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CHAPTER-IV

CARTER-QUINTANA’S TRANSPORT

1 , INTRODUCTION :

In classical Continuum mechanics Oldroyd (1950) has invented the 

convective derivative as generalization of material derivative through the 

formula

r..j.
.i..

where
A"J*.i..

= A*V’ + v*. A**J*
• 1m «I (Km

............ A

§t .i..

-i- a’’-’ + vkA*:J,.k
Q L iImiK

iv.u a ,m;k

with
dx
dt

and
5t is the material derivative (also called as

intrinsic derivative). For the query, what is the physical significance of 

the operation of convective differentiation with respect to time, applied 

to a tensor intrinsically associated with a material of a moving continuum, 

Oldroyd's answer is that it is a kind of total differentiation following 

a material element which introduces no dependence on a fixed frame of 

reference or on the way the material is moving in space (vide p.42, 

Fredrickson 1964).

In relativistic continuum mechanics, the time has no absolute 

significance and hence the convective differentiation with respect to time
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has to be suitably modified. This extension was accomplished by Oldroyd 

in 1970. However, this extension had a limitation in the sense that the 

relativistic convective derivative was, confined to material tensor, i.e., 

tensors orthogonal to the flow vector.

Through the convective operator with respect to the timelike
3 aflow vector u of a mixed tensor field :

CuAb * Ab;ku * V;b - Ab (u;k ' u “k* "• (4-1)

where A^u = 0, = 0,
D a D

a ♦ a
we refer A b as convective transported iff Cu Ab = 0.

This concept has been generalized to arbitrary (non-material) tensors by 

Carter and Quintana in 1972 in the following pattern :

b cWe observe that (4.2) reduces to (4.1) when Xcu = 0. Also 

C X? = f;,XaK in the case of geodesic flow i.e. u_ = 0.
U D U U 3

In this chapter we propose the idea of Carter-Quintana transport 

of a tensor field by means of the following characterization :

Definition : Carter-Quintana transport :

A tensor field X*b” (x1) is said to be transported in the sense of
(•di

Carter and Quintana, if and only if

- X*C" ( ub 
..a. ;c u uc) = 0 .
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Some special cases : For ready reference we record the Carter- 

Quintana's convective derivative of the vector field A0 as
a

CA = A + A (if - uu ) u a a c ;a a ... (4.3)

Similarly, for the contravariant vector field B , we have,

_ _b * b _c / b b* » C B » B - B (u - uu )u ,c c ... (4.4)

i) Putting A. = u_ in (4.3), we get,
a a

&

C u =0 u a
u u

ii) When B° = u° , we have,

Cuub = 0, identically,

iii) Covariant Material Vector Fields : When AQ is a material vector, 

we have, A_ua = 0 and formula (4.3) gives us
3

C. A_ = £ Au a u a

e : If A„ = li , the acceleration vector field, we get
a a

_ • _ . •* • .kC u^ = £ u_ = u_ + u, u

2. CARTER-QUINTANA TRANSPORT OF THE GRAVITATIONAL

POTENTIALS :

For brevity we use CQ-transport in place of Carter-Quintana's 

transport in this chapter henceforth.

We examine the CQ-transport of the gravitational potentials g .
aD/

a significant tensor in general relativity.
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Theorem 1 cu9ab ’ 0 iff S = °* °ab = 0

Proof : We have the notation

= 9.K - orTab " yab uaub 

A

We consider,

x b b6 a ' V

.1 c d A

... (4.5) 

... (4.6)

c d
Ua*h =66 U~.Ha,o a k ^,oa b

= (Y° + ucua) (y£ + udub ) uc;(j , by (4.5)

c d c d
= Y Y + Y U UKU .a rb c:d Ta & c;d

since u u_ . ■ 0c;d

= u

= u

= u

by (4.6)
t ° u
. r* r»

J_ I + 6aub., since ucuc * 0 
a ; d

U *YaVb
( € - ucu)ii u. by (4.1)

Hence, we get,

“a-,b-Vb ' “J -

The decomposition of flow gradient is 

ab +U)abua;b * °ab '“ab * ^ ab * Vb

and accordingly

V Vb - °ab'“ab*i0Y
a | D

ab

(4.7)

(4.8)

Now, the formula for the CQ-derivative with respect to flow of a 

rank covariant tensor gives

•AKK- BALA5AHEB KHAhUhKAH LlbKAJQ •HIVAJf UNJVEBSITY. KOLMA#*Sr
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°u9ab = 9ab;kuk * 9kb (u?a ' ^“a’ * 9ak (u;b ‘ “V

* ub;a - Vb * ua;b * Va > slnoe 9ab are covariant

= u|_l+uXl i by (4.6) 
a ; b b;a.

“ °ab +uab * i0Yab *°ba *“ba * 1Sy ba h* <4-«>

°u9ab ' 2 (oab * ^ab > j. sln08 “ ab * - “ ha 

Now, we consider,

9 Cu9ab ^ (°ab * *^ab )

- ab _ / ab . 0
29 »ab*2<9 *<*> 3

Thus, we have

9abC gah = 20 , since o a = 0, Ya = 3. 
u aD a a

Consequently,

Cugab * 0 implies 0 = 0 which implies

o ab « 0 by (4.5)

Conversely, when 0 = 0, o ab = 0 , we get

C g . = 0uaab

This completes the proof of the theorem.

constant•

. (4.9)

Interpretation : The physical significance of the theorem is that the 

gravitational potentials are CQ-transported iff the flow of the continuum 

is expansion-free and shear-free (i.e. rigid).
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3. CQ-TRANSPORT OF THE RELATIVISTIC SERRET-FRENET FRAME :

We observe that

0 a Cuu = 0, identically. *

cuPa = Pa - plVa“uaJk), by definition of CQ-transport.

= Ktua + KgQa + Y122p3 + Y132°a +Y 142^ - K/’

by( RSF - 2

C Pa = 
u Y122P + (K2 + Y132)Qa *Y 142^ ■

C Pa = 
u 0 |ff y122 IIC

M
*OIIC

M

>-II "Y 132

iii) Similarly by using (RSF- 3), we get the relation

CuQa = - <K2 * Y,23)Pa - Y133Qa * (K3 -Y,43)Ra- 

and so CMQa ■ 0 are equivalent to Kg -y 123,^133 = *Y
u '3 1143 •

iv) Adopting (RSF-4) in the expression for C R , we get,

Cur3 - - Y!24pa - <K3 * Y,34>Qa ‘ Tl44R* 

Accordingly, CuRa = 0 implies and is implied by

Y124 = °» k3 ■ " Y134; Y 144 = 0 

We have now proved the

Theorem 2 : The necessary and sufficient conditions that the relativistic

Serret-Frenet tetrad { ua, Pa, Qa, Ra) is CQ-transported are

Y122 = Y133 = Y144 = Y142 = Y124 = 0

k2 =Y123 =Y 312 

K3 = Y 143 = Y 314 '



4. CQ-TRANSPORT OF THE - 2 DIMENSIONAL PROJECTION OPERATOR

There is no interest in the CQ-transport of the 3-dimensiona! 

projection operator,

Y ab ®ab " uaub

since Cu = 0 and C g„. is already discussed. Now we turn our u a u ab
attention to the 2-dimensional projection operator

ab aab 

-a

u u. + P P. a b a b •

p.r = P ); Since { ua, Pa, Qa, Ra} is an
3D • C 3C( Note : P“ » 2,

orthonormal tetrad, we get a more convenient expression for P 

adopting the completeness relation

ab by

g k « u uk - P Pk - Q Q, - R Rk .yab ab ab ab ab
Therefore, we have,

Pab ' «ab - uaub * PaPb^ * RaRb> ' 

We now obtain a theorem on the CQ-transport of P .

Theorem 3 : TFAE

1> CuPab - 0

2) K2 = - ri32 Y 134 ■ - I" 143 Y133 ' Y144 " °‘

Proof : Consider the two dimensional projejction operator
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(%1% + Qc ( u;a - u°^a } J + Qa [ Qb + Qc (u;b ‘ u°ub) J 

+ Rk [ Ra + (u.ca - ucua) ] ♦ Ra [ Rk + (ufh - ucu.) ]}
c ' ;a a ‘ 'b ’'c ' ;b u ub' 

, by definition of Cu

- [Qb <-K2P> * W * Qa (-K2Pb * K3V*bl-W * WV

* QcU;aQb * u;bQcQa * ^RoRb * u-bRcRa 1 •

by (RSF - (1) and (2)), Q„uc = R u° - 0.
c c

K2 <QbPa * QaPb> - <U:aQcQb * “lQc% * u;aRcRb * ^ W

' K2 tQaPb * QbPa) * ( Y132Pa *Y133Qa * Ym’V Qb

* ( 1f132Pb * Y133°b *Y 134Rb ,Qa * ( Y142Pa * Y143Qa *Y 144Ra,Rb 

+ ^Y142Pb + Y143Qb + Y144*VRa t by comPutational aids, chapter-!.

CuPab = ^K2 + Y132^ ^PaQb + PbQa} + 2 Y133QaQb + 2 Y144RaRb

* (y134 *y143) (RaQb * W 

Hence, we have,

CuPab = 0 if and on,y if K2 * Y132 = 0 •

0 .Y 133 " Y144 = y134 + y143 =
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5. NON-COMMUTATIVITY OF C WITH RAISING/LOWERING INDEX :

We note that v u commutes with raising and lowering of indices, 

if v represents covariant derivative with respect to u, since

9 u (9abAb) * '9 u9ab)Ab ♦ 9ab (>

= 9ab9uAb because 9ab;c'° and 

9 u 9ab s 9ab;cu° = 0 ■

Thus,

< 9u9ab >Ab ’ <9ab9 u J Ab •

which shows that Vu commutes with raising and lowering of indices. 

Also, we note

VuAa = 0 iffVuAa = 0.

We investigate whether such nice property is shared by CQ-transport.

We consider the following question :

If Aa is CQ-transported, then under what circumstances is A_
........ ■1,1 11 1 ■ ” .... 1 1 . - - ... , it g,

CQ - transported ?

We have,

Aa - 9abAb 

°uAa ’ °u (9abAb >

= (cu9ab)Ab + 9ab (CuAb) . by Leibnitz rule.

= 20 abAb , since Ab is CQ-transported.



Thus, C,A, i 0 in general. Also 0 . Ab = 0 need not imply that
’ U a 3D

©ab = 0* Obviously uaCuAa = 0, since ©abua = 0.

Special case : When the continuous medium is rigid, then, 0 ab = 0

and C g = 0 and consequently C A = 0. u ab u a

Thus, in general ( Cugab ) Ab ^ gab (Cu Ab) which implies that Cu 

does not commute with raising or lowering of indices.



60

REFERENCES

CARTER, B. and QUINTANA, H. (1972)* Foundations of General Relati­

vistic high-pressure eleasticity, Proc. Roy. Soc. Lond., A221, 57-83.

FREDRICKSON, A.G. (1964). Principles and Applications of Rheology. 

Englewood Cliffs Prentice Hall.

OLDROYD, J.G. (1950). On the formulation of Rheological equations of 

State, Proc. Roy. Soc. Lond., A200, 253-54.

OLDROYD, J.G. (1970). Proc. R. Soc. Lond. A 316, 1.


