere will be equilibrium if it is spinning.
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