CHAPTER-1

JAUMANN TRANSPORT IN RELATIVISTIC CONTINUUM MECHANICS

1. INTRODUCTION :

a) RELATIVISTIC CONTINUUM MECHANICS :

A continuum is a structureless substance and to each point of the 3-dimensional continuum we can assign kinematical or dynamical variables which are continuous functions of the three co-ordinates of the point. In continuum mechanics, we study the behaviour of systems under the action of forces ignoring the molecular structure of matter. The study of continuum mechanics has two aspects : (i) Kinematics, which is concerned with the motion of particles and bodies, (ii) Dynamics, which deals with forces causing the motion of particles and bodies. The exploration of gravitational fields, electromagnetic fields, hydrodynamics, aerodynamics, elastic/plastic : materials constitute typical instances of continuum mechanics.

Strong and rapidly changing gravitational fields are found in neutron stars, wherein high pressure ($p \sim c^{2}$), high speeds $(v \sim c$) of supermassive bodies $\left(M \sim \frac{R c^{2}}{2 G}\right.$) are prevalent. Here ρ is the density, M is the mass, R is the radius of the star, G is the constant of gravitation. it is in such astrophysical circumstances the relevance of general relativistic continuum mechanics appears. In this dissertation we confine to the kinematical aspects of the relativistic continuum mechanics.

Time has no absolute status in the theory of relativity. Hence the time rate of kinematical variables in classical continuum mechanics has to be suitably changed for applying to relativistic domain. This is achieved by replacing the time rate by covariant differentiation along TIME-LIKE flow vector, since time-like vectors have absolute character in special as well as general relativity (Oldroyd, 1970).

b) RELATIVISTIC SERRET FRENET TETRAD :

The unit time-like velocity field u^{a}.
If s is the arc-length parameter then the natural equation for the world-line of a particle in a continuum is

$$
z^{a}=z^{a}(s), \quad(a=1,2,3,4)
$$

If u^{a} is the tangent vector to this world-line (4-dimensional space curve) then

$$
\begin{equation*}
u^{a}=\frac{d Z^{a}}{d s} \tag{1.1}
\end{equation*}
$$

This means that u^{a} is the velocity vector field of the particle.
The metric relation $d s^{2}=d Z^{a} d Z_{a}$ implies

$$
\begin{equation*}
\frac{d Z^{a}}{d s} \cdot \frac{d Z_{a}}{d s}=1 \quad \text { or } \quad u^{a} u_{a}=1 \tag{1.2}
\end{equation*}
$$

Thus, we have, u^{a} as the unit tangent vector field on the world-line, due to the choice of the signature (,,,---+) of the metric tensor. Since $u^{a_{u}} u_{a}$ we infer that u^{a} is a time-like unit vector.

The unit space-like acceleration field P^{a}.
The acceleration field (which is not equal to $\frac{d u^{a}}{d s}$ but equal to) $\frac{\delta u^{a}}{\delta s}$ is denoted by \dot{u}^{a} and is defined by

$$
\begin{equation*}
\dot{u}^{a}=u_{; b^{u}}^{a} b^{b} \tag{1.3}
\end{equation*}
$$

where a semicolon denotes covariant differentiation. It should be noted that \dot{u}^{a} is not a unit vector field. It is a space-like vector field since it is orthogonal to the time-like vector u^{a}, for, from (1.2)

$$
\left(u^{a} u_{a}\right)^{*}=0
$$

which shows that

$$
\begin{equation*}
\dot{u}^{a_{u}}=0 \tag{1.4}
\end{equation*}
$$

This one orthogonal relation helps us to examine whether an orthogonal tetrad can be constructed, by introducing two more space-like vector fields.

Let p^{a} represent the unit vector field along the acceleration, then, we have

$$
p^{a}=\frac{\dot{u}^{a}}{|\dot{u}|}
$$

or $p^{a}=\dot{u}^{a} /\left(-\dot{u}^{k} \dot{u}_{k}\right)^{\frac{1}{2}}$
The negative sign before $\dot{u}^{k} \dot{u}_{k}$ is due to the fact that \dot{u}^{a} is space-like and $\dot{u}_{\dot{u}}^{\dot{u}_{a}}<0$. We introduce a scalar field through

$$
\begin{equation*}
k_{1}=\sqrt{-\dot{u}^{2} \dot{u}_{a}} \tag{1.5}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
p^{a}=\dot{u}^{a} / K_{1} \tag{1.6}
\end{equation*}
$$

Here K_{1} is called as the first curvature of the world-line. We note that

$$
\mathrm{p}^{\mathrm{a}} \mathrm{p}_{\mathrm{a}}=-1
$$

The two unit space-like orthogonal vector fields which are orthogonal to both velocity and acceleration vector fields: Q^{a}, R^{a}.

Suppose Q^{a}, R^{a} represent the two unit vector fields which are orthogonal to both u^{a} and p^{a}. Then we have the algebraic relations

$$
\begin{align*}
& P^{a} Q_{a}=0, \quad P^{a} R_{a}=0, \quad u^{a} Q_{a}=0, \quad u^{a} R_{a}=0 \tag{1.7}\\
& R^{a} R_{a}=Q^{a} Q_{a}=-1 \tag{1.8}
\end{align*}
$$

and the differential relations can be described as (Davis 1970)

$$
\left[\begin{array}{c}
\dot{u}^{a} \tag{1.9}\\
\dot{p}^{a} \\
\dot{q}^{a} \\
\dot{R}^{a}
\end{array}\right]=\left[\begin{array}{cccc}
0 & K_{1} & 0 & 0 \\
K_{1} & 0 & K_{2} & 0 \\
0 & -K_{2} & 0 & K_{3} \\
0 & 0 & -K_{3} & 0
\end{array}\right]\left[\begin{array}{l}
u^{a} \\
p^{a} \\
Q^{a} \\
R^{a}
\end{array}\right]
$$

Where an overhead dot represents the covariant differentiation along the flow vector field u^{a}. They are referred as Relativistic Serret-Frenet formulae and we list them for use in this dissertation.

$$
\begin{aligned}
& \dot{u}^{a}=K_{1} P^{a} \quad \text {....................... } \quad \text { (RSF-1) } \\
& \dot{p}^{a}=K_{1} u^{a}+K_{2} Q^{a} \quad \quad \text { (RSF-2) } \\
& \dot{Q}^{a}=-K_{2} P^{a}+K_{3} R^{a} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \quad \text { (RSF-3) } \\
& \dot{R}^{a}=-K_{3} Q^{a} \quad \text {..................... } \quad \text { (RSF-4) }
\end{aligned}
$$

where K_{2}, \dot{K}_{3} are called the second and the third curvatures of the stream-line in the 4-dimensional space-time.

The explicit expressions for $Q^{a}, R^{a}, K_{2}, K_{3}$ are given by (Magdum, 1988). $Q^{a}=\frac{1}{K_{2}}\left(\frac{\ddot{u}^{a}}{K_{1}}+\frac{\dot{k}_{1}}{K_{1}^{2}} \dot{u}^{a}-K_{1} u^{a}\right)$, $R^{a}=\frac{-1}{K_{1}^{2} K_{2}} \eta^{a b c d} u_{b} \dot{u}_{c} \ddot{u}_{d}$,
$k_{2}=\left[-\frac{i_{u} \ddot{u}_{a}}{k_{1}^{2}}-\left(\frac{\dot{k}_{1}}{k_{1}}\right)^{2}+k_{1}^{2}\right]^{\frac{1}{2}}$,
$K_{3}=\frac{1}{K_{1}^{3} K_{2}^{2}} \cdot \eta^{a b c d} u_{b} \dot{u}_{c} \ddot{u}_{d} \ddot{u}_{a} \quad$,
where, $\eta^{\text {abcd }}$ is the Levi-Civita permutation tensor, $\ddot{u}^{d}=\left(\dot{u}^{d}\right)_{; k} u^{k}$.
Definition : The set $\left\{u^{a}, P^{a}, Q_{,}^{a} R^{a}\right\}$ satisfying the condition (RSF-1 to 4) is called the Relativistic Serret-Frenet Tetrad.

Remark 1 : It may be interesting to note that the co-efficient matrix in RSF-formulae (1.9) is neither symmetric nor skew symmetric; the corresponding co-efficient matrix in classical Serret-Frenet formulae is skew symmetric (vide O^{\prime} Neill, 1966),

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N} \\
\dot{B}
\end{array}\right]=\left[\begin{array}{ccc}
0 & K_{1} & 0 \\
-K_{1} & 0 & K_{2} \\
0 & -K_{2} & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

Here $\mathrm{T}, \mathrm{N}, \mathrm{B}$ are the unit tangent, principal normal and binormal vector
. fields respectively.
Remark 2 : The Serret-Frenet tetrad is a moving frame on the world line of the particle in the space-time continuum. In this dissertation the RSF-tetrad is exploited to derive several elegant results on the different types of transports in relativistic continuum mechanics.

c) THE DECOMPOSITION OF THE FLOW GRADIENT :

Since the Relativistic Serret-Frenet tetrad $\left\{u^{a}, P^{a}, Q^{a}, R^{a}\right\}$ is a set of linearly independent vectors, we can express any second rank tensor say u_{j}^{ℓ} as a linear combination of the 16 outer products of the basis vectors. Explicitly the decomposition of $u_{i k}^{\ell}$ in terms of the Relativistic Serret-Frenet tetrad is

$$
\begin{aligned}
& u_{; k}^{\ell}=\quad\left(u_{; b}^{a} a^{a} u^{b}\right) u_{k} u^{u^{\prime}}+\left(-u_{; b}^{a} u^{b} Q_{a}\right) u_{k} a^{l}+\left(-u_{;}^{a} b^{b} P_{a}\right) u_{k} p^{\ell} \\
& +\left(-u_{; b}^{a} u^{b} R_{a}\right) u_{k} R^{l}+\left(-u_{; b}^{a} p^{b} u_{a}\right) P_{k} u^{\ell}+\left(u_{; b}^{a} p^{b} P_{a}\right) P_{k} P^{l} \\
& +\left(u_{; b}^{a} P^{b} Q_{a}\right) P_{k} Q^{\ell}+\left(u_{; b}^{a} p^{b} R_{a}\right) P_{k} R^{\ell}+\left(-u_{; b}^{a} Q^{b} u_{a}\right) Q_{k} u^{\ell} \\
& +\left(u_{; b}^{a} Q^{b} Q_{a}\right) Q_{k} Q^{l}+\left(u_{; b}^{a} Q^{b} P_{a}\right) Q_{k} P^{l}+\left(u_{; b}^{a} Q^{b} R_{a}\right) Q_{k} R^{l} \\
& +\left(-u_{;}^{a} R^{b} u_{a}\right) R_{k} u^{\ell}+\left(u_{; b}^{a} R^{b} Q_{a}\right) R_{k} Q^{l}+\left(u_{b}^{a} R^{b} P_{a}\right) R_{k} P^{\ell} \\
& +\left(u_{;}^{a} R^{b} R_{a}\right) R_{k} R^{l} . \\
& =\quad K_{1} u_{k} p^{l}+\left(u_{; b}^{a} p^{b} P_{a}\right) P_{k} p^{l}+\left(u_{; b}^{a} p^{b} Q_{a}\right) P_{k} Q^{l}+\left(u_{;}^{a} b^{b} R_{a}\right) P_{k} R^{l} \\
& +\left(u_{; b}^{a} Q^{b} Q_{a}\right) Q_{k} Q^{\ell}+\left(u_{; b}^{a} Q^{b} P_{a}\right) Q_{k} p^{\ell}+\left(u_{; b}^{a} Q^{b} R_{a}\right) Q_{k} R^{\ell} \\
& +\left(u_{; b}^{a} R^{b} Q_{a}\right) R_{k} Q^{\ell}+\left(u_{; b}^{a} R^{b} P_{a}\right) R_{k} P^{\ell}+\left(u_{; b}^{a} R^{b} R_{a}\right) R_{k} R^{\ell} .
\end{aligned}
$$

The decomposition of the tensor gradient of flow field in terms of the Relativistic Serret-Frenet frame is accomplished/^in terms of Ricci coefficients of rotation. The concomitant expressions for the symmetric shear field, skew symmetric rotation field and the expansion scalar field associated with the time like flow vector fields are evaluated in terms of the Riccl rotation co-efficients as computational aids for utilization in later investigations.

$$
\begin{aligned}
u_{j k}^{\ell}= & +K_{1} u_{k} p^{l}+\gamma_{122} P_{k} P^{l}+\gamma_{132} P_{k} Q^{\ell}+\gamma_{142} P_{k} R^{l}+\gamma_{133} Q_{k} Q^{l} \\
& +\gamma_{123} Q_{k} P^{\ell}+\gamma_{143} Q_{k} R^{l}+\gamma_{134} R_{k} Q^{\ell}+\gamma_{124} R_{k} P^{\ell}+\gamma_{144} R_{k} R^{l}
\end{aligned}
$$

Here $\gamma A B C$ represent the Ricci rotation co-eficients defined through (Weather)burn 1963)

$$
\gamma_{A B C}=\lambda^{\ell} A ; m \lambda_{l} B \lambda^{\frac{m}{6}}
$$

where $\lambda^{l} 1_{1}=u^{l}, \lambda_{2}^{l}=P l, \lambda_{3}^{l}=Q^{l}, \lambda_{4}^{l}=R^{l}$.
The capital Latin subscripts refer to tetrad indices and the small Latin scripts refer to tensor indices.
d) COMPUTATIONAL AIDS :

The following results will be needed in this and later chapters.

1) $u_{i k}^{\ell} u_{\ell}=0$ (identically). We note that $\gamma_{A B C}=-\gamma_{B A C}$
iI) $\quad U_{i k}^{\ell} P_{\ell}=-\left(K_{1} u_{k}+\gamma_{122} P_{k}+\gamma_{123} Q_{k}+\gamma_{124} R_{k}\right)$
III) $u_{; k}^{\ell} Q_{\ell}=-\left(\gamma_{132} P_{k}+\gamma_{133} Q_{k}+\gamma_{134} R_{k}\right)$
iv) $u_{; k}^{\ell} R_{\ell}=-\left(\gamma_{142} P_{k}+\gamma_{143} Q_{k}+\gamma_{144} R_{k}\right)$
v) $u_{i k}^{\ell} u^{k}=k_{1} p^{\ell},($ RSF - 1)
vi) $\quad u_{; k}^{l} p^{k}=-\left(\gamma_{122} P^{l}+\gamma_{132} Q^{l}+\gamma_{142} R^{\ell}\right)$
vii) $u_{i k}^{l} Q^{k}=-\left(\gamma_{133} Q^{\ell}+\gamma_{123} P^{l l}+\gamma_{143} R^{\ell l}\right)$
viii) $u_{; k}^{l} R^{k}=-\left(\gamma_{143} Q^{l}+\gamma_{124} p^{l}+\gamma_{144} R^{\ell}\right)$
ix) $\quad u_{\ell ; k}+u_{k: \ell}=K_{1}\left(u_{k} P_{\ell}+u_{\ell} P_{k}\right)+2\left(\gamma_{122} P_{k} P_{\ell}+\gamma_{133} Q_{k} Q_{\ell}+\gamma_{144} R_{k} R_{\ell}\right)$

$$
\begin{aligned}
& +\left(\gamma_{123}+\gamma_{132}\right)\left(P_{k} Q_{\ell}+P_{\ell} Q_{k}\right)+\left(\gamma_{124}+\gamma_{142}\right)\left(P_{k} R_{\ell}+R_{k} P_{\ell}\right) \\
& +\left(\gamma_{134}+\gamma_{143}\right)\left(Q_{k} R_{\ell}+Q_{\ell} R_{k}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { x) } \quad u_{\ell ; k}-U_{k ; l}=K_{1}\left(u_{k}{ }^{P l}-u_{\ell} P_{k}\right)+\left(\gamma_{132^{-}} \gamma_{123}\right) P_{k} Q_{\ell}+\left(\gamma_{123^{-}} \gamma_{132}\right) O_{k} P_{l} \\
& +\left(\gamma_{142}-\gamma_{124}\right) P_{k}{ }_{\ell}^{R}+\left(\gamma_{124}-\gamma_{142}\right) R_{k} P_{\ell} \\
& +\left(\gamma_{143}-\gamma_{134}\right) Q_{k} R_{l}+\left(\gamma_{134}-\gamma_{143}\right) R_{k} Q_{\ell} \quad \ldots(a) \\
& P l\left(u_{\ell ; k}-u_{k \ell}\right)=-\left[K_{1} u_{k}+\left(\gamma_{123}-\gamma_{132)} Q_{k}+\left(\gamma_{124}-\gamma_{142}\right) R_{k}\right] \ldots\right. \text { (b) } \\
& u^{k}\left(u_{\ell ; k}-u_{k i \ell}\right)=k_{1} P_{\ell} \quad \text {... (c) } \\
& P \ell_{u}^{k}\left(u_{\ell ; k}-u_{k ; \ell}\right)=-K_{1} \\
& \text {... (d) } \\
& R^{k} P^{l}\left(\Psi_{2} ; k-u_{k: l}\right)=\gamma_{124}-\gamma_{142} \\
& \text {.. (e) }
\end{aligned}
$$

xi) Expansion $=\theta=u_{; \ell}^{\ell}=-\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)$.
xii) Shear tensor $=\sigma_{k \ell}=\frac{1}{2}\left(u_{\ell ; k}+u_{k ; \ell}-\dot{\dot{L}}_{\ell} u_{k}-\dot{u}_{k} \mu_{\ell}\right)-\frac{1}{3} \theta n_{k \ell}$

$$
\begin{align*}
& 2 \sigma_{k \ell}=2\left(\gamma_{122} P_{k} P_{\ell}+\gamma_{133} Q_{k} Q_{\ell}+\gamma_{144} R_{k} P_{\ell}\right)+\gamma_{132}\left(P_{k} Q_{\ell}+P_{\ell} Q_{k}\right) \\
& +\gamma_{142}\left(P_{k} R_{l}+\left(P_{l} R_{k}\right)+\gamma_{123}\left(Q_{k} P_{l}+Q_{l} P_{k}\right)+\gamma_{143}\left(Q_{k} R_{\ell}+Q_{l} R_{k}\right)\right. \\
& +\gamma_{134}\left(R_{k} Q_{\ell}+R_{\ell} Q_{k}\right)+\gamma_{124}\left(P_{k} R_{\ell}+P_{\ell}{ }^{\prime} R_{k}\right) \\
& -{ }^{2}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)\left(P_{k} P_{\ell}+Q_{k} Q_{\ell}+R_{k} R_{\ell}\right) \tag{a}\\
& \sigma_{k l}{ }^{p l}=-\frac{1}{2} \quad\left[\frac{4}{3} \gamma_{122}-\frac{2}{3}\left(\gamma_{133}+\gamma_{144}\right)\right] P_{k}+\left(\gamma_{132}+\gamma_{123}\right) Q_{k} \\
& \left.+\left(\gamma_{142}+\gamma_{124}\right)\right] R_{k} \tag{b}\\
& \sigma_{k \ell} u^{\ell}==0 \tag{c}\\
& \sigma_{K_{\ell}} Q^{\ell}=-\frac{1}{2}\left(\gamma_{132}+\gamma_{123}\right) P_{k}-\frac{1}{6}\left(\gamma_{122}+\gamma_{144}+8 \gamma_{133}\right) O_{k} \\
& -\frac{1}{2}\left(\gamma_{143}+\gamma_{134}\right) R_{k} \tag{d}\\
& { }^{\sigma} K_{l} R^{l}=-\frac{1}{\frac{1}{2}}\left[\left(\gamma_{142}+\gamma_{124}\right) \rho_{k}+\left(\gamma_{143}+\gamma_{134}\right) Q_{k}\right] \\
& -\frac{1}{6}\left(6 \gamma_{142}+\gamma_{122}+\gamma_{133}+\gamma_{144}\right) R_{k} \quad \ldots \text { (e) } \\
& K_{\ell} Q=-\frac{1}{2}\left(\gamma_{132}+\gamma_{123}\right) P_{k}-\frac{1}{6}\left(\gamma_{122}{ }^{+\gamma}{ }_{144}+8 \gamma_{133}\right) O_{k} \\
& \sigma_{K l R^{l}}=-\frac{1}{2}\left[\left(\gamma_{142}+\gamma_{124}\right) p_{k}+\left(\gamma_{143}+\gamma_{134}\right) Q_{k}\right]
\end{align*}
$$

$$
\begin{array}{ll}
\text { (XIII) } & \text { Rotation }=\omega_{\ell k}=\frac{1}{2}\left(u_{\ell} ; k-u_{k ; \ell}+u_{\ell} \dot{u}_{k}-u_{k} \dot{u}_{\ell}\right) \\
2 \omega_{\ell k}=\left(\gamma_{132}-\gamma_{123}\right) P_{k} Q_{\ell}+\left(\gamma_{123}-\gamma_{132}\right) Q_{k} P_{\ell}+\left(\gamma_{142}-\gamma_{124}\right) P_{k} R_{\ell} \\
& +\left(\gamma_{124}-\gamma_{142}\right) R_{k} P_{\ell}+\left(\gamma_{143}-\gamma_{134}\right) Q_{k} R_{\ell}+\left(\gamma_{134}-\gamma_{143}\right) R_{k} Q_{\ell} \ldots(\mathrm{a}) \\
2 \omega_{\ell k} P^{\ell}=\left(\gamma_{132}-\gamma_{123}\right) Q_{k}+\left(\gamma_{142}-\gamma_{124}\right) R_{k} \\
2 \omega_{\ell k} P_{\ell} Q^{k}=\gamma_{123}-\gamma_{132} \\
2 \omega_{\ell k} P^{\ell} R^{k}=\gamma_{124}-\gamma_{142} \\
2 \omega_{\ell k} R^{k}=\left(\gamma_{142}-\gamma_{124}\right) P_{\ell}+\left(\gamma_{143}-\gamma_{134}\right) Q_{\ell} \\
2 \omega_{\ell k} Q^{k} \quad=\left(\gamma_{132}-\gamma_{123}\right) P_{\ell}+\left(\gamma_{134}-\gamma_{143}\right) R_{\ell} . \tag{f}
\end{array}
$$

2. THE JAUMANN TRANSPORT :

History of classical continuum mechanics tells us that the operator J_{u} was invented by Jaumann in 1911, in the form

$$
\begin{aligned}
& J_{u} x_{a}=\dot{x}_{a}-x_{k} \partial\left[k_{a}{ }_{a}, a, k=1,2,3 .\right. \\
& u^{a}=\frac{d x^{a}}{d t}, \quad \dot{x}^{a}=\frac{d x^{a}}{d t}
\end{aligned}
$$

Jaumann
The superiority of this ${ }_{\wedge}$ operator over other operators like, Lie, Fermi has been described by Prager (1961). The formal extension of this operator to relativistic continuum mechanics was made by Radhakrishna et.al. (1981).

Definition : A tensor field A..a. is. is said to be Jaumann transported if and only if

$$
J_{u} A_{. b_{0 .}}^{. a_{0}}=0
$$

where

$$
\begin{aligned}
& \text { - A...... } \omega_{.}^{k} \text { - -... } \\
& \omega_{a b}=\frac{1}{2}\left(u_{a ; b}-u_{b ; a}-\dot{u}_{a} u_{b}+\dot{u}_{b} u_{a}\right) \text { (rotation tensor) } \\
& \dot{u}_{a}=u_{a ; k} u^{k}, \quad u^{a} u_{a}=1 \quad(a, b, c, k, \ldots=1,2,3,4)
\end{aligned}
$$

and a semicolon denotes covariant differentiation.

2 a) THE JAUMANN TRANSPORT OF THE 3-DIMENSIONAL PROJECTION OPERATOR $h_{a b}:$

The aim of this section is to prove two theorems on the transport of certain projection operators. In order to establish them, the stationary character of a general tensor field is introduced. We need the following properties of Jaumann transport for assisting in the proof.
(1) The metric tensor field is Jaumann transported always (identically). We have, (Radhakrishna et.al. 1981)

$$
\begin{aligned}
& J_{u} g_{a b}=0 \text { identically, } \\
& \text { because } J_{u} g_{a b}=g_{a b ; c} u^{c}+g_{c b} \omega_{. a}^{c}+g_{a c} \omega^{c} \cdot b \\
&=-\left(\omega_{b a}+\omega_{a b}\right), \text { since } g_{a b} \text { are covariant constant. } \\
& J_{u} g_{a b}=0 \quad, \text { since } \omega_{a b} \text { is skew symmetric. }
\end{aligned}
$$

Definition : A tensor is said to be stationary, if it is Jaumann transported.

Thus, the gravitational potentials $g_{i j}$ are stationary.
(2) We observe that the flow vector is not Jaumann transported identically, for, we have,
$J_{u} u_{a}=\dot{u}_{a}+u_{k} \omega_{a}^{k}$, by definition.
$=K_{1} P_{a}$, by (RSF-1) and $\omega_{. a}^{k}$ is a material tensor.
This shows that, ingeneral, the flow is not stationary.
Remark : If the flow is geodesic, we have,
$\dot{u}_{a}=0 \quad$ (or $p^{a}=0$)
and so, obviously a geodesic flow is stationary, (Jaumann transported flow).
(3) We now examine the Jaumann tranpsort of the 3-dimensional projection operator. We consider,
$J_{u} h_{a b}=J_{u} g_{a b}-J_{u} u_{a} u_{b}$.
$=-u_{a} J_{u} u_{b}-u_{b} J_{u} u_{a}$, since $J_{u} g_{a b}=0$
$=-u_{a} \dot{u}_{b}-\dot{u}_{a} u_{b}$, since $J_{u} u_{b}=\dot{u}_{b}$
$J_{u} h_{a b}=-K_{1}\left(P_{a} u_{b}+P_{b} u_{a}\right)$, by (RSF-1)
Thus, $J_{u} h_{a b}$ does not vanish ingeneral.
We find that

$$
\begin{align*}
p^{a} J_{u} h_{a b} & =-K_{1}\left(-u_{b}\right) \\
& =K_{1} u_{b} \\
p^{a} u_{J_{u}}^{b} h_{a b} & =k_{1} . \tag{2.2}
\end{align*}
$$

Theorem 1: $\quad J_{u} h_{a b}=0$ iff $K_{1}=0$
Proof : From (2.1), we have,

$$
J_{u} h_{a b}=-K_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)
$$

Hence $K_{1}=0$ implies $J_{u} h_{a b}=0$.
conversely, when $J_{u} h_{a b}=0$, we get, from (2.2) that

$$
K_{1}=0
$$

Remark : The 3-dimensional projection operator is stationary when and only when the first curvature of the streamline vanishes, (the flow is geodesic).

2 b) THE JAUMANN TRANSPORT OF $P_{a b}$:

We find that the 2-dimensional projection tensor $P_{a b}$ is not Jaumann transported always. The case of the Jaumann transport of $P_{a b}$ is given in the following theorem. As usual the acronym TFAE denotes 'The following (statements) Are Equivalent'

Theorem 2: TFAE : (I) $J_{u} P_{a b}=0$
: (II) $K_{2}+\frac{1}{2}\left(\gamma_{123}-\gamma_{132}\right)=0$

$$
\gamma_{124}=\gamma_{142}
$$

Proof : We have,

$$
\begin{aligned}
J_{u} P_{a b}= & J_{u}\left(g_{a b}-u_{a} u_{b}+P_{a} P_{b}\right) \\
= & J_{u} g_{a b}-u_{a} J_{u} u_{b}-u_{b} J_{u} u_{a}+P_{a} J_{u} P_{b}+P_{b} J_{u} P_{a}, b y \text { linearity. } \\
= & -u_{a} \dot{u}_{b}-\dot{u}_{a} u_{b}+P_{a}\left(\dot{P}_{b}-P_{k} w_{\cdot b}^{k}\right)+P_{b}\left(\dot{P}_{a}-P_{k} w_{\cdot a}^{k}\right), \text { since } J_{u} g_{a b}=0 \\
= & -K_{1}\left(u_{a} P_{b}+P_{a} u_{b}\right)+P_{a}\left(K_{1} u_{b}+K_{2} Q_{b}\right)-P_{a} P_{k} \omega^{k} \cdot b \\
& +P_{b}\left(K_{1} u_{a}+K_{2} Q_{a}\right)-P_{b} P_{k}{ }^{k} \cdot \dot{u}_{b} \\
= & -K_{1}\left(u_{a} P_{b}+P_{a} u_{b}-P_{a} u_{b}-P_{b} u_{a}\right)+K_{2}\left(P_{a} Q_{b}+P_{b} Q_{a}\right) \\
& -P_{a} P_{k} \omega_{\cdot b}^{k}-P_{b} P_{k} \omega_{\cdot a}^{k}, \quad \text { on rearrangement. }
\end{aligned}
$$

$$
\begin{aligned}
J_{u} P_{a b}= & K_{2}\left(P_{a} Q_{b}+P_{b} Q_{a}\right)-P_{a} P_{k} \omega_{\cdot b}^{k}-P_{b} P_{k} \omega_{\cdot a}^{k}, \quad \text { on simplification. } \\
J_{u} P_{a b}= & K_{2}\left(P_{a} Q_{b}+P_{b} Q_{a}\right)-P_{a}\left[\frac{1}{2}\left(\gamma_{132}-\gamma_{123}\right) Q_{b}+\left(\gamma_{142}-\gamma_{124}\right)_{b}^{R}\right] \\
& -P_{b}\left[\left(\gamma_{132}-\gamma_{123}\right) Q_{a}+\left(\gamma_{142}-\gamma_{124}\right) R_{a}\right] . \quad . \quad .(2 \cdot 3)
\end{aligned}
$$

Now, we find the circumstances when all the 10 inner products of $J_{u} P_{a b}$ with the tetrad ($\left.u^{a}, P^{a}, Q^{a}, R^{a}\right)$ vanish. The eight double inner products which vanish identically are

$$
\begin{array}{ll}
u^{a} u^{b} J_{u} P a b & =0, \quad P^{a} P^{b} J_{u} P_{a b}=0, \quad Q^{a} Q^{b} J_{u} P_{a b}=0, \quad R^{a} R^{b} J_{u} P_{a b}=0, \\
u^{a} Q^{b} J_{u} P_{a b}=0, \quad u^{a} R^{b} J_{u} P_{a b}=0, \quad Q^{a} R^{b} J_{u} P_{a b}=0, \quad u^{a} P^{b} J_{u} P_{a b}=0 . \\
\text { 1) } J_{u} P_{a b} \text { when transected with } Q^{b} \text { yields }
\end{array}
$$

$$
\begin{aligned}
Q^{b} J_{u} P_{a b} & =Q^{b}\left[K_{2}\left(P_{a} Q_{b}+P_{b} Q_{a}\right)-P_{a} P_{k} \omega_{\cdot b}^{k}-P_{b} P_{k} \omega_{\cdot a}^{k}\right] \\
& =-K_{2} P_{a}-P_{a} P_{k} Q^{b} \omega_{\cdot b}^{k} \\
Q^{b} J_{u} P_{a b} & =-P_{a}\left(K_{2}+P_{k} Q^{b} \omega_{b}^{k}\right) .
\end{aligned}
$$

Consequently, we get

$$
P^{a} Q^{b} J_{u} P_{a b}=-P^{a} P_{a}\left(K_{2}+P_{k} Q^{b} \omega_{b}^{k}\right)
$$

$$
P^{a} Q_{J_{u}}^{b} P_{a b}=K_{2}+Q^{b} P_{k} \omega_{\cdot b}^{k}
$$

$$
P^{a} Q_{J_{u}}^{b} P_{a b}=K_{2}+\frac{1}{2}\left(\gamma_{123}-\gamma_{132}\right) \quad(\text { by computational aid }) . .(2.4)
$$

(II) Contracting $J_{u} P_{a b}$ with P^{b} and R^{a}, we have,

$$
\begin{aligned}
P^{b} J_{u} P_{a b} & =P^{b}\left[K_{2}\left(P_{a} Q_{b}+P_{b} Q_{a}\right)-\frac{1}{2} K_{1}\left(P_{a} u_{b}+P_{b} u_{a}\right)\right. \\
& \left.-\frac{1}{2} P_{a} P^{r}\left(u_{r ; b}-u_{b ; r}\right)-\frac{1}{2} P_{b} P^{r}\left(u_{r ; a}-u_{a ; r}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
&=-K_{2} Q_{a}+\frac{1}{2} K_{1} u_{a}-\frac{1}{2} P_{a} P^{b} P^{r}\left(u_{r ; b}-U_{b ; r}\right)+\frac{1}{2} P^{r}\left(u_{r ; a}-u_{a ; r}\right) \\
& \quad \text { since } P P_{b_{b}}=-1, P^{b} Q_{b}=P^{b} u_{b}=0 \\
& P^{b} J_{u} P_{a b}=-K_{2} Q_{a}+\frac{1}{2} K_{1} u_{a}+\frac{1}{2} P^{r}\left(u_{r ; a}-u_{a ; r}\right) \\
& R^{a} P^{b} J_{u} P_{a b}=R^{a}\left[-K_{2} Q_{a}+\frac{1}{2} K_{1} u_{a}+\frac{1}{2} P^{r}\left(u_{r ; a}-u_{a ; r}\right)\right] \\
& R^{a} P^{b} J_{u} P_{a b}=\frac{1}{2} R^{a} P^{r}\left(u_{r ; a}-u_{a ; r}\right) \\
& R^{a} P^{b} J_{u} P_{a b}=\frac{1}{2}\left(R^{b} P^{a}{ }_{\omega}{ }_{a b}\right) \\
&=\frac{1}{2}\left(\gamma_{124}-\gamma_{142}\right) \tag{2.5}
\end{align*}
$$

Now, (I) implies (II).

$$
\begin{gathered}
J_{u} P_{a b}=0 \text { implies } K_{2}=-\frac{1}{2}\left(\gamma_{123}-\gamma_{132}\right) \text { by }(2.4) \\
\gamma_{124}=\gamma_{142} \text { by }(2.5)
\end{gathered}
$$

Again, (II) implies (1), on simplification of (2.3).
This completes the proof.

3. SECOND ORDER JAUMANN TRANSPORTS :

Second order Lie transports have been exploited by Carter and Quintana (1977) and third order Lie transports have been used by Katkar (1989) for gravitational radiation. We now study the second order Jaumann transport of the $3^{\text {-dimensional }}$ projection operator. Our aim is to prove:

Theorem 3 : TFAE

1) $J_{u} J_{u} h_{a b}=0$
2) $K_{1}=0, \quad \gamma_{124}=\gamma_{142}$

Proof : $J_{u} h_{a b}=-u_{a} \dot{u}_{b}-\dot{u}_{a} u_{b}$

$$
J_{u} h_{a b}=-\left(u_{a} u_{b}\right)^{*}
$$

we have,

$$
\begin{align*}
& J_{u} h_{a b}=-K_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right) \\
& J_{u} J_{u} h_{a b}= J_{u}\left[-K_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)\right] \\
&=-\dot{K}_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)-K_{1}\left[K_{1} P_{a} P_{b}+u_{a}\left(K_{1} u_{b}+K_{2} Q_{b}\right)\right. \\
&\left.-u_{a} P_{k} \omega_{\cdot b}^{k}+K_{1} P_{b} P_{a}+u_{b}\left(K_{1} u_{a}+k_{2} Q_{a}\right)-u_{b} P_{k} \omega \cdot a\right] \\
& b y(R S F-1,11) . \\
& J_{u}^{k} J_{u} h_{a b}=-\dot{K}_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)-2 K_{1}^{2}\left(P_{a} P_{b}+u_{a} u_{b}\right)-K_{1} K_{2}\left(u_{a} Q_{b}+u_{b} Q_{a}\right) \\
&+K_{1} P_{k}\left(u_{a} \omega_{\cdot b}^{k}+u_{b} \omega_{\cdot a}^{k}\right), \quad b y \text { rearrangement } \tag{2.6}
\end{align*}
$$

We observe that,

$$
\begin{align*}
& u_{a} \omega_{\cdot b}^{k}+u_{b} \omega_{\cdot a}^{k}=\frac{1}{2} u_{a} g^{k r}\left(u_{r ; b}-u_{b ; r}-\dot{u}_{r} u_{b}+u_{r} \dot{u}_{b}\right) \\
&+\frac{1}{2} u_{b} g^{k r}\left(u_{r ; a}-u_{a ; r}-\dot{u}_{r} u_{a}+u_{r} \dot{u}_{a}\right) \ldots \ldots(2.7) \tag{2.7}\\
& J_{u} J_{u} h_{a b}=-\dot{K}_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)-2 k_{1}{ }_{1}\left(P_{a} P_{b}+u_{a} u_{b}\right)-K_{1} K_{2}\left(u_{a} Q_{b}+u_{b} Q_{a}\right) \\
&+K_{1} P_{k} \frac{1}{2} u_{a} g^{k r}\left(u_{r ; b}-u_{b ; r}-\dot{u}_{r} u_{b}+u_{r} u_{b}\right) \\
&+K_{1} P_{k} \cdot \frac{1}{2} u_{b} g^{k r}\left(u_{r ; a}-u_{a ; r-}-\dot{u}_{r} u_{a}+u_{r} \dot{u}_{a}\right) \text {, since from (2.7) } \tag{2.7}\\
&=-\dot{K}_{1}\left(u_{a} p_{b}+u_{b} P_{a}\right)-2 k_{1}^{2}\left(P_{a} P_{b}+u_{a} u_{b}\right)-K_{1} K_{2}\left(u_{a} Q_{b}+u_{b} Q_{a}\right) \\
&+ \frac{1}{2} K_{1}\left[u_{a} P^{r}\left(u_{r ; b}-u_{b ; r}-K_{1} P_{r} u_{b}\right)+u_{b} P^{r}\left(u_{r ; a}-u_{a ; r}-K_{1} P_{r} u_{a}\right)\right. \\
& \text { since } P^{r} u_{r}=0 \text { by (RSF-1). }
\end{align*}
$$

$$
\begin{aligned}
= & -\dot{K}_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)-2 K_{1}^{2}\left(P_{a} P_{b}+u_{a} u_{b}\right)-K_{1} K_{2}\left(u_{a} Q_{b}+u_{b} Q_{a}\right) \\
& +\frac{1}{2} K_{1} u_{a} P^{r}\left(u_{r ; b}-u_{b ; r}\right)+\frac{1}{2} K_{1}^{2} u_{a} u_{b}+\frac{1}{2} K_{1} u_{b} P^{r}\left(u_{r ; a}-u_{a ; r}\right) \\
& +\frac{1}{2} K_{1}^{2} u_{b} u_{a}
\end{aligned}
$$

Hence, we obtain,

$$
\begin{aligned}
J_{u} J_{u} h_{a b}= & -\dot{k}_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)-2 K_{1}^{2}\left(P_{a} P_{b}+u_{a} u_{b}\right)-K_{1} K_{2}\left(u_{a} Q_{b}+u_{b} Q_{a}\right) \\
& +\frac{1}{2} K_{1} P^{r} u_{a}\left(u_{r ; b}-u_{b ; r}\right)+\frac{1}{2} K_{1} P^{r} u_{b}\left(u_{r ; a}-u_{a ; r}\right) \\
& +k_{1}^{2} u_{a} u_{b} .
\end{aligned}
$$

We note that K_{1} appears in every term.
Obviously, when $K_{1}=0$, we get, $J_{u} J_{u} h_{a b}=0$.
We now find that following 8 inner products of $J_{u} J_{u} h_{a b}$ with the tetrad $\left(u^{a}, p^{a}, Q^{a}, R^{a}\right)$ vanish.

$$
\begin{array}{ll}
P^{a} Q^{b} J_{u} J_{u} h_{a b}=0 & P^{a} R^{b} J_{u} J_{u} h a b=0 \\
Q^{a} P^{b} J_{u} J_{u} h_{a b}=0 & Q^{a} Q^{b} J_{u} J_{u} h_{a b}=0 \\
R^{b} Q^{a} J_{u} J_{u} h_{a b}=0 & R^{a} P^{b} J_{u} J_{u} h_{a b}=0 \\
R^{a} Q^{b} J_{u} J_{u} h_{a b}=0 & R^{a} R^{b} J_{u} J_{u} h_{a b}=0
\end{array}
$$

Non-vanishing inner products :

(1) Contracting $J_{u} J_{u} h_{a b}$ with u^{b}.

$$
\begin{aligned}
u^{b} J_{u} J_{u} h_{a b}= & -\dot{K}_{1} P_{a}-2 K_{1}^{2} u_{a} \quad-K_{1} K_{2} Q_{a}+\frac{1}{2} K_{1} P^{r} u^{b} u_{a}\left(u_{r ; b}-u_{b ; r}\right) \\
& +\frac{1}{2} K_{1} P^{r}\left(u_{r ; a}-u_{a ; r}\right)+K_{1}^{2} u_{a}
\end{aligned}
$$

Now we infer that

$$
\begin{aligned}
u^{a} u^{b} J_{u} J_{u} h_{a b}= & u^{a}\left[-\dot{K}_{1} P_{a}-2 K_{1}^{2} u_{a}-K_{1} K_{2} Q_{a}+\frac{1}{2} K_{1} P^{r} u_{u}^{b} u_{a}\left(u_{r ; b}-u_{b ; r}\right)\right. \\
& \left.-\frac{1}{2} K_{1} P^{r}\left(u_{r ; a}-u_{a ; r}\right)+K_{1}{ }^{2} u_{a}\right] \\
= & -2 K_{1}^{2}+\frac{1}{2} K_{1} P^{r} u^{b}\left(u_{r ; b}-u_{b ; r}\right)-\frac{1}{2} K_{1} P^{r} u^{a}\left(u_{r ; a}-u_{a ; r}\right) \\
& +K_{1}^{2} \quad \text { since } u^{a} P_{a}=0, u^{a} u_{a}=1, u^{a} Q_{a}=0 . \\
u^{a} u^{b} J_{u} J_{u} h_{a b}= & -K_{1}^{2}+\frac{1}{2} K_{1} P^{r} u^{b}\left(u_{r ; b}-u_{b ; r}\right)-\frac{1}{2} K_{1} P^{r} u^{a}\left(u_{r ; a}-u_{a ; r}\right) \\
= & -K_{1}^{2}+\frac{K_{1}}{2} u^{b}\left[-\left\{K_{1} u_{b}+\left(\gamma_{123}-\gamma_{132}\right) Q_{b}+\left(\gamma_{124}-\gamma_{142}\right) R_{b}\right]\right. \\
& -\frac{1}{2} K_{1} u^{a}\left[-\left\{K_{1} u_{a}+\left(\gamma_{123}-\gamma_{132}\right) Q_{a}+\left(\gamma_{124}-\gamma_{142}\right) R R_{a}\right]\right. \\
= & -K_{1}^{2}+\frac{K_{1}}{2}\left(-K_{1}\right)+\frac{1}{2} K_{1}^{2} \\
- & -K_{1}^{2}-\frac{K_{1}^{2}}{2}+\frac{K_{1}^{2}}{2} \\
= & u_{u}^{a} J_{u}^{b} J_{u} h_{a b}=
\end{aligned}
$$

(2) $J_{u} J_{u} h_{a b}$ when transvected with P^{b}, yields.

$$
\begin{aligned}
P^{b} J_{u} J_{u} h_{a b}=\dot{K}_{1} u_{a}+ & 2 K_{1}{ }^{2} P_{a}+\frac{1}{2} K_{1} P^{r} u_{a} P^{b}\left(u_{r ; b}-u_{b ; r}\right) \\
& \text { since } P^{b} P_{b}=-1, P^{b} u_{b}=0, P^{b} Q_{b}=0
\end{aligned}
$$

consequently, we get,

$$
\begin{aligned}
& u^{a} P^{b} J_{u} J_{u} h a b=u^{a}\left[\dot{k}_{1} u_{a}+2 k_{1}{ }^{2} p_{a}+\frac{1}{2} k_{1} P^{r} u_{a} p^{b}\left(u_{r ; b}-u_{b ; r}\right)\right] \\
& u^{a} p^{b} J_{u} J_{u}{ }_{a b}=\dot{k}_{1}+\frac{1}{2} k_{1} p^{r} p^{b}\left(u_{r ; b}-u_{b ; r}\right) \\
& u^{a} P^{b} J_{u} J_{u} h_{a b}=\dot{k}_{1} \quad \begin{array}{l}
\text { since double inner product } \\
\text { of symmetric with skew } \\
\text { symmetric always vanishes. }
\end{array}
\end{aligned}
$$

(3) Again, contracting $J_{u} J_{u}{ }^{h} a b$ with R^{b} and u^{a}

$$
\begin{aligned}
& R^{b} J_{u} J_{u} h_{a b}= R^{b}\left[-\dot{K}_{1}\left(u_{a} P_{b}+u_{b} P_{a}\right)-2 K_{1}^{2}\left(P_{a} P_{b}+u_{a} u_{b}\right)-K_{1} K_{2}\left(u_{a} Q_{b}+u_{b} Q_{a}\right)\right. \\
&\left.+\frac{1}{2} K_{1} P^{r} u_{a}\left(u_{r ; b}-u_{b ; r}\right)+\frac{1}{2} K_{1} P^{r} u_{b}\left(u_{r ; a}-u_{a ; r}\right)+K_{1}^{2} u_{a} u_{b}\right] \\
&= \frac{1}{2} K_{1} P^{r} u_{a} R^{b}\left(u_{r ; b}-u_{b ; r}\right), \text { since } R^{b} P_{b}=0, R^{b} u_{b}=0 \\
& R^{b} Q_{b}=0 . \\
& u^{a} R^{b} J_{u} J_{u} h a b= u^{a}\left[\frac{1}{2} K_{1} P^{r} u_{a} R^{b}\left(u_{r ; b}-u_{b ; r}\right)\right] \\
& u^{a} R^{b} J_{u} J_{u} h a b= \frac{1}{2} K_{1} P^{r} R^{b}\left(u_{r ; b}-u_{b ; r}\right) \\
&= \frac{1}{2} K_{1}\left(\gamma_{124}-\gamma_{142}\right)
\end{aligned}
$$

(4) $J_{u} J_{U} h_{a b}$ when transected with Q^{b}, yields.

$$
Q^{b} J_{u} J_{u} h_{a b}=K_{1} K_{2} u_{a}+\frac{1}{2} K_{1} P^{r} u_{a} Q^{b}\left(u_{r ; b}-u_{b ; r}\right)
$$

Consequently, we get,

$$
\begin{aligned}
& u^{a} Q^{b} J_{u} J_{u} h_{a b}=K_{1} K_{2}+\frac{1}{2} K_{1} p^{r} Q^{b}\left(U_{r ; b}-u_{b ; r}\right) \\
& u^{a} Q^{b} J_{u} J_{u} h_{a b}=K_{1} K_{2}+\frac{1}{2} K_{1}\left(\gamma_{123}-\gamma_{132}\right)
\end{aligned}
$$

(5) Again contracting $J_{u} J_{u} h_{a b}$ with P^{b} and P^{a}

$$
\begin{aligned}
& P^{b} J_{u} J_{u} h_{a b}=\dot{K}_{1} u_{a}+2 K_{1}^{2} P_{a}+\frac{1}{2} K_{1} P^{r} u_{a} P^{b}\left(u_{r ; b}-u_{b ; r}\right) \\
& P^{a} P^{b} J_{u} J_{u} h_{a b}=-2 K_{1}{ }^{2}
\end{aligned}
$$

This shows that $J_{u} J_{u} h_{a b}=0$ implies that $K_{1}=0$.

4. ON THE NONSTATIONARY CHARACTER OF RELATIVISTIC SERRET-FRENET TETRAD :

We examine in this section the Jaumann transport of the whole RSFtetrad and show that it is not feasible.
i) We have already shown that

$$
J_{u} u^{a}=k_{1} p^{a}
$$

Since $k_{1} \neq 0$ for the existence of the RSF-tetrad, we infer that $J_{4}^{a} \neq 0$.
ii) $\quad J_{u} P^{a}=P_{; k}^{a} u^{k}-P^{k} \omega_{k}^{\cdot a}$

$$
=k_{1} u^{a}+\left[k_{2}+\frac{1}{2}\left(\gamma_{123}-\gamma_{132}\right)\right] Q^{a}+\frac{1}{2}\left(\gamma_{142}-\gamma_{124}\right) R^{a}
$$

by (RSF-2) and computational aids : $[\mathrm{XIII}(\mathrm{b})]$.
$J_{u} P^{a}=0$ implies and implied by $k_{1}=0$

$$
k_{2}+\frac{1}{2}\left(\gamma_{123}-\gamma_{132}\right)=0
$$

$$
\gamma_{142}=\gamma_{124}
$$

iii) $J_{u} a^{a}=Q_{i k}^{a} u^{k}-Q^{k} \omega_{k}^{a}$
$\left.=\left[-k_{2}+\frac{1}{2}\left(\gamma_{132}-\gamma_{123}\right)\right] P^{a}+\left[k_{3}+\frac{1}{2} \gamma_{134}-\gamma_{143}\right)\right] R^{a}$,
by (RSF-3) and computational aids [XIII(f)]

$$
\begin{aligned}
J_{u} Q^{a}=0 \quad \text { iff } k_{2} & =\frac{1}{2}\left(\gamma_{132}-\gamma_{123}\right) \\
k_{3} & =\frac{1}{2}\left(\gamma_{143}-\gamma_{134}\right)
\end{aligned}
$$

iv) $J_{u} R^{a}=R_{; k}^{a} u^{k}-R^{k} \omega_{k}^{\cdot a}$

$$
\begin{gathered}
=-k_{3} Q^{a}+\frac{1}{2}\left[\left(\gamma_{142}-\gamma_{124}\right) P^{a}+\left(\gamma_{143}-\gamma_{134}\right) Q^{a}\right] \\
\text { by (RSF-4) and computational aids [XIII(e)]. } \\
=\frac{1}{2}\left(\gamma_{142}-\gamma_{124}\right) P^{a}+\left[-k_{3}+\frac{1}{2}\left(\gamma_{143}-\gamma_{134}\right)\right] Q^{a} \\
J_{u} R^{a}=0 \text { implies and implied by } \gamma_{142}=\gamma_{124} . \\
k_{3}=\frac{1}{2}\left(\gamma_{143}-\gamma_{134}\right) .
\end{gathered}
$$

It follows that (A is the tetrad index)

$$
J_{u} \lambda^{a} A \neq 0, \text { for } \quad \lambda_{A}^{a}=\left(u^{a}, P^{a}, Q^{a}, R^{a}\right) \text { and } k_{1} \neq 0 \text { and }
$$

so the RSF-tetrad is not stationary.

REFERENCES

CARTER,B. and QUINTANA,H. (1977). Gravitational and Acoustic Waves in an Elastic Medium, Phys. Rev. D16, pp. 2928-2938.

DAVIS,W.R. (1970). Classical Fields, Particles: and the Theory of Relativity. Gorden and Breach Science Publication, New York.

JAUMANN, G. (1911). Geschlossenes system physikalischer and chemischer differential gesetze. Sitzgsber Akad. Wiss. Wien (Ila), 120, 385-530.

KATKAR, L.N. (1989). Third-Order Geometrical Null Symmetries of Gravitational Fields. General Relativity and Gravitation Vol.21, No. 10, p. 997.

MAGDUM, D.B. (1988). A Study of Space-like Congruences in General Relativity (Unpublished M. Phil. dissertation submitted to Shivaji University, Kolhapur).

OLDROYD, J.G. (1970). Proc. R. Soc. Lond. A 316, 1.

O'NEILL, B. (1966). Elementary Differential Geometry. Academic Press, New York.

PRAGER W. (1961). Introduction to Mechanics of Continua. Academic Press P. 156.

RADHAKRISHNA, L. (1988), STATE OF ART IN HIGH-SPEED CONTINUUM
MECHANICS, National Workshop in computational methods in continuum mechanics, Osmania University, Hyderabad.

RADHAKRISHNA,L., DATE,T.H. and KATKAR,L.N. (1981). Jaumann
Transport in Relativistic Continuum Mechanics. JI. GRG, 13, 939-946

WEATHERBURN,C.E. (1963). An Introduction to Riemannian Geometry and the Tensor Calculus. CAMBRIDGE, at the University Press.

