61

CHAPTER -V

A NEW TRANSPORT OPERATOR Du

1. MOTIVATION FOR DEFINING THE NEW TRANSPORT OPERATOR D,

The decomposition of the tensor gradient of the flow field :

The condition

a
uua-1

a
onu,(a=1,2 3 4), implies that there are only 3 independent

components of ua. Hence u are 3 x 4 = 12 independent components.

asb

Thus the tensor gradient of the timelike flow vector field u has 12

asb
independent components which have been decomposed into

i) 5 independent components of the shear tensor field %ab

ii) 3 independent components of the rotation tensor field ab

iii) 3 independent componrents of the acceleration field {’a

iv) 1 independent component of the expansion scalar field 0.

due to the relations

a _ b .
Oa"'oy Oaub-os U)ab (ﬂba

ab _ - a _a _
Wpu™ = 0, ugd = 0, 9= u;aw’ciab ~Gba

- 1
ua;b-oab+mab+5h @+ uu, h
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The new operator which we propose is general in the sense that it

will be a combination of all these kinematical parameters ca W

b’ ab’

o] '{"a‘ and also it reduces to known oparate¥ under seme conditions.

THE NEW TRANSPORT OPERATOR :

We introduce a new transport in relativistic contimuum mechanics

as follows :

°

Duxa = fga-(aogﬁw;aw 1520 +*{2uau D +x il o WP l]c)xc

where f,q,8,y 1° YorX + U are seven arbitrary scalar fields.
The negative sign is chosen for convenience. Here "transport" is used
in the sense that the derivative operator is chosen along the time-like
flow vector. It is a generalization of maﬁy fa;nous transpcrté in ré!ati-
v‘istic continuum mechanics, Iike
1) the material transport : (Radhakrishna, 1976; Katkar, 1982;

- Gumaste, 1984).
2) the Jaumam trans;)ort: ( Rahdkrishna, Katkar and Date, 1981).
3) the Fermi transport : (Synge, 1962; Radhakrishna and Bhosale, 1975-75).
4) The Oldroyd (convective) transpoft : (Carter and Quintana, 1972).
5) the Truesdell transport : (Radhakrishna and Walwadkar, 1982).

6) the Lie transport : (Narlikar, 1978; Stephani, 1982; Van Dantzig, 1932) .

To appreciate the operator D as a general transport, we cite below
the conditioins on the 7 scélar fields to correspond to the well known

operators,
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1) the Material transport :

The material transport of "the contravariant vector field x2 is

defined by
a b
$x° a, b b dx
§s R T ‘
= )-(a

comparing this with the definition of Duxa, we find that D reduces to

. when

ds
§-=1,G=B=Y1 =Y2=X=\D=Ov
Here §g represents covariant derivative along the flow of the material

continuum.

2) the Jaumann transport :

The Jaumann transport of the contravariant vector field x2 s

defined by
a _-:a k a
Jux =X + X . K
since Wka is a skew symmetric tensor .

Comparing this with the definition of Duxa, we find that D reduces to

J when
f=1B=+1, a=Y, =Y,=X =¥ =0.

3) the Fermi transport :

The Fermi transport of the contravariant vector field x2 is
defined by
an=ia+xk'(ﬁau - Gud) .
7 k k
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Comparing this with the definition of D x2 we find that, D reduces

to F when

f=1X=-1,¥=1

Q=B='Y1 =‘Y2=O.

4) the Oldroyd (convective) transport :

The Oldroyd derivative developed by Carter and Quintana for the
contravariant vector field x2 is given by

a _ k a a:
C x¥ =x-x (u;k-uuk)

.a k a a a _ -.a a.
=x - X (ck+wk+!eyk+uuk-uuk) .
Comparing this with the definition of Duxa, we find that D reduces to ¢

when

f=1, ¢ =-1,a =1, B =1, Y,%\! Y2=09 )(”“"1

5) the Truesdell transport :

a
is

The Truesdé!t trangport of the contravariant vector field x
defined as I

a_ .a k a a
Tux = X -xu:ka»%xg

S(a-xklo,f + o y %503 uauk@ + Gauk) + § x%

) k a .a a X a a
x-x(gk+mk—éuu@+uuk)-%xe+%x@.
comparing this with the definition of Duxa, we find that D reduces to

T~ when

f=1, a =1, 8=1, Y1= '%;’ng % X =1, =0
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8) the Lie transport :

The Lie transport of the contravariant vector fieid xa is defined

by

a _ ea _ ka
£ux = X xu;k
X k a . .a .a
x© - x (o k+w.k+§h?<9+uuk~)

+a Kk a a an_1n,8 -3
x“-x (ok*'“’.k*%ake""eu uk+uuk) )

a_ga _ .2
since hk— K uuk.

©

Comparing this with the definition of Duxa. we find that, D reduces to

£ when

f=1, a =1, B=11 Y1= %sYz = “%y X=19 ¥ =0,

-

The general transport of a covariant vector field :

Till now we have studied the general transport for a contravariant

~vector field. We now develop the theory for a covariant vector field.
We tentatively propose the relation

= f'x +0'
Duxa _ fxa anc

C (o4

where Q':.-.-.a'ocaa-B'wb +Y; 5‘;9+Y£uau%+x'ﬂau

with f4'8", Y1"Y2:KD,'X' are arbitrary scalars.

1) In the next section we will determine the relationship between

f, 'y a'vasB s 3' VY ',y R etc. so that certain standard properties for any

operator (derivative along flow) are valid.



2. SPECIAL LEIBNITZ PROPERTY

The general transport of a scalar function must be the material
transport of the same scalar function (Eringen, 1962). This will be true
when D G h for every h(xk). It follows that we should have

a A e
D, (x%y,) = (X%y,)

which is referred here as Special Leibnitz Property -

For instance ‘
a _ a a

D,y = (DyxT)y, + x7(D,y,)
is the well-known Lelbnitz property..
We establish the following.

. a = a * = f' =
CLAIM : Du(x ya) (x ya) implies f = f 1,

“+a'=B+B'=vY1+Y'1=Y2+Yz' =X+X'=‘D+‘U'=0_

Proof : Suppose

a_ca_  qga.c ‘

Dux = fx~ + c X (2.1)
12 Q.C

DXy = ', + . %c - (22)

where

a a .a a a -
Qc = - (aoc~‘6wc * Y Gc O+ You UCO+X u Uc}

c c ' .c v G re c)
Q'g = - ('a'oa +B ‘Qa +y1<sa O+yzuau © +X 'uyu
The special Leibnitz property
a . ‘a 3
(Dx%)y, + xa (Dy,) = (x Yg)
implies on using (2.1) and (2.2) .

3 was a C < a='a - .
fxya+fxya+chya+QaycX XYa * XYy

Comp~ariﬁg the co-efficients of like terms, we have,
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- ' ac C, 8 _
f=1,f=1, ch Yq * Qa yx =0
or

c

ac a
ch Yq f-Qcyax = 0,

changing dummies in second term, we get

?

i

. H
( 92+ Q'Z)xcya =0 . Henceﬁg +Qg=0 ,

o2 :
since X.y? are arbitrary independent vector fields.

This implies that a+a' =0, B +8' =10, Y +y1' = 0,

1
Yo+ ¥ =0X + x'=0, ¥ +¥' =0
since the kinematical parameters oa

b'® ab,0 , ﬁa are independent.

We infer that

Duxa = X2« Qcaxc (2.3)
_ D e
DjXa = X34 X, - (2.4)

This establishes the formulae for the D-transport of contravariant vector

field (vide 2.3) and D-transport of the covariant vector fields (vide 2.4).

3. THE FORMULA FOR DuAg

We consider the outer product of x? and Yp and impose the

condition that the Leibnitz property should be satisfied.
a _ a a
Du(x yb) = (Dux )yb + X (Dqu) .
Proof : By the definition of the general transport, we have '
a_:a a .a a a -3 a. c
Dux = X +(acc +Bw ¢t 71606 +You ch»\xu ug +bu uc) xS

. C ., C c c © uC iC
DYy, = yb._(aob Bu "+ AR PRSP TSHRA L We
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We know that the Leibnitz product rule is given by

a: I R
DL 1) = O, + < O,

R.H.S. = [ X +(ao +Bw + 716‘300+;{2uau06 +xi1auc sV u’aﬁc)xc ] Yy

+x2 [ ybao((mo‘ +Bw ;)c + 716%O+qubu°(-) + X Gbu°+ \Dubﬁc)yc ]

= xayb + xay'b +Q0 2ybx -aob y x +HBw 'a -Bu)b y x

a c _. c a ., . a c c a

*Yq 0.0y - Y 80y xT + Y uTu D ypx® - Y puu0y x
Ia c . - »

+ Xu UgYpX~ = X ubucx""yc +V uaucxcyb -'lllubucxayc .

= X yb + xafrb +00 gybxc -uogy X +Bw.., ybx ~Bwby X

a
+ You uceybx Y2 ubu Gy x2 +xu u yb ,'X ubucx Yo

¥ 85 «Cy _U, 5C, A
+ Vulu Xty -Vu utxy

_ a c _ c a _ a a _ |

since, . Y1dceybx Y,Gbeycx = Yy @ybx -Y1G YpX = 0.
LB, . a8 G, _ C a _ La

Put: X7y, A.b‘, XVp = Ap, Y = A,

a _ - .ac - ., a
DA, (a2 b) +ac 2A° 5% A +Bu A Bwb AL
a
+y29uuAb Y2@ubUA *‘XUUA,b XubuA "!i}u (uAb

.a‘ a 4 aL,C Cra «2,C »Cra

4y 0P AT - g uCAR ) ¢ x P A% - uutAR ) e(B)

“C , a a i
+ -
bu” {u AQ.b upAL )

We' can analogously write the formulae for the general transport
of an arbitdary tensor.

a
ubA. o



4.D - TRANSPORT OF MATERIAL CONTRAVARIANT VECTOR FIELDS :

Introduction
In this dissertation we have studied several material vector fields,
viz. P% Q% R® (Le. uP®=0, 1Q%=0, uR®=0. In relativistic
magneto hydrodynamics the magnetic field vector is a material vector
field,
uH® =0 (vide Lichnerowicz, 1967) -

The vorticity vector field w2

, the Poynting vector field 22 are all
material vector fields. It is shown in Chapter Ill . ihat the Lie trans-
port of é material contravariant vector is not in general a material
vector but the OLDROYD transport of a material vector is again a

material vector.

Hence it Is necessary to Investigate the properties of D-transport
of material vector fields. We observe that, in general, the D-transport
of a material vector does not produce a material vector.

a 1

Theorem : 1. Let x° be a material vector field.

The following are equivalent (TFAE).

i) Duxa is a material vector field.

i) 1+ V=0

Proof : The definition of the D operator gives

. «a a a -a ar
Duxa = x2 - [aoi +ch + y1609 YU uc® +Xu'u, +Vy u, ] x

Consider, the inner product of Duxa with ‘ua .
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uaDuxa = ul x2 - (aoz +Bw 'Z + 7,626 + yZuauCG + Xﬁauc + uat’:c)xC ]
='ua>'<a -ao:uaxc -Bwéaua'xc - Y1<Sac@ Llaxc - quauce uaxc
; —Xﬁaucu Elxc -y uaﬁcuaxc, on expansion.
= ua;(a -V &cxc, since xa. Og\wab are all Material tensors.
= - Gaxa -w&axé. since uaia = - &axa .

uaDuxa = - (1+y )'tiax“’l

since, xa, is an arbitrary Material tensor ﬁaxa £0, -

we get, - uaDuxa =0 iff 1+ ¢s= 0.

The new transport Du shares with Oldroyd transport Cu the
propefty of produclhg material tensors from material tensors only when

1+‘D=0-

5. NON-COMMUTATIVITY OF D, WITH RAISING/LOWERING OF SUFFIXES:

We evaluate the general transport of the gravitational potentials as

follows :
c c c .C . c ’
Dugab = 93p "0 4 gcb a0 gac ~Bw a gcb "Bwb 9ac *Y 29("UaU~Cgcb) "lfi 93.“,
c . . ‘ . .
@Y 5-upu°90) - x (UG - X (Gu°gp) — WU UaTen = W UL,
= '2((1031-_) +y 29Uaub) - ("‘a“b + "‘b”a) CXJ * \?) -2y © Qan
Since g a

ab = O wab * wpg = O UUy =0
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| ] ]
) ) - 2 - e \U'6ap=0
u DG = -2v,0up (x4 \¥) Wy oMy - Sine U'San=

'b .bo
w2 D % = - (Gu) Y_X"\'“‘]
. 2
b = kTORY)
uuD g, = - 2. 8 (.{\+{‘)
It follows that

D g = O implies y 4y, =0 , X=0, W +¥=0

We observe that D, g, # 0 in general.

We also note that

D Xa#g D, x2

uSab ab u
and so the D-operator does not commute with raising and lowering of
indices.
£
ON THE D-TRANSPORT OF THE RELATIVISTIC SﬁRRET-FRENET TETRAD:

: a _ +a, 8,8 . a a .a a* ¢
i) D,u = U [aoc +ch +Y‘I‘GC 9+Y2u uce +X 5 ug +V y Ug Ju
» by definition .
Duu'a = - (Y1+y2)uae + (i~x)k1pa, on simplification.

We conclude that ,
Duua=0 iff v+ =0, 1-x =0 since 8 £ 0, k; #0.
ii) Dupa = E)a -[aqéa+6wéa+y160a9 +Y2uauce+ xﬁauc +¥ uaﬁC]pc,
| by definition.
= (1pkyu? + %,0% - g ° -Buy % + vpp® , by (RSF-1).
. , _a

‘ a
+ [0/6 (Tyypp) - /3001339 144) =Y 10120 * Y133 * Y144l
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- [a( ¥ 40*Y124) ~B/2Y104 Y140)] R®, by computational aids.

Dp? = 0, iff, the co-efficients of u?, p% Q% R? are separately zero i.e.

It follows that D p? = 0, i':ff, 1 -04+B=0.

ky ~alyy3p + Y g9) +B/2ANyp5 Y 130) = O .
a/6(1Y159) - @/3(Yy35+¥144) ¥1 (Y122 *+¥133 *YV124) = O

o (Y142 * Y124) “8/2 (Y4 = Y1420 = O -

iii) DUQa =Q? - [acca_+ Bw&a * Y6 cae+ yzuauce + X ﬁauc +lbua(1c]0°

a a a a~Cc . '
--k2p ..yPQ +k3R ~aocQ -3(»5‘@‘

st c - C .
wee y Q% =0, P.Q° = 0,
;‘h [N* o q L B . - e e - - - R T o o
2 * M2AMy35 + Yyp30 B/2(y) 35771 3)IP 1 M122%13357 1 49) + o/ 6lv322
+ 7 a ' ‘ . ‘ |
V133" 1144107 *lkg-o/2(m 430y 5,) + B/21y, 4, - Y143) IR?

D Q% =0 iff -k +q i ‘
" 2* @/2Y135+7,55) +B /2 (Yi3pY123 ) = 0

Yilvypp + Y133 * Y144) * a/6(y;5, + 133

*Y144) = 0
K3 WY 45

+Y134)‘+ B/2 ( Y134"'Y 143) = Q,

; c . a -a a- c
iv) DuRa = Ra-[ozacai-swcaw&cae*bu up+xu uc+‘1’ u'u, IRY,

by definition.

a anpc capt ; c _
-k30 -('gzocR +BmcR +Y16Ra)' since ucR =0

[@/2 (V14 + Yypg) ~B/2 0155 - Yygp) 1 P°
+ [a/2 (Y143 "’Y134) -B/2 (Y143 ‘Y134) ]Qa

' 1nd
v [aly, 40+ 1/6(r122 *1133 *¥124)3 Y1 (22" Wag* M4aR

) by computational aids.
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D R? = 0, iff, the co-efficients of u?,P%,Q%R? are separately zero i.e.
a -

/2 (Y143 +Yq34) ~B/2 (Y43 -Yj34) = O

anes * 178 (yy22 *v133 *Y144) - Y1 (Y122 *Y133 *Y144) = 0
TheA tetrad will be D-transported iff all the following 12 conditions are
satisfied. |
Yy +Yp =0, (1X) = 0,040, k; #0
1 e B= 0y ky -0 (Vi3 #Vqp5) +B/2 (Vg5 Vygp) = Oy
V6 (Tr199) -0/3 (M3 *Mag) V1 Map *Yy33 *V144) = O
o (Y142 +Y124) - B/2 (Y34 ~Y40) = O.

= kg + %2 (Yy35 +Y)55) = O.

.

"1(M22 *Y3g *Y144) + /6 (Vygp + TYy33 +Y1gy) = O,
k3 -® (Vg3 *Mag =0

/2 (142 *YV124) = B/2 (g5 ~Vy39) = O,

%2 (Y43 +N134) - B/2 (”143””."13’4) =0

of Y1a4 * 178 (Yio0 *Yy33 *Y144)} -Y1(¥120 +¥133 *Y144) = O-

We observe that these are 12 equations in 18 unknowns.
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