
CHAPTER V

A NEW TRANSPORT OPERATOR Du

1 • MOTIVATION FOR DEFINING THE NEW TRANSPORT OPERATOR D,,

The decomposition of the tensor gradient of the flow field :

The condition

uaua = 1 
a

on u , ( a = 1, 2, 3, 4 ), implies that there are only 3 independent 

components of ua. Hence u . are 3 x 4 = 12 independent components.
3y0

Thus the tensor gradient of the timelike flow vector field ua.b has 12 

independent components which have been decomposed into

i) 5 independent components of the shear tensor field a ab

ii) 3 independent components of the rotation tensor field w gb

iii) 3 independent components of the acceleration field u0

iv) 1 independent component of the expansion scalar field 0.

due to the relations

°a ■ °- °a>ub " °- “ab - '“ba

a>*ub = 0, uaua = 0, 0= uba)Oab=oba.-

The flow gradient is partitioned as follows

ua;b ~ °ab + ^ab + 3 hafcP+ ^aub’ hab ~ ^ab uaub



The new operator which we propose is general in the sense that it

will be a combination of all these kinematical parameters a a^, io 

0 ,u , and also it reduces to known operate* under same conditions.
3 *

THE NEW TRANSPORT OPERATOR :

We introduce a new transport in relativistic continuum mechanics 

as follows :

Duxa = fxa-(ac£-fSar ^u^O +Xuauc 4<uauc)xC .

where f,a >0 , y ^ y2»x > ^ are s®760 arbitrary scalar fields.

The negative sign is chosen for convenience. Here "transport" is used

in the sense that the derivative operator is chosen along the time-like

flow vector. It is a generalization of many famous transports in relati­

vistic continuum mechanics, like

1) the material transport : (Radhakrishna, 1976; Katkar, 1982;

Gumaste, 1984).

2) the Jaumam transport: ( Rahdkrishna, Katkar and Date, 1981).

3) the Fermi transport : (Synge, 1962; Radhakrishna and Bhosale, 1975-76).

4) The Oldroyd (convective) transport : (Carter and Quintana, 1972).

5) the Truesdell transport : (Radhakrishna and Walwadkar, 1982)-

6) the Lie transport : (Nariikar, 1978; Stephani, 1982; Van Dantzig, 1932)-

To appreciate the operator D as a general transport, we cite below 

the conditioins on the 7 scalar fields to correspond to the well known 

operators.



t) the Material transport :

The material transport of the contravariant vector field xa is 

defined by

J5*3
5s

■ <*Vb ■ bu

comparing this with the definition of Duxa, we find that D reduces to

6 i_ °—7— when 
6 s

f = 1, a =8= y1 = Y2 =x = 0 
A

Here 6S represents covariant derivative along the flow of the material 

continuum.

2) the Jaumann transport :

The Jaumann transport of the contravariant vector field xa is

defined by
, a »a k a Jux * X ♦ X o,.k

since Uka is askew symmetric tensor.

Comparing this with the definition of D(jxa, we find that D reduces to 

J when

f = 1, 8 = +1, a = y1 . y2 = X - =0.

3) the Fermi transport :

The Fermi transport of the contravariant vector field xa is 

defined by

_ 3 k * 3 %Fux - X + x (u uk - uku ) .
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diComparing this with the definition of Dux we find that, D reduces 

to F when

f = 1, X - -1, ^ - 1 

« =8 «y1 = Y2 - 0 .

4) the Oldroyd (convective) transport :

The Oldroyd derivative developed by Carter and Quintana for the

a .contravariant vector field x is given by
o

^ 9 3 g 3 SI* \Cux = x - x ( u;k - u uk)

= x - x ( ak + w k + J©Yk + u uk - u uk ) •

Comparing this with the definition of Duxa, we find that D reduces to c 

when

f=1, =-1,a =1, 0=1, Yj=4» y 2=0, xa+l *

5) the Truesdell transport :

The Truesdell transport of the contravariant vector field xa is 

defined as

_ a «a k a , a Tux = X - X u.k + i X 0

a Xa-Xk*£ + Wfc -V ^ k® " i uauk0 + l^Uj^) +

- Xa - xk ( o® +u>*® - 4 uaU|^+ uauk) - A Xa0 + i xa0 . 

comparing this with the definition of Duxa, we find that D reduces to 

T~ when

f=1, a =1, 0 =1, Y-j58 ' g Y2= ^ X =1, ^ = 0 •



6) the Lie transport :

aThe Lie transport of the contravariant vector field x is defined

by

va - *a-*Vk
= xa - X* <(!*♦»* * u\ )

- xa-xk (o + $ 6 a3- iGuauk * i\ ) ,

since hak = 5® - uauk .

Comparing this with the definition of Duxa, we find that, D reduces to 

£ when

f=1, a =1, 0 =1, y^= i, Y2 = "3' X -1. ^=0-

The general transport of a covariant vector field :

Till now we have studied the general transport for a contravariant 

vector field. We now develop the theory for a covariant vector field.

We tentatively propose the relation 

D„xa - f\ taa*c

where ° = a 'a ° + 0 'w *bc + y J 5 ° 0 + Yj.'UgU^ + x 'uauc 

with fja',g', yi', Y2^'x' are arbitrary scalars.

II) In the next section we will determine the relationship between 

f, f*, a .ot',0 i 0* ,y ',y , etc. so that certain standard properties for any 

operator (derivative along flow) are valid.



2. SPECIAL LEIBNITZ PROPERTY :

The general transport of a scalar function must be the material 

transport of the same scalar function (Eringen, 1962). This will be true
f lx

when Duh = h for every h(x ). It follows that we should have 

Du <Aa> - <xV

which is referred here as Special Leibnitz Property •

For instance

Du(Ab> - (DU*X ♦ *a(DuV

is the well-known Leibnitz property- 

We establish the following.

CLAIM : Du(x ya) - (x ya)* implies f = f' * 1 , 

a + a 1 * 0 +0' > •Y1+Y,j * Y2+ -X + X' = 0.

Proof : Suppose

where

D xa = fka ♦ Aa xc 
u c

D x = f'iL + ^ C x^
u a a

fla * - (aaac-»0aj c*a + Yt <5® 0 + Y2u\o + x'uauc)

•c . - ( a'a ° +0'ujC + y\ 6 °Q + YJu uc0 +x 'uauc)
a a *a la 2 a ® 'n a a *a

The special Leibnitz property

(Dxa)ya + xa (Dya) » (xaya)’ 

implies on using (2.1) and (2.2)

(2.1)

(2.2)

fxay* + f'xayQ +na xcya + Q,cycxa = xaya + xayg .
a

Comparing the co-efficients of like terms, we have,



f - 1. f - 1. nVya . !)^cycxa = 0 
or

■ °*

changing dummies In second term; we get

( Qa + 'a ) xcy = 0 . Hence ft* +fia = 0 , 
c c a c c

a a
since x*y are arbitrary independent vector fields. 

This implies that a+a' ■ 0, 0 +3 ' * 0, Y^+Y^ = 0, 

Y2+Y2' = 0»x ♦ X' » °. * ♦*' - 0

since the kinematical parameters cr.,ui . « • . . . tab’ ab,w, uQ are independent.

We infer that

D x° u
_ a cX + fl X

Duxa " x^aXc

(2.3)

(2.4)

This establishes the formulae for the D-transport of contravariant vector 

field (vide 2.3) and D-transport of the covariant vector fields (vide 2.4).

3 . THE FORMULA FOR D Aa :
u b

We consider the outer product of xa and yb and impose the 

condition that the Leibnitz property should be satisfied.

= (DUXX + X“ (DU V *

Proof : By the definition of the general transport, we have 

D xa - xa+(aoa +6u)*a -*■ + Youauo0 + *uV uauj xc.

Duyb ■ yb*{ot05 + Y 1^b © + Y 2ubu°0 + XV° **vX



We know that the Leibnitz product rule is given by 

Du(xa yb) - (Duxa)yb ♦ xa (D^) .

R.H.S. » [ xa*faaa*6u'a + Yj d* S* Yj“au0® + X uauc »*uauc)xc ] yb

+-xa I y„-(acg b° » Y,« bS*Y2ubu°0 * x i/** V°)y0 J

- i\ * xa;b *aoaybxc -aabcycxa ^ -^x0 -B“bcy0xa 

*Y, Saeybxc -Y,«°b0yoxa »r2uauo0 ybx° -Y2ubu°9ycxa

^“Vb*°-X V°A0 **»V\ -■*ubucxayc .

- Xayb ♦ xayb ♦Maybx° -aogycxa *Bw;aybx° -6u-by0xa

* Y2uauo0ybx° - y2 bbu°9y0xa *x ^u^x0 -x V°xayc

* * uaiicxcyb - >l> ubu°xayc ,

since, . Y^^Sy^0 - Y,SCb0ycxa - Y, 0ybxa -Y,0 yfcxa « 0 . 

Put xaYb ■ Afb,_ xcyb-ACbi ycxa. Aa0

0Afb " (A?b>%-cVb-«0b°Af0 etabVb - 6* b'cA a

* Y20«V\£ "Y20ubu°A.c * Xu\Aa -x V°AAt ,buc (uaAcb

D A“ - (AaJ’ + a (a ®AC -o^A9 ) +8 feu '“a? u>.*uAa ) u *b ' *b; 1 cM. b bM.c ;ic b b M.c; ,

...+ Y2e(U?ucA?b ' ubuCA.ac} + x (^ucA.Cb ' %u°A.ac } * ,"(3,1)

cAa ,aAc .cAa

+ ^ - %Aa0 >;

We can analogously write the formulae for the general transport

of an arbitrary tensor.



4. D - TRANSPORT OF MATERIAL CONTRA VARIANT VECTOR FIELDS :

Introduction :

In this dissertation we have studied several material vector fields, 

viz. Pa, Qa, Ra (i.e. uaPa * 0, U^Qa = 0, uaRa = 0). In relativistic 

magneto hydrodynamics the magnetic field vector is a material vector 

field,

u„Ha = 0 (vide Lichnerowicz, 1967) * 
a

The vorticity vector field wa, the Poynting vector field are ail 

material vector fields. It is shown in Chapter III that the Lie trans­

port of a material contravariant vector is not in general a material 

vector but the OLDROYD transport of a material vector is again a 

material vector.

Hence It is necessary to investigate the properties of D-transport 

of material vector fields. We observe that, in general, the D-transport 

of a material vector does not produce a material vector.

a 1
Theorem : 1. Let x be a material vector field.

The following are equivalent (TFAE).

i) D xa is a material vector field./ y ------------

ii) 1 + ^=0.

Proof : The definition of the D operator gives 

Duxa - ia - [aoa + 0u)'a ♦ YlSa0 + y2uauc0 +Xu\ 

Consider, the inner product of D xa with u_ ►
U ck

* * uau„ ] xc 
c
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u D x” a u
" ua[ ^ " (ota c +3a) "c + Yi«c0 + Y2“au<P

- V3-«oV -^cV5 * * * - Yl5c0UaxC

** 3 i 3 * \ C+ X u u_ + <|j u u )x c c

-*2“Vvc
]

- X uau_u xc uau u xc, on expansion.
C 3 C 8

■ u x - u x , since x , aa*u) are all Material tensors, a c a

* ~ s*nce ua*a = “ ^a^ *

uaDuxa s ' (1+* r°axa

since, xa is an arbitrary Material tensor uxa ^ 0, 

we get, u D xa = 0 iff 1 + = 0.
8 U

The new transport Du shares with Oldroyd transport Cu the 

property of producing material tensors from material tensors only when 

1+^*0.

S. NON-COMMUTATIVITY OF Du WITH RAISING/LOWERING OF SUFFIXES;

We evaluate the general transport of the gravitational potentials as 

follows :

^u^ab ~ ^ab “3° a ^cb “aa b ®ac a ^cb "^b ^ac + Y 2®^"uau ^cb^ ® 3*b 

t»Tf2(-V°9ac) -xlV^eb’ -X (VCgac> V «CU\>9,c

" "2(0%b * y 2euaub) - <Vb ♦ Va> C^- * v0 “ ^ ® S«W

9ab ’ °- uab * <*ba * °- “^a = 0
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^\oab • - w’VD' + 'O
- - M &\+k

It follows that

Du9ab = 0 imP,ies Y,-vtfv^o ,. <m °» ^ ^ =°

We observe that Dugab / 0 in general.

We also note that

Du9abx8 * 9abDux8

and so the D-operator does not commute with raising and lowering of 

indices.

£
6. ON THE D-TRANSPORT OF THE RELATIVISTIC Sj^RRET-FRENET TETRAD:

i) Duua = uNao^+ew'^S^e+YgU^e+X *auc +4J uauc ]uc

» by definition .

Duua = - (Y1+Y2)ua0 + (1~ X )k1pa, on simplification.

We conclude that t

□uua = 0 iff Yi+Y2 “ 1 "X “ °* since 6 J* °» k1 ^ 0 .

ii) Dupa ■ pa -[cw^a+Bu)*a+Y15ca0 +Y2uauc0+ Xuauc uauc]pc,

by definition.

= (1 -njj)k1 u3 + k2Oa -o*rcapC -3w*capC + Y-|0Pa » Py (RSF-1).

= (1-ij)+3 )k^u + [kg-ot (Yi32+Y-|2g) /2 (Y.j2g ~Y -jg2)] ^

+ [ a/6 (7Yi22) - a/3(Y 133^144) “ Y j(Y122 + Y133 + Y144^P
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- MYi42+Yl24* -6/2(Y124 “y142^ r3’ by comPutational a'ds.

Dupa = 0, iff, the co-efficients of ua, pa, Qa Ra are separately zero i.e.

It follows that Dupa = 0, iff, 1 -t|) + 3 = 0.

k2 'a(Y132 +y123* + B/2(y123 "Y 132* * 0 *

0/6(7^22) - a/3(Yl33+Y144) -Y, ^Y122 +Y133 +Y144^ = 0 * 

a (Y142 + Y124) “ 8 /2 (Y124 * Y142) - 0 .

Hi) DuQa = Qa - [aoca + gw*3 + y^ 5 CV Y2uauc9 + x uauc + ^ uauc]Qc

- - k2pa * y ^0 Qa + k3Ra -ao caQC~?

U QC -■ 0, P QC « 0, 
c c

[•*2 + c*/2(T132 ♦ Y,23)* 6/2(Yl32'lf123))pa-V1(r122n133n)44) * a/Sgy^ 

* 7WWJaa -tK3-«/2(Yl43.Yl34) t B/2(Yi34. Tl43> ]Ra

°uQa - 0 Iff -k2*“/2(Y132»y123) «S/2'(t,32-Y123 ) - 0

h^22 * r133 - Y144) ♦ a/6(Y122 ♦ 7Y]33 .y,4„) . 0 

^(^3 +Y 134} + 6/2 ( y134-Y 143) = 0.

iv) DuRa = Ra-Iaaca+6u* *an1 + + X uauQ+ * uauc ]RC,

by definition.

- -k3Qa -&acaRc +3<^aRc + y1 9 R^J, since ucRc = 0 

= [a/2(Y142 + Y124)-3/2(Y123- Y132)]Pa

+ [a/2 (Y143 +Y134) - 3/2 (Y^43 “Y134) IQ

+ [a(Y144+ 1/6(Y122 +Y133 +Yl44)j "y1 ( y122+y133+y144)1R

by computational aids.
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DuRa = 0, iff, the co-efficients of ua,Pa,QaRa are separately zero i.e. 

DuRa - 0, iff, «/2 (Y142 +Y124) - B/2(Y123 -Y132) = 0

0/2 ^143 +Y134J _8/2 (Yt43 "Y134* " 0

a(f144 + 1/6 (Y122 +Y133 *Yl44*-^1 *Y122 +Y133 +Y144* = 0

The tetrad will be D-transported iff all the following 12 conditions are 

satisfied.

Yj +Y2 ■ 0, (1-x) ■ 0, 9/ 0, k1 t 0 •

1 -4+ 0, kg -a (Y-j32 +Y123) ^2 tY123 "Y132^ =

0/6 *7y122} _Ct/3 (Y133 +Y144) ~?1(y122 +Y133 +y144* = °* 

a ^Y142 +Y124^ ~ 3i^2 ^Y124 "Y142^ * °*

- k2 + a/2 <Y132 +Y123> = °*

Y1 ^ Y122 +Y133 +Y144^ + °^6 ^Y122 + 7Y133 +Y144^ = °*

k3 “a ^ Y143 + Y134* = °*

a/2 (Y142 +Y124^ “ ^Y123 "Y132^ * °»

01/2 (Y143 +W * 8/2 <Y143*W * °’ 

a{ y144 + 1/6 ^Y122 +Y133 +Y144** 'y1(y122 +y133 +y144} = °*

We observe that these are 12 equations in 18 unknowns.
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