CHAPTER-III

LIE TRANSPORT

1. INTRODUCTION :

The fact that the Lie transport is of paramount importance to continuum mechanics can be gauged from the following remark of Schutz (1980) P. 182 "From the geometric point of view the existence of a flow suggests immediately the use of Lie derivative, ... the local conservation laws become much more transparent when framed with Lie derivatives."

Among all transports the Lie transport has the distinguishing property that it is independent of the Christoffel symbols of the Riemannian space. For instance, we have

$$
f_{v} A_{a b}=A_{a b ; k} v^{k}+A_{k b} v_{; k}^{k}+A_{a k} v_{; b}^{k}=A_{a b ; k} v^{k}+A_{k b} v^{k} \cdot a+A_{a k} v^{k}, b
$$

where comma denotes partial derivative and semicolon denotes covariant derivative.

The most popular "spherically symmetric space-times studied in general theory of relativity are expressed through (Eiesland, 1925) the three parameter group of Killing vectors $k_{(1)}^{a}, k_{(2)}^{a}, k_{(3)}^{a}$, that is,

$$
\begin{aligned}
& f_{k} g_{a b}=0, \quad i=1,2,3 \\
& \text { (i) } \\
& \text { where } \quad k_{(i)}^{a}=\left[\begin{array}{cccc}
0 & x^{3} & -x^{2} & 0 \\
-x^{3} & 0 & x^{1} & 0 \\
x^{2} & -x^{1} & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Pirani, (1964), has given the physical significance of the Lie transport of the three dimensional projection operator $\left(g_{a b}-u_{a} u_{b}\right)$ in the general theory of relativity as characterizing RIGID time-like congruence - u^{a}, where $u^{a} u_{a}=1$. His theorem reads

$$
£_{u}\left(g_{a b}-u_{a} u_{b}\right)=0 \quad \text { iff } \quad \theta=0, \sigma_{a b}=0
$$

where θ is the expansion and $\sigma_{a b}$ is shear.

Lie derivative (coined by Van-Dantzing) provides an intrinsic method of comparing the values * of geometrical objects at different points of a manifold. Many research workers, Taub (1951), Takeno (1961), Davis and Katzin (1962), Rosen (1962), Stachel (1962), Pirani (1964), Katzin, Levine and Davis (1969), Yano (1970), Collinson (1970a,b), Aminova (1971), Audretsch (1971), worked on applications of Lie derivative to the general theory of relativity. The role of Lie derivative in the classification of spaces has been comprehensively described by Petrov (1969) in his treatise on Einstein spaces.

Lie derivative of a tensor field along an aribtrary vector field is presented in books on differential geometry (Yano 1955, 1970, Schouten 1954) • In this dissertation we specialize the arbitrary vector field to coincide with the flow vector field of a continuum in relativistic continuum mechanics.

Definition : The tensor field x_{b}^{a} is defined to be Lie-transported if

$$
£_{u} x_{b}^{a}=0,
$$

where

$$
f_{u} x_{b}^{a}=x_{b ; k}^{a} u^{k}-x_{b}^{k} u_{; k}^{a}+x_{k}^{a} u_{; b}^{k}
$$

Recently Radhakrishna (1988) has considered-Lie transport along the common propagation vector, (a special null vector n^{a}) of a null electro-
magnetic field interacting with a null gravitational field and obtained the gravitational potentials satisfying the following conditions separately
i) $\varepsilon_{n} R_{a b}=0 \quad$ but $\varepsilon_{n} R_{a b k}^{h} \neq 0$.
ii) $\dot{g}_{n} R_{a b k}^{h}=0 \quad$ but $\varepsilon_{n \Gamma b c ; d}^{a} \neq 0 .\left(\sum_{b c}^{a}\right.$ Christoffel symbol $)$
iii) $\quad \dot{f}_{n}\left(\Gamma_{b c}^{a}\right)_{; d}=0 \quad$ but $\quad \varepsilon_{r} \Gamma_{b c}^{a} \neq 0$.
iv) $\quad \dot{f}_{n} \Gamma_{b c}^{a}=0 \quad$ but $\varepsilon_{n} g_{a b} \neq 0$.
v) $\quad f_{n} 9_{a b}=0$.

Higher order Lie-Transports :

(i) An interesting identity
$\left(£_{u} f_{v}-£_{v} f_{u}\right) \omega^{k}=£_{f_{v} u{ }^{k}}$
for any 3 vector fields $\bar{u}, \bar{v}, \bar{\omega}$ exists (Schouten, 19 in Ricci Calculus.
(ii) An interesting restriction on the constitutive equation of matter in relativistic continuum mechanics has been reported by Kute (198s) in the form

$$
\begin{gathered}
x_{u} f_{u}\left(g_{a b}-u_{a} u_{b}\right)=\gamma_{a}^{c} \gamma_{b}^{d} \dot{u}_{(c ; d)}+u_{; a}^{d} u_{c ; b}-\dot{u}_{a} \dot{u}_{b}-u^{c} u^{d} R_{a c b d} \\
\frac{1}{u^{k}}=\gamma_{m}^{k_{u}}{ }_{m}^{m}, \gamma \\
a b
\end{gathered}=g_{a b}-u_{a} u_{b} .
$$

(iii) In 1989 Katkar has shown that

$$
f_{n} f_{n} f_{n} g_{a b}=0
$$

for Petrov type N fields, where \bar{n}. is the common propagation vector of the null electromagnetic fields and the null gravitational field.

2. LIE TRANSPORT OF COVARIANT VECTOR FIELDS (1-forms)

Theorem 1 : If v_{a} is a material tensor, then, $f_{u} v_{a}$ is also a material tensor.

Proof : We know that, the Lie derivative of a covariant vector v_{a} is given by

$$
f_{u} v_{a}=v_{a ; k} u^{k}+v_{k} u_{; a}^{k}
$$

consider inner product of $£_{u} \mathbf{v}_{\mathrm{a}}$ with $\mathbf{u}^{\mathbf{a}}$.

$$
\begin{aligned}
& u^{a_{f_{u}} v_{a}}=u^{a}\left(v_{a ; k} u^{k}+v_{k} u_{; a}^{k}\right) \\
& u^{a_{f_{u}} v_{a}}=u^{a} v_{a ; k} u^{k}+u^{a} v_{k} u_{; a}^{k}
\end{aligned}
$$

$$
\text { Since } v_{a} \text { is a material vector we have } u^{a} v_{a}=0 \text { and so }
$$

$$
\left(v_{a} u^{a}\right)_{; k}=\dot{0}
$$

$$
v_{a ; k} u^{a}+v_{a} u_{; k}^{a}=0
$$

$$
\begin{equation*}
v_{a} u_{; k}^{a}=-v_{a ; k} u^{a} \tag{3.2}
\end{equation*}
$$

Substitute (3.2) in (3.1).

$$
\begin{aligned}
u^{a_{f_{u}} v_{a}} & =-v_{a}\left(u_{; k}^{a}\right) u^{k}+u^{a} v_{k} u_{; a}^{k} \\
& =-v_{a} u^{k} u_{; k}^{a}+u^{k} v_{a} u_{; k}^{a}
\end{aligned}
$$

$u^{a_{\delta_{u}}} v_{a}=0$.
Thus $f_{u} v_{a}$ is also a material tensor.
Note : If v^{a} is a material tensor then $£_{u} v^{a}$ is not ingeneral a material tensor. This can be established in the following way.

We know that, the Lie derivative of a contravariant vector v^{a} is given by

$$
f_{u} v^{a}=v_{; k}^{a} u^{k}-v^{k} u_{; k}^{a}
$$

Consider inner product of $£_{u} v^{a}$ with u_{a}

$$
\begin{align*}
\left(£_{u} v^{a}\right) u_{a} & =\left(v_{; k}^{a} u^{k}-v^{k} u_{; k}^{a}\right) u_{a} . \\
& =\dot{v}^{z} u_{a}, \text { since } u_{; k}^{a} u_{a}=0, v_{; k}^{a} u^{k}=\dot{v}^{a} \\
u_{a^{f}} v^{a} v^{a} & =-v^{a} \dot{u}_{a}, \text { since } v^{a} \text { is material tensor, } v^{a} \dot{u}_{a}=-\dot{v}^{a} u_{a} . \tag{3.3}
\end{align*}
$$

This shows that $f_{u} v^{a}$ is not ingeneral material tensor.
Remark : If $v_{\dot{u}_{a}}=0$ or $\dot{v}^{a_{u}}{ }_{a}=0$
then $£_{u} v^{a}$ is a material tensor. In RSF $£_{u} Q^{a}$ is a material tensor.

3. COMMUTATIVITY OF TRANSPORTS :

The aim is to get the necessary and sufficient conditions for the Fermi and Lie transports to commute. The result is derived in the following.

From the definition of $£_{u}$ and F_{u}

$$
\begin{align*}
& £_{u^{\prime}}{ }^{a}=\dot{x}^{a}-x^{k} u_{; k}^{a} \tag{3.4}\\
& F_{u^{\prime}} x^{a}=\dot{x}^{a}+x^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right) \tag{3.5}\\
& F_{u^{f} u^{x}}=\left(\dot{x}^{a}-x^{k} u_{; k}^{a}\right)+\left(\dot{x}^{i}-x^{k} u_{; k}^{i}\right)^{k}\left[\dot{u}^{a} u_{\ell}-\dot{u}_{\ell} u^{a}\right] \\
& F_{u} f_{u} x^{a}=\ddot{x}^{a}-\dot{x}^{k} u_{; k}^{a}-x^{k} \dot{u}_{; k}^{a}+\left(\dot{x}^{\dot{i}}-x^{k} u_{; k}^{i}\right)\left[\dot{u}^{a} u_{\ell}-\dot{u}_{\ell} u^{a}\right] \tag{3.6}\\
& \dot{f}_{u} F_{u} x^{a}=£_{u}\left[\dot{x}^{a}+x^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right)\right] \\
& =\left[\dot{x}^{a}+x^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right)\right]^{-}-\left[\dot{x}^{p}+x^{k}\left(\dot{u}^{p} u_{k}-\dot{u}_{k} u^{b}\right)\right] u_{; p}^{a} \\
& \varepsilon_{u} F_{u} x^{a}=\ddot{x}^{a}+\dot{x}^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right)+x^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right) \cdot \\
& -\left[\dot{x}^{p} u_{; p}^{a}+x^{k}\left(\dot{u}^{p} u_{k}-\dot{u}_{k} u^{p}\right) u_{; p}^{a}\right] \tag{3.7}
\end{align*}
$$

Now, consider

$$
\begin{aligned}
&\left(f_{u} F_{u}-F_{u} f_{u}\right) x^{a}=-\ddot{x}^{a}+\dot{x}^{k} u_{; k}^{a}+x^{k} \dot{u}_{; k}^{a}-\left(\dot{x}^{i}-x^{k} u_{; k}^{i}\right)\left[\dot{u}^{a} u_{\ell}-\dot{i}_{\ell} \ell u^{a}\right] \\
&+\left.+\left(\ddot{x}^{a}+\dot{x}^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right)+x^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right)_{-\left[\dot{x}^{p}\right.}^{u_{; p}}{ }_{; p}+x^{k}\left(\dot{u}^{p} u_{k}-\dot{u}_{k} u^{p}\right) u_{; p}^{a}\right]\right\} \\
& \text { since from (3.6) and (3.7) }
\end{aligned}
$$

$$
=x^{k}\left[\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}-\left(\dot{u}^{p} u_{k}-\dot{u}_{k} u^{p}\right) u_{; p}^{a}+\dot{u}_{; k}^{a}+u_{; k}^{i}\left(\dot{u}^{a} u_{i}-\dot{u}_{i} u^{a}\right)\right]
$$

where $\dot{u}_{; k}^{a}=\left(u_{; k}^{a}\right)_{; p} u^{p} \neq\left(\dot{u}^{a}\right)_{; k}$

$$
\text { or } \quad\left(u_{; k}^{a}\right)^{\cdot} \neq\left(\dot{u}^{a}\right)_{; k}
$$

We note the absence of terms in \dot{x}^{k} and \ddot{x}^{k} in the expression for ($\left.£ F-F £\right)_{u} x^{a}$ If $\left(£_{u} F_{u}-F_{u} £_{u}\right) x^{a}=0$, for arbitrary x^{a}, then

$$
\begin{aligned}
& \dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}-u_{; p}^{a}\left(u^{p} u_{k}-\dot{u}_{k} u^{p}\right)+\dot{u}_{; k}^{a}+u_{; k}^{p}\left(\dot{u}^{a} u_{p}-\dot{u}_{p} u^{a}\right)=0 . \\
& k_{1} p^{a} u_{k}-k_{1} p_{k} u^{a}-u_{; p}^{a}\left(k_{1} p^{p} u_{k}-k_{1} p_{k} u^{p}\right)+\dot{u}_{; k}^{a}+u_{; k}^{p}\left(k_{1} p^{a} u_{p}-k_{1} p_{p} u^{a}\right)=0, \\
& \text { since } \dot{u}^{a}=k_{1} p^{a} . \\
& k_{1}\left[p^{a} u_{k}-p_{k} u^{a}-u_{; \ell}^{a}\left(p^{\ell} u_{k}-p_{k} u^{\ell \ell}\right)+u_{; k}^{\ell} u_{\ell} p^{a}-u_{; k}^{\ell} p_{\ell} u^{a}+\dot{u}_{; k}^{a}\right]=0 . \\
& k_{1}\left[p^{a} u_{k}-p_{k} u^{a}+u_{; \ell}^{a} u^{\ell} p_{k}-u_{i \ell}^{a} \rho^{\ell} u_{k}-u_{; k}^{\ell} p_{\ell} u^{a}\right]+\dot{u}_{; k}^{a}=0
\end{aligned}
$$

For convenience we write this as $B_{m}^{a}=0$ where

$$
\begin{aligned}
& B_{m}^{a}=k_{1}\left[p^{a} u_{m}-p_{m} u^{a}+\dot{u}^{a} p_{m}-u_{i \ell}^{a} p^{\ell} u_{m}-u_{i m}^{\ell} p_{\ell} u^{a}\right]+\dot{u}_{; i m}^{a} \\
& =k_{1}\left[\rho^{a} u_{m}-p_{m}{ }^{a}+k_{1} \rho^{a} \rho_{m}+\left(\gamma_{122} p^{a}+\gamma_{132} Q^{a}+142^{\left.R^{a}\right)} u_{m}\right.\right. \\
& \left.+\left(k_{1} u_{m}^{+\gamma_{122}}{ }_{m}^{p .+\gamma_{123}}{ }_{m}^{Q_{m}+\gamma_{124}}{ }_{m}^{R .}\right) u^{a}\right]+\left(k_{1} p^{a}\right)_{; m} \\
& =k_{1}\left(p^{a}+\gamma_{122} p^{a}+\gamma_{132} Q^{a}+\gamma_{142} R^{\left.R^{a}+k_{1} u^{a}\right) u_{m}}\right. \\
& +\left(-u^{a}+k_{1} p^{a}+\gamma_{122^{u}} u^{a}\right) p_{m}+\gamma_{123} Q_{m} u^{a}+\gamma_{124} u^{u^{a} R}{ }_{m}+k_{1 ; m} p^{p^{a}+k_{1} p^{a} ; m}
\end{aligned}
$$

$$
\begin{aligned}
B_{m}^{a}= & k_{1}\left\{\left[k_{1} u^{a}+\left(1+\gamma_{122}\right) P^{a}+\gamma_{132} Q^{a}+\gamma_{142} R^{a}\right] u_{m}+\left[\left(\gamma_{122}-1\right) u^{a}+\right.\right. \\
& \left.\left.k_{1} P^{a}\right] P_{m}+\left[\left(\gamma_{123}+\gamma_{124}\right) u^{a}\right] Q_{m}+\gamma_{124} u^{a} R_{m}\right\}+\left[\dot{k}_{1} u_{m}-\left(k_{12 \ell} P^{\ell}\right) P_{m}\right. \\
& \left.-\left(k_{1 ;} \ell^{\ell}\right) Q_{m}-\left(k_{1 ; \ell} R^{\ell}\right) R_{m}\right] P^{a}+k_{1}\left[\gamma_{211} u^{a} u_{m}-\gamma_{231} Q^{a} u_{m}-\right. \\
& -\gamma_{212} u^{a} P_{m}+\gamma_{232} Q^{a} P_{m}-\gamma_{213} u^{a} Q_{m}+\gamma_{233} Q^{a} Q_{m}-\gamma_{214} u^{u} R_{m}+ \\
& +\gamma_{234} Q^{a} R_{m}-\gamma_{241} R^{\left.R^{a} u_{m}+\gamma_{242} R^{a} P_{m}+\gamma_{243} R^{a} Q_{m}+\gamma_{244} R^{a} R_{m}\right],}
\end{aligned}
$$

$$
\text { on expressing } \mathrm{p}_{; \mathrm{k}}^{\mathrm{a}} \text { as a linear combination of } 12 \text { outer products and }
$$

$$
\left.\left(k_{1}\right) ; m P^{a}=\left[\dot{k}_{1} u_{m}-k_{1 ; \ell} \mathrm{p}^{\ell}\right) P_{m}-\left(k_{1 ; \ell} Q^{\ell}\right) Q_{m}-\left(k_{1 ; \ell} R^{\ell}\right) R_{m}\right] P^{a}
$$

$$
B_{m}^{a}=k_{1}\left(\left[\left(k_{1}+\gamma_{211}\right) u^{a}+\left(\frac{\dot{k}_{1}}{k_{1}}+1+\gamma_{122}\right)\right)^{a}+\left(\gamma_{132}-\gamma_{231}\right) a^{a}+\right.
$$

$$
\left.\left(\gamma_{142}-\gamma_{241}\right) R^{a}\right] u_{m}+\left[\left(2 \gamma_{122}-1\right) u^{a}+\left(k_{1}-\frac{k_{1} \cdot \ell^{\ell}}{k_{1}}\right) p^{a}+\right.
$$

$$
\left.+\gamma_{232} a^{a}+\gamma_{242} R^{a}\right] p_{m}+\left[\left(\gamma_{123}+\gamma_{124}-\gamma_{213}\right) u^{a}-\frac{k_{12} \cdot Q^{\ell} p^{a}}{k_{1}}+\gamma_{233} Q^{a}\right.
$$

$$
\left.\left.+\gamma_{243} R^{a}\right] Q_{m}+\left[\gamma_{124}-\gamma_{214}\right) u^{a}-\frac{k_{1} \cdot R^{l} P^{a}}{k_{1}}+\gamma_{234} Q^{a}+\gamma_{244} R^{a}\right] R_{m}
$$

Now $\mathrm{B}_{\mathrm{m}}{ }^{\mathrm{a}}=0$ implies that the co-efficient of each outer product like $P^{a_{u}}, Q^{a_{u}}, u^{a} P_{m}, \ldots$ must vanish, i.e.,

$$
\dot{k}_{1} / k_{1}+1+\gamma_{122}=0, \gamma_{132}-\gamma_{231}=0,2 \gamma_{122}-1=0, \text { etc. }
$$

Theorem 2: TFAE

1) $F_{u} f_{u}=f_{u} F_{u}$
2) (a) $1+\frac{\dot{k}_{1}}{k_{1}}+\gamma_{122}=\frac{k_{1, \ell} q^{\ell} p^{a}}{k_{1}}=\frac{k_{1 \cdot 2} R^{\ell} p^{a}}{k_{1}}$ $=k_{1}-\frac{k_{1 \cdot \ell} p^{\ell}}{k_{1}}=k_{1}+\gamma_{211}=0$.
(b) $\gamma_{132}-\gamma_{231}=\gamma_{142}-\gamma_{141}=2 \gamma_{122}=\gamma_{232}=\gamma_{242}$

$$
\begin{aligned}
& =\gamma_{123}+\gamma_{124}-\gamma_{213}=\gamma_{233}=\gamma_{243}=\gamma_{124} \\
& =\gamma_{234}=\gamma_{244}=0 .
\end{aligned}
$$

4. THE LIE TRANSPORT OF THE RELATIVISTIC SERRET-FRENET TETRAD :
i) $\varepsilon_{u} u^{a}=\dot{u}^{a}-u^{k} u_{; k}^{a}$

$$
=\dot{u}^{a}-\dot{u}^{a}
$$

$$
£_{u} u^{a}=0
$$

ii) $f_{u} p^{a}=\dot{p}^{a}-p^{k} u_{; k}^{a}$

$$
=\left(k_{1} u^{a}+k_{2} Q^{a}\right)-\left[-\gamma_{122} p^{a}+\gamma_{132} Q^{a}+\gamma_{142} R^{a}\right] .
$$

by (RSF-2) and computational aids (VI).

$$
\begin{aligned}
& =k_{1} u^{a}+\left(k_{2}+\gamma_{132}\right) Q^{a}+\gamma_{122} p^{a}+\gamma_{142} R^{a} . \\
£_{u} p^{a} & =k_{1} u^{a}+\gamma_{122} p^{a}+\left(k_{2}+\gamma_{132}\right) Q^{a}+\gamma_{142} R^{a} .
\end{aligned}
$$

It follows that $E_{u} p^{a}=0$ iff

$$
\begin{aligned}
& k_{1}=\gamma_{122}=\gamma_{142}=0 . \\
& k_{2}=\gamma_{312} .
\end{aligned}
$$

iii) $f_{u} Q^{a}=\dot{Q}^{a}-Q^{k} u_{; k}^{a}$
$=\left(-k_{2} p^{a}+k_{3} R^{a}\right)-\left[-\left(\gamma_{133} Q^{a}+\gamma_{123} p^{a}+\gamma_{143} R^{a}\right)\right.$
, by (RSF-3) and computational aids (VII).
$f_{u} Q^{a}=\left(-k_{2}+\gamma_{123}\right) P^{a}+\gamma_{133} Q^{a}+\left(k_{3}+\gamma_{143}\right) R^{a}$
Obviously, $£_{u} Q^{a}=0$ implies and implied by

$$
k_{2}=\gamma_{123} ; \quad \gamma_{133}=0, \quad k_{3}=-\gamma_{143} .
$$

iv) $f_{u} R^{a}=\dot{R}^{a}-R_{u}^{k} u_{; k}^{a}$
$=-k_{3} Q^{a}-\left[-\left(\gamma_{143} Q^{a}+\gamma_{124} P^{a}+\gamma_{144} R^{a}\right)\right]$
, by (RSF-4) and computational aids (VIII).

$$
£_{u} R^{a}=\gamma_{124} P^{a}+\left(-k_{3}+\gamma_{143}\right) Q^{a}+\gamma_{144} R^{a} .
$$

Consequently, we have,

$$
£_{u} R^{a}=0 \text { When and only when } \gamma_{124}=\gamma_{144}=0, k_{3}=\gamma_{143^{\circ}}
$$

5. LIE TRANSPORT IN CAUSAL THERMODYNAMICS :

Classical thermodynamics suffers from the defect of the prediction of infinite speed of heat propagation. But according to relativity no interaction can propogate faster than light. Eckart (1940) Landau \& Lifshitz (1958) developed relativistic thermodynamics but unfortunately the infinite speed of heat propagation defect remained. The credit of introducing a flawless theory of relativistic thermodynamics goes to Carter (1988).

In this 'regular' theory of thermodynamics he introduced four vectors constructed from the flow vector u^{a}, namely

particle current	$: n^{a}=n u^{a}$
entropy current	$: s^{a}=s u^{a}$
chemical momentum	$: x^{a}=x u^{a}$
thermal momentum	$: \theta^{a}=\theta u^{a}$.

$$
\text { A } 1170 \%
$$

where n is particle density, s is entropy, X is chemical potential and θ is temperature.

In an attempt to extend the study of Lie Transports to 'regular' thermodynamics, we investigate

$$
f_{\lambda_{u}} g_{a b}=0, \quad f_{\lambda_{u}}{ }^{\zeta}(k)=0
$$

where λ is any nonzero scalar and the Serret-Frenet tetrad

$$
\zeta_{(k)}^{a}=\left\{u^{a}, p^{a}, Q^{a}, R^{a}\right\}
$$

Theorem 3: TFAE

1) $\sum_{\lambda_{u}} g_{a b}=0$.
2) $\dot{\lambda}=0$.

$$
\begin{aligned}
& \lambda, a^{Q^{a}}=0 \\
& \lambda, \mathrm{a}^{R^{a}}=0, \quad,{ }_{\lambda, ~} \mathrm{P}^{a}=-k_{1} \\
& \gamma_{144}=\gamma_{133}=\gamma_{122}=0 . \\
& \gamma_{123}+\gamma_{132}=0 . \\
& \gamma_{134}+\gamma_{143}=0 . \\
& \gamma_{124}+\gamma_{142}=0 .
\end{aligned}
$$

where λ is a scalar function.
Proof :

$$
\begin{align*}
& £_{\lambda} g_{a b}=\left(\lambda u_{a}\right)_{; b}+\left(\lambda u_{b}\right)_{; a}=0 \\
& \lambda, a u_{b}+\lambda, b u_{a}+\lambda\left(u_{a ; b}+u_{b ; a}\right)=0 \tag{3.8}
\end{align*}
$$

Suppose this equation is written as $x_{a b}=0$
where $x_{a b}=\lambda, a u_{b}+\lambda, b u_{a}+\lambda\left(u_{a ; b}+u_{b ; a}\right)$
These are 10 equations because a, b take the values $1,2,3,4$ and $x_{a b}=x_{b a}{ }^{\circ}$

To get all the ten conditions clearly, we consider the ten contractions separately.

1) $x_{a b} u^{a} u^{b}=0$ implies $\lambda, a^{u^{a}}+\lambda, b^{u^{b}+\lambda\left(u_{a ; b}+u_{b ; a}\right)=0}$ implies $2 \dot{\lambda}=0$ implies $\dot{\lambda}=0$.
2) $\quad x_{a b} u^{a} p^{b}=0$ implies $\lambda, b^{P^{b}}+\lambda \dot{u}_{b} p^{b}=0$
implies $\lambda, b^{P^{\mathrm{D}}}=\mathrm{k}_{1 \lambda}$, by (RSF-1).
implies $\left(\frac{\lambda, b}{\lambda}\right) P^{b}=k_{1}$.
 implies $\lambda, b Q^{D}=0$
3) $\quad x_{a b} u^{a^{2}} R^{b}=0$ implies $\lambda, b^{R^{b}}=0$
4) $\quad x_{a b} p^{a} Q^{b}=0$ implies $\lambda\left(u_{a ; b} p^{a} Q^{b}+u_{a ; b} p^{b} Q^{a}\right)=0$
since $\lambda \neq 0$ implies $u_{a ; b}\left(P^{a} Q^{b}+P^{b} Q^{a}\right)=0$
implies $\gamma_{123}+\gamma_{132}=0$.
5) $\quad x_{a b} P^{a^{a}} R^{b}=0$ implies $\left.\lambda^{\left(u_{a ; b}\right.} P^{a} R^{b}+u_{b ; a} P^{b} R^{a}\right)=0$
since $\lambda \neq 0$ implies $u_{a ; b}\left(P^{a} R^{b}+R^{a} p^{b}\right)=0$
implies $Y_{124}+Y_{142}=0$.
6) $\quad x_{a b} Q^{a} Q^{b}=0$ implies $\lambda^{\left(u_{a ; b} Q^{a} Q^{b}+u_{b ; a} Q^{a} Q^{b}\right)=0 \text {. } . ~ . ~ . ~}$ since $\lambda \neq 0$ implies $u_{a ; b} Q^{a} Q^{b}=0$.
implies $\gamma_{133}=0$.
7) $\quad x_{a b} Q^{a} R^{b}=0$ implies $\lambda\left(u_{a ; b} Q^{a} R^{b}+u_{b ; a} Q^{a} R^{b}\right)=0$
since $\lambda \neq 0$ implies $u_{a ; b}\left(Q^{a} R^{b}+R^{a} Q^{b}\right)=0$
-implies $Y_{134}+Y_{143}=0$
8) $\quad x_{a b} R^{a} R^{b}=0$ implies $\gamma_{144}=0$.
9) $\quad x_{a b} p^{a} p^{b}=0$ implies $u_{a ; b} p^{a} p^{b}=0$ implies $Y_{122}=0$.

Theorem 4: The tetrad $\left\{u^{a}, P^{a}, Q^{a}, R^{a}\right\}$ will be Lie transported a long λu^{a}

$$
\text { iff } \quad(1) \dot{\lambda}=0, \quad(\lambda \neq 0)
$$

(2) $k_{1}=p^{k} \frac{\lambda_{j}}{\lambda}$
(3) $\lambda ; k \mathrm{R}^{\mathrm{k}}=\lambda ; \mathrm{a}^{\mathrm{k}}=0$
(4) $k_{2}=\gamma_{312}=\gamma_{123}$
(5) $k_{3}=0$.
(6) $\gamma_{124}=\gamma_{133}=\gamma_{122}=\gamma_{142}=0$ $\gamma_{144}=\gamma_{413}$

Proof (I): $\sum_{\lambda u^{u}} u^{a}=u_{; k}^{a}\left(\lambda u^{k}\right)-u^{k}\left(\lambda u_{; k}^{i}{ }_{i k}\right.$

$$
\begin{aligned}
& =\lambda_{u} u_{; k}^{a}-\lambda ; k^{u^{k} u^{a}}-u_{; k}^{a} u^{k} \lambda \\
\varepsilon_{\lambda u} u^{a} & =-\dot{\lambda}_{u}^{a}
\end{aligned}
$$

Therefore, the necessary and sufficient condition for

$$
f_{\lambda_{u}} u^{a}=0 \quad \text { is } \quad \dot{\lambda}=0
$$

(II) $f_{\lambda u} P^{a}=P_{; k}^{a}\left(\lambda u^{k}\right)-P^{k}\left(\lambda u^{a}\right)_{; k}$, by definition of Lie derivative.
$=\lambda \dot{P}^{a} \quad-\left(P_{\lambda, k}^{k}\right) u^{a}-P^{k}\left(u_{; k}^{a}\right) \lambda$
$=\left(k_{1 \lambda}-P_{\lambda ; k}^{k}\right) u^{a}+\lambda^{k} Q^{a}-P^{k} u_{; k \lambda}^{a}$, by (RSF-2).
$=\left(k_{1 \lambda}-P_{\lambda ; k}^{k}\right) u^{a}+{ }_{\lambda} k_{2} Q^{a}-\left[-\left(\gamma_{122} P^{a}+\gamma_{132} Q^{a}+\gamma_{142} R^{a}\right)\right] \lambda$
, by computational aids (VI).
$£_{\lambda u} P^{a}=\left(k_{1} \lambda^{-P^{k}} \lambda ; k\right) u^{a}+\gamma_{122} P^{a}+\lambda\left(k_{2}+\gamma_{132}\right) Q^{a}+\lambda \gamma_{142} R^{a}$.
Therefore, the necessary and sufficeint conditions for

$$
\begin{gathered}
£_{\lambda u} p^{a}=0 \text { are } k_{1} \lambda=p_{\lambda ; k}^{k} \text { implies } k_{1}=p^{k} \frac{\lambda_{i} k}{\lambda} \\
\gamma_{122}=\gamma_{142}=0 \\
k_{2}=-\gamma_{132}
\end{gathered}
$$

(III)

$$
\begin{aligned}
& \mathcal{L}_{\lambda} u Q^{a}= Q_{; k}^{a}\left(\lambda u^{k}\right)-Q^{k}\left(\lambda u^{a}\right) ; k, \text { by definition of Lie derivative } \\
&= \lambda \dot{Q}^{a}-\left(Q_{\lambda, k}^{k}\right) u^{a}-\lambda Q^{k}\left(u_{; k}^{a}\right) \\
&= \lambda\left(-k_{2} p^{a}+k_{3} R^{a}\right)-Q^{k} \lambda_{, k} u^{a^{a}-\lambda Q^{k} u_{; k}^{a} \text { by (RSF - 3). }} \\
&=-Q_{\lambda, k}^{k} u^{a}-\lambda\left(k_{2} p^{a}+k_{3} R^{a}+u_{; k}^{a} a^{k}\right) \\
&=-\left(Q_{\lambda, k}^{k}\right) u^{a}+\lambda\left(-k_{2} p^{a}+k_{3} R^{a}\right), \\
&-\lambda\left[-\left(\gamma_{133} Q^{a}+\gamma_{123} p^{a}+\gamma_{143} R^{a}\right)\right] \\
& \quad \text { by computational aids (VII) } \\
&=\left(-Q^{k} \lambda_{, k}\right) u^{a+\lambda\left(-k_{2}+\gamma_{123}\right) p^{a}+\lambda \gamma_{133} Q^{a}+\lambda\left(k_{3}+\gamma_{143}\right) R^{a} .}
\end{aligned}
$$

Therefore, the necessary and sufficient conditions for

$$
\begin{aligned}
£_{\lambda_{u}} Q^{a}=0 \text { are } \quad Q_{\lambda, k}^{k} & =\gamma_{133}=0 \\
k_{2} & =\gamma_{123} \\
k_{3} & =\gamma_{413}
\end{aligned}
$$

(IV) $£_{\lambda_{U}} R^{a}=R_{; k}^{a}\left(l u^{k}\right)-R^{k}\left(\lambda u^{a}\right)_{; k}$, by definition of Lie derivative.

$$
=\lambda \dot{R}^{a}-\left(R^{k} \lambda_{j, k}\right) u^{a}-R^{k}\left(u_{; k}^{a}\right) \lambda .
$$

$$
=-\lambda k_{3} Q^{a}-R_{\lambda, k^{u^{\prime}}-\lambda\left[-\left(\gamma_{143} Q^{a}+\gamma_{124} P^{a}+Y_{144} R^{a}\right)\right]}
$$

by computational aids (VIII) and (RSF-4).

$$
=-R^{k} \lambda_{, k} u^{a}+\gamma_{124} p^{a}+\lambda\left(-k_{3}+\gamma_{143}\right) Q^{a}+\lambda \gamma_{144} R^{a} .
$$

Consequently the four cinditions for $f_{\lambda u} R^{a}=0$ are equivalent to

$$
\mathrm{R}^{\mathrm{k}} \lambda_{; \mathrm{k}}=\gamma_{124}=\gamma_{144}=0 . \quad \mathrm{k}_{3}=\gamma_{143} .
$$

Hence from (I) to (IV) the tetrad $\left\{u^{a}, P^{a}, Q^{a}, R^{a}\right\}$ will be Lie transported iff

1) $\quad \dot{\lambda}=0,(\lambda \neq 0)$.
2) $\quad k_{1}=p^{k} \frac{\lambda_{j}}{\lambda}$.
3) $\quad \lambda_{; k} R^{k}=\lambda_{; k} \mathrm{Q}^{\mathrm{k}}=0$.
4) $\quad k_{2}=\gamma_{312}=\gamma_{123}$.
5) $\quad k_{3}=0$.
6). $\gamma_{124}=\gamma_{133}=\gamma_{122}=\gamma_{142}=0$.

$$
\gamma_{144}=\gamma_{413}
$$

REFERENCES

AMINOVA, A.V. (1971). Gravitational fields that admit groups of projective motions, Soviet Physics, Doklady, 16, 4,. P. 294.

AUDRETSCH, J. In Artial Reference Frames in Einstein's Theory of Gravitation. Int. J. of Theor. Phy. 21 No.1, 1-9.

BARRABES, C. (1984). Causal Relativistic Thermodynamics of Transports Processes in Electromagnetic Continuous Media, Lecture notes in Maths. 212, pp. 54-56, Springer Verlag.

CARTER, B. (1988), Conductivity with causality in Relativistic hydrodynamics, The regular solution to Eckarts Problem. "Highlights in Gravitation and Cosmology" Cambridge University Press (Ed. lyer B.R. et al.) p. 58-66.

COLLINSON, C.D. (1970a). Conservation Laws in General Relativity upon the Existence of Preferred Collineations, Gen. Rel. Grav.1, 137-142.

COLLINSON, C.D. (1970). Curvature Collineations in Empty Space times, J. Math. Phys. 11, 818-819.

DANTZIG, O. Van (1932). Cur allgelinen differential Geometric I, Proc. Kon. Akad. Amsterdam, pp. 35, 524.

DAVIS, W.R. and KATZIN,G.H. (1962). Mechanical Conservation Laws and the Physical Properties of Groups of Motions in Flat and Curved Space-times, Amer. J. Phys., 30, 750-764.

ECKART, C. (1940). Phys. Rev. 58, p. 919.

EIESLAND, J. (1925). The Groups of Motions of an Einstein Space, Trans. Amer. Math. Soc., 27, 213.

KATZIN, G.H. et al. (1969). Curvature Collineations: A Fundamental Symmetry Property of the space-time of General Relativity Defined by the Non Vanishing Lie Derivatives of the Riemann Curvature Tensor, J. Math. Phys., 10, 617-629.

LANDAU, L. and LIFSHITZ, E.M. (1958). Fluid Mechanics, Ch. XV : Relativistic Fluid Dynamics, pp. 499-506.

PETROV, A.N. (1969). Einstein Spaces. (Oxford : Pergman Press) Ed. J. Woodrow.

PIRANI, F.A.E. (1964). Lectures on General Relativity, Eḍ. S. Deser and K.W. Ford, Prentice Hall, Inc, New Jersey.

RADHAKRISHNA, L. et al. (1985). Rheometro dynamics, Proc. Workshop in Solid Mechanics, Rurkee University, pp. 197-203.

RADHAKRISHNA, L. (1988). The Five Models of Pure Radiation Fields with certain Invariant Tensor Fields, in Proc. International Conference on Mathematical Modelling in Science and Technology, pp. 305-311. (Indian Institute of Technology, Madras).

ROSEN, G. (1962). Symmetries of the Einstein-Maxwell Equations. J. Math. Phys. 3, 313-318.

SCHOUTEN, J.A. (1954). Ricci Caleulus (Berlin : Springer Verlag).
SCHUTZ, B.F. (1980). Geometrical Methods of Mathematical Physics. (Cambridge University Press) P. 182.

STACHEL, J.J. (1962). Lie derivative and the cauchy problem in the general theory of relativity, thesis submitted to Stevens Institute of Technology, Castle Point, Hoboken, New Jerrsey.

TAKENO, H. (1966). The theory of Spherically symmetric space-times : Revised edition, Res. Inst. for Theor. Phy. Hiroshima, Japan.

TpUB, A.H. (1951). Empty Space-Times Admitting a Three Parameter Group of Motions. Ann. Phys. 53, 472-490.

YANO, K. (1955). The Theory of Lie Derivatives and Its Application (Amsterdam : North-Holland Publ. Co.).

YANO, K. (1970). Integral formulae in Riemannian geometry, P. 44, Marcel Dekker, Inc. New York.

