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CHAPTER -III

LIE TRANSPORT

1. INTRODUCTION :

The fact that the Lie transport is of paramount importance to 

continuum mechanics can be gauged from the following remark of Schutz 

„ (1980) P.182 "From the geometric point of view the existence of a flow 

suggests immediately the use of Lie derivative, ... the local conservation 

laws become much more transparent when framed with Lie derivatives."

Among all transports the Lie transport has the distinguishing property 

that it is independent of the Christoffel symbols of the Riemannian space. 

For instance t we have

£vAab = Aab;kvk * 'NtfA * ‘ AabiRA_. v£ a A_. ..v* + A,, v** + A_.v^
kb#a ak „b

where comma denotes partial derivative and semicolon denotes covariant 

derivative.

The most popular spherically symmetric space-times 

general theory of relativity are expressed through (Eiesland^ 1925) 

parameter group of Killing vectors , k®2) « ka(3) « that is,

where

£k 9ab
<0

ka 
(i)

= 0, i = 1, 2, 3 a,b = 1, 2, 3, 4
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Pirani, (1964)^ has given the physical significance of the 

Lie transport of the three dimensional projection operator (gab - ugub) in 

the general theory of relativity as characterizing RIGID time-like congruence 

“ ua, where uaua = 1. His theorem reads

£u <9ab ■ Vb> - 0 lff 9 • °- 0 ab ■ 0 

where 0 is the expansion and oab is shear.

Lie derivative (coined by Van-Dantzing) provides an intrinsic method 

of comparing the values*of geometrical objects at different points of a 

manifold. Many research workers, Taub (1951), Takeno (1961), Davis and 

Katzin (1962), Rosen (1962), Stachel (1962), Pirani (1964), Katzin, Levine and 

Davis (1969), Yano (1970), Collinson (1970a,b), Aminova (1971), Audretsch 

(1971), worked on applications of Lie derivative to the general theory of 

relativity. The role of Lie derivative in the classification of spaces has been 

comprehensively described by Petrov (1969) in his treatise on Einstein spaces.

Lie derivative of a tensor field along an aribtrary vector field is 

presented in books on differential geometry (Yano 1955, 1970, Schouten 1954) • 

In this dissertation we specialize the arbitrary vector field to coincide with 

the flow vector field of a continuum in relativistic continuum mechanics.

Definition : The tensor field xa is defined to be Lie-transported if

£ xa = 0 , u b '

where £„xab - x“kuk - xku*k ♦ xauk .

Recently Radhakrishna (1988) has considered Lie transport along the 

common propagation vector, (a special null vector n ) of a null electro-
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magnetic field interacting with a null gravitational field and obtained the 

gravitational potentials satisfying the following conditions separately

0 fnRaK = 0 n ab but £nRabk * 0 •

ii) £nRabk * 0 but £nTbc;d * 0 *

iii) £n(rbc J;d = 0 but fr.rbc * 0 ’

iv) fnlte = 0 but fn9ab * 0 *

v) Mab " 0 ■

a Christoffel symbol^

Higher order Lie-Transports :

(i) An interesting identity

< £ufv - Mu = f£vuw 3,
'

for any 3 vector fields u, v, tu exists (SchoutenJ^pin Ricci Calculus.

(ii) An interesting restriction on the constitutive equation of matter in 

relativistic continuum mechanics has been reported by Kute (1983) in the 

form

£ufu ^9ab~uaub^ * Y ar^b^cjd) + u ja^;^ “ Mb u u Racbd

-Lt k..mu = YU m ab = gab “ uaub ■

(iii) In 1989 Katkar has shown that 

£n£n£r.S>ab V0

for Petrov type N fields, where n . is the common propagation vector of 

the null electromagnetic fields and the null gravitational field.
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2. LIE TRANSPORT OF COVARIANT VECTOR FIELDS (t-forms)

Theorem 1 : If v is a material tensor, then, £,,vQ is also a material
a U a

tensor.
♦

Proof : We know that, the Lie derivative of a covariant vector v is3

given by

fuva = a;k V*

consider inner product of £,,v_ with u
U 3

“Va ■ <V,/ * >

"Va * "Vk"" * “Via

a

... (3.1)

Since v is a material vector we have u v = 0 and so

(vau >;k “ °

va * v* *0
Vfk - - va;kua

Substitute (3.2) in (3.1).

... (3.2)

"Va ' - va <">k * ""V-a 

■ - va“k^k * “VS
“a£uva = 0-

Thus £ v is also a material tensor, u a

Note : If va is a material tensor then £uv“ is not ingeneral a material 

tensor. This can be established in the following way.

a .We know that, the Lie derivative of a contravariant vector v is 

given by
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£ V3 = V ®„k - Vk^
*-u ;k ;k

Consider inner product of £ v with u„u a

<VX - - ''Mk)ua ■
vaua , since u®kug = 0, v auk = va

ua£ va = ~ vau . ’ since va is material tensor, vaiL = - vau . ..(3.3)
a U a a a

This shows that £uva is not ingeneral material tensor.

Remark : If vaug * 0 or vaug = 0

then £uva is a material tensor. In RSF £uQa is a material tensor.

3. COMMUTATIVITY OF TRANSPORTS :

The aim is to get the necessary and sufficient conditions for the 

Fermi and Lie transports to commute. The result is derived in thfc following.

From the definition of £ and Fu u

£ xa = xa - xku a 
u ;k

Fyxa = xa + xk (uauR - iikua )

F £,xa » (ia - XkUa)-. (X1 - Xku!/ !iaU£ - U£Ua]
U U i1'

F£nxa = xa - Xkua - xkua + - Xku* )[uaur u£ua ]
u U ,K

£..F..xa = £„ [ Xa + Xk (uauk - ukua) 1
u

u u

= [xa + xk(uau„ - u„ua)r- [xP + Xk(^uk - uku|5)]u;

‘k uk“ ..............Jk ■ u-k

;p *k<a\ -k--;p

a
\ ~ uku 'J k k ;p

£ F xa = xa + xk(uau. - u.,ua) + Xk(uau„ - u. ua) *

- [ ipua + Xk(upuk - ukup)ua ]

... (3.4) 

... (3.5)

... (3.6)

... (3.7)

Now, consider
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. a *'a *k a k*a ,»i k i %r*a * ai(fuFu - Fufu)x = - x + x u;k + x u;k “ (X"X u;k)[u u*‘ Lk u J

+ { xa+xk(uauk-ukua) + xk(uauk-ukua)-[xpu.?+ xk(upuk-ukup)uap]}

since from (3.6) and (3.7)

= xk^auk-ukua-(upuk-ukup)u.p+u.a +u.k(uaurujUa)]

where u.a = (u.a).pup t (ua).k

or *u;k>

We note the absence of terms in xk and xk in the expression for (£F-F£)uxa

if (£uFu ~ FuVx3 = °*for arbitrary *a»then

uau. - u.ua - ua(upu.-uuup) + tja + uR(uau - u ua) = 0 . k k ;p' k k ;k ;k' p p

klp\ - k,pkua - Ufp(k,ppuk - klPkup) * ua . u p(k,paup - k,ppua) = 0,

since u = k^p .

kl[paukVHat(pVpkull) * “kV* ‘ * a;k! ’ °-

k,[pauk - pkua * ua,/pk - uap*uk - uj^u3] ♦ uak . 0

For convenience we write this as B? = 0 wherem

Ba « k.[pau. - p ua + uap. - uf p^u - u£o.ua 1 + uj 
m 1mm m U m irnt ! m

k1[pa%p/*l'lpapm* ^P^hsz0^ UlR

+ (k.u- +Yi ooP* +Y19qQ- +Y194R- )ua] + (k.pa).
1 m m ,'£J m m 1 >

- k1 < pa^122pa*Y132Qa*Yt42Ra*kl'?)um

* (-ua^lPa*Y,22ua)Pm.Y123Q./.Y124uaRm* k1;mp“*klP“;

m

a. m
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Bam = k,{ [klua ♦ (1 + Y122)Pa + Y132Qa -Y142Ralum ♦ [(Yl22-1)ua ♦

k1P^Pm + KY123 +Y124^Qm +Y124U Rnr} * ^ k1um * ^U^^m

- (k1UQA)Qm - ^k1;^>RmJpa + k1 WX. -

-Y2i2uapm +Y232QaPm "Y213uaQm +Y233QaQm “Y214uaR +
m

+Y234°aRm "Y241Raum +Y242Rapm +Y243R Qm +Y244R Rm 

on expressing pf. as a linear combination of 12 outer products and
1 K

(kl);mpa ■ 'k1um ' ^ ■

Bm ‘ k1 ! ^(k1 * Y211)Lja * ( k7 * ’ *Y122)pa * 17132 '7231)Qa *

k^Y142 “ Y241^R^um + ^ 2Y122 " * ^k1 “ kf *P +

k j, ,Q^Pa
+ Y232°a +Y242RajPm + ^ Y123+Y124 _Y213)u “ ^ + Y 233 Q

k g R^Pa
+ Y243Ra Hn + ^Y124 "Y214^a " ' k, +Y234Q +Y244R ^Rm *

Now “ 0 implies that the co-efficient of each outer product like

Pau . Qaum, uaPm, . . . must vanish, i.e., 
m m’ m

Vk1 + 1 * Y122 “ °’ Y132 _Y 231 = °* 2y122 “ 1 = °' etc-

Theorem 2 : TFAE

1) F f = £ F ' u u u u

2) (a) 1 .jj * r,22
kijt°tpa k.jrf1 P£

‘1

-k,^2„-0-
K1

‘1



40

(b) Y132 “Y231 *Y142 ' Y141 = 2Y122 = Y232 = Y242 

= Y 123 +Y 124 " Y213 = Y233 = Y243 * Y124 

= Y 234 = Y 244 °*

4. THE LIE TRANSPORT OF THE RELATIVISTIC SERRET-FRENET TETRAD

i) £uua = ua - uki^k

* a *a = u - u

£uu“ = 0

m £uPa = pa-pVk

- (k,u“ ♦ k2Qa) - t-Y122P0 *Y132Q“ *Y142R“] . 

by (RSF-2) and computational aids (VI).

sa

- k,“ ♦ <VWQ *W * Y142R -

V = k1u3 *Y122P” * (k2*Y132)Q° +Y142R*

It follows that £up * 0 iff 

k1 ■ Y122 ' Y142 ’ 0 •

k2 " Y 312 '

iii) £ Qc u
Qa - Qkuft

;k
= (-k2pa+k3Ra) - [-(T133Qa +Y123pd +y143R<1) 

i by (RSF-3) and computational aids (VII).

a
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£u°a = ('k2 ■,Y123)pa *Y133Qa * (k3 *Y143)Ra 

Obviously, £uQa = 0 implies and implied by

k2 = Y123, Y133 = °f k3 = "Y 143.

iv) £uRa = Ra - Ryk

= -k3Qa - WY143Qa +Y 124pa + y144R3)]

> by (RSF-4) and computational aids (VIII).

£uRa * W* * ('k3 * Y143wa * Y144r3'

Consequently, we have,

£uRa - 0 When and only when Y124aY144 ■ 0, kg =Y143- 

5. HE TRANSPORT IN CAUSAL THERMODYNAMICS :

Classical thermodynamics suffers from the defect of the prediction of 

infinite speed of heat propagation. But according to relativity no interaction 

can propogate faster than light. Eckart (1940) Landau & Lifshitz (1958) 

developed relativistic thermodynamics but unfortunately the infinite speed 

of heat propagation defect remained. The credit of introducing a fl<|wless 

theory of relativistic thermodynamics goes to Carter (1988).

In this ^regular* theory of thermodynamics he introduced four vectors 

constructed from the flow vector ua, namely

particle current 

entropy current 

chemical momentum

: na = nua

a a s = su

a ,, a : X = X u

thermal momentum 0 3 = 0 ua .

A 11707
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where n is particle density, s is entropy, x is chemical potential and 

9 is temperature.

In an attempt to extend the study of Lie Transports to 'regular' 

thermodynamics, we investigate

£Xugab = °» £X u C (k) = 0

where X is any nonzero scalar and the Serret-Frenet tetrad

a
(k)

{ ua, Pa, Qa, Ra }

Theorem 3 : TFAE

’> £*u»ab - 0 ■

2) X = 0 •
^■° '

X.aR " °’ x,aPa * -k.

Y144 * Y133 = Y122 " 0 *

y123 + y132 = 0

Y134 + Y143 = 0 '

Y124 + Y142 = 0 ' 

where X is a scalar function.

Proof :

£*u9ab ’ Wib * (*ub>;a * 0

X,aub * \,bua *X <ua;b * ub;a > * 0 

Suppose this equation is written as xgb = 0

where xab = X ,aub + X,bua *X(ua;b * ub;a >

... (3.8)

These are 10 equations because a, b take the values 1, 2, 3, 4 and xak=xba"
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To get all the ten conditions clearly, we consider the ten contractions 

separately.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

x Kuaub = 0 implies . „ua + . Kub 
ab \,a \ ,d

implies 2X = 0 implies X = 0 .

xabuapb ‘ 0 lmpMes X,bpt> nV” 

implies x bPb = , by (RSF-1).

implies ()pt> - ki •

+ X(ua;b

= 0

ubia> * 0

xabuaQb - 0 implies X)bQb ♦ Mua;buaQb + ^Qb) - 0 

implies x bQb = 0

xabuaRb - 0 implies x bRb = °

xabp3Qb = 0 imp,ies X (ua-bpaQb+ua*bpbQa) = 0 

since X ^ o implies ug.b (PaQb+PbQa) = 0

implies 7123 +Y132 = 0 .

xabpaRb - 0 implies X<ua;bpaRb+ub;apbRa) = 0 

since X + 0 implies u h (PaRb + RaPb ) = 0
OyO

implies .Y^ + 7142 = 0 .

xab°aQb = 0 implies X(ua;bQaQb + “bja0*0^ = 0 * 

since X 4 0 implies ua.bQaQb = 0 .

implies Y133 = 0 .

xab°aRb = 0 imp,ies X (ua;bQaRb + ub;aQ3Rb) = 0 

since X { 0 implies ua.b(QaRb + RaQb) = 0

implies Y 134 + Y143 = 0 

xabR3Rb = 0 implies Y^44 = 0.

x . PaPb = 0 implies u . PaPb = 0 
ab a;b

implies Y122 * 0 .
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Theorem 4 : The tetrad { ua, Pa, Qa, Ra } will be Lie transported 

iff (1)x=0, <^0)

(2) - Pk ^

(3>X;KRk=X;kQk = °

(4) k2 = T312 = Y123

(5) k3 = 0 . t

<6> Y124 " Y133 “ Y122 

Y144 = Y413

Proof (I)

Y142 * 0

£Xuu3 = u;k (Xu k)' uk(A

fXuu,=

;k

= Xukuak _ ^ _kukua - u® ukX 

= -Xua

Therefore, the necessary and sufficient condition for 

£Xuua =0 is X = o .

(II) £xup3 = P-k^ " pk ^Xu^ k * by definitiion of Lie derivative.

= xp -(p X,k)u “ P (V X 
- <ku - pk;k,ua * *2°a - pk“tkx • »y (RSF-2)-

= (k 1X
pkX;k}t,a * Xk2°a ' [‘(r122P*1r132Qa*'Y142Ra) 'X

va- <k

, by computational aids (VI) 
a „a

1X
-PkX;k*u +Y122P +X^k2+Y132)Q +Xy142RC

Therefore, the necessary and sufficeint conditions for 

£XuPa = 0 are k^ = Pkx.k implies k1 ■ Pk

Y122 = Y142 = 0

k2 = " Y132
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i^uQa = Qfk(xuk) - Qk(xua).k by definition of Lie derivative 

= XQa - (QkXjk)ua -XQk(uak)

= X (-k2Pa+k3Ra) - QkX kua - XQkuak by (RSF - 3).

= -Qkxtkua -X(k2Pa + k3Ra + uakQk )

= -(QkXfk)ua + X (-k2Pa + K3Ra) 4

-XHT^.Y^gP3^^3)]

by computational aids (VII 1

= (-QkX,k)ua + X^k2 + Y123^P +^133°a + X^k3+Y143^Ra* 

Therefore, the necessary and sufficient conditions for

£AuQa = 0 are Q\k = y,33 = 0

k2 = Y123 * 

k3 = Y413 *

(IV) £xur3 = R-k^Xu^ " Rk(Xua).k , by definition of Lie derivative.

* XRa - (RkX,k)ua ' R^u;k)X .

■ -^3°a ' Rx,kua-X <Y143°a * Y124pa * W*’ 1 

by computational aids (VIII) and (RSF-4).

* "RkX,kua + Y124pa + X^'k3 + Y143^q8 +^144Ra*

Consequently the four cinditions for £> Ra = 0 are equivalent to
A U

R,<X;k = Y124 = Y144 = °* k3 =Y 143 *

Hence from (I) to (IV) the tetrad { ua, Pa, Qa, Ra } will be Lie transported

iff
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1) X = 0, ( x* o ).

2) k, = Pk .

3) X .kRk - X .kQk - 0 .

4) k2 = Y312 = Y123 '

5) kg = 0 .

6) * Y124 - Y133 = Y122 = y142 = 0 •

Y144 “ Y413 '
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