CHAPTER - 1

JAUMANN TRANSPORT IN RELATIVISTIC CONTINUUM MECHANICS

1. INTRODUCTION :

a) RELATIVISTIC CONTINUUM MECHANICS :

A continuum is a structureless substance and to each point of the
3-dimensio;\al continuum we can assign kinematical or dynamical variables
which are continuous functions of the three co-ordinates of the point. .In
continuum mechanics, we study the béhaviour of systems under the action
. of forces ignoring the molecular structure of matter. The study of
continuum mechanics has two aspects : (i) Kinematics, which is concernedb
with the motion of particles and bodies, (ii) Dynamics, which deals with
forces causing the motion of particles and bodies.- The exploration of
gravitational flelds, electromagnetic fields, hydrodynamics, aerodynamics,

elastic/plastic - materials constitute typical instances of continuum

mechanics.

Strong and rapidly changing gravitational fields are found in neutron

2),

stars, wherein high pressure (p ¢ high speeds (v  c) of supermassive

bodies (M‘\a%%z* ) are prevalent. Here p is the density, M is the mass,
R -is the radfus of the star, G is the constant of gravitation. It is
in such astrophy‘sical circumstances the relevance of general rélativistic
continuum mechanics appears. In this dissertation we confine to the

kinematical aspects of the relativistic continuum mechanics.



Time has no absolute status in the theory of relativity. Hence
the time rate of kinematical variables in classical continuum mechanics
has to be suitably changed for applying to relativistic domain., This is
achieved by replacing the time rate by covariant differentiation along
TIME-L!KE flow vector, since time-like vectors have absolute character

in special as well as general relativity (Oldroydl1970).

b) RELATIVISTIC SERRET FRENET TETRAD :

The unit time-like velocity field ua.

if s is the arc-length parameter then the natural equation for

the world-line of a particle in a continuum is

22 = 7Z%s), (a=1,2 3, 4).
If ua is the tangent vector to this world-line (- 4-dimensional space
curve) then
a v
W o= 927, - (1.1)

ds

This means that u® is the velocity vector field of the particle.

The metric relation d52 = dZadZa implies
a2 dz4; . a _ ., .
ds - ds - 1 Or U Ua il 1 LLE (1-2)

Thus, we have, u? as the unit tangent vector field on the world-line,

due to the choice of the signature (-, -, -, +) of the metric tensor. Since

uau > 0 we infer that ua

a is a time-like unit vector.



The unit space-like acceleration field P‘a1 o

a
The acceleration field (which is not equal to -g%- but equal to )
su? . . a . £i
g‘é—‘ls denoted by u~ and is defined by
0? - ua_‘bub (1.3)

where a semicolon denotes covariant differentiation. It should be noted
that G2 is not a unit vector field. It is a space-like vector field since
it is orthogonal to the time-like vector u?, for, from (1.2)
a .

(u u, )’=0
which shows that
¥, =0 e (1.4)
‘This one orthogonal relation helps us to examine whether an orthogonal
tetrad can be constructed, by introducing two more space-like vector

fields.

T a
Let P represent the unit vector field along the acceleration,

then, we have
ﬁa

1a

i pa .

or PA=i®y (dNip?

The negative sign before dkﬁk is due to the fact that (> is space-like

and G4 a < 0. We introduce a scalar field through

K, ="Y-04% ~ e (1.5)

1 a
and observe that

pa a®/K ... (1.6)



Here K1 is called as the first curvature of the world-line. We note

that

a =
PP, =1 .

The two unit space-like orthogonal vector fields which are orthogonal to

both velocity and acceleration vector fields : Qa, R2.

&

a

Suppose Qa, R represent the two unit vector fields which are

orthogonal to both v? and Pa. Then we have the algebraic relations

P?Q. = 0, PaRa

a~ anp _
a o, uQa—O, UR_=0 e (1.7)

a
R¥:R, = Q%q, =-1 | eee (1.8)

and the differential relations can be described as (Davis 1970)

2] T N T
u 0 K1 0 0 u?
pa K, 0 K, 0 pa
nE . o (1.9)
Q 0 -K2 0 i K3 Q
na a
| R 0 0 K5 o | | R’

where an overhead dot represents the covariant differentiation along the

a

flow vector field u~. They are referred as Relativistic Serret-Frenet

formulae and we list them for use in this dissertation.

0 = kP vessessnssesesesesesses (RSF-1)
p2 - Ku? + KpQ?  wsessssssinens (RSF-2)
Q* = K P? + KR woreemmnssenrins (RSF-3)
2 - -K,Q? (RSF-4)

where Kz., K3 are called the second and the third curvatures of the

stream-line in the 4-dimensional space-time .



The explicit expressions for Q?, R?, Ko Ky are given by (Magdum 1988) .

L

1 u 1 +*a a
Q? = (L +— -k,
Ko " Ky k2 ’
a _ -1 abcd | - -
1 2 r
sedee -
yu k % . &
K - - a ( _!.. \2 + K2 M
2 K2 K1
1
- 1 abcd - e el
Ky = —32 .0 Uiy
KK

where, r\f‘de is the Levi-Civita permutation tensor, 'ﬁd = (Lnd)_kuk .
L)

Definition : The set { ua:P,aQ?Ra} satisfying the condition (RSF-1 to 4)

is- ca!led the Relativistic Serret-Frenet Tetrad.

Remark 1 : It may be interesting to note that the co-efficient matrix
in RSF-formulae (1.9) is neither symmetric nor skew symmetric; the
corresponding co-efficient matrix in classical Serret-Frenet formulae is

- skew symmetric (vide Q' Neill, 1966),

T o K1 O T
N |= -K1 O K2 N
_ B_J 0 -K2 0 B i

Here T, N, B are the unit tangent, principal normal and binormal vector

fields respectively.

Remark 2 : The Serref-Frenet tetrad is a moving frame on the world
line of the particle in the space-time continuum. In this dissertation
the RSF-tetrad is exploited to derive several elegant results on the .

different types of transports in relativistic continuum mechanics.



c) THE DECOMPOSITION OF THE FLOW GRADIENT :

Since the Relativistic Serret-Frenet tetrad{ u®, P?, Q%, R?} isa
~set of linearly independent vectors, we can express any second rank tgnsor
say ugvk as a linear combination of the 16 outer prc;ducts of the basis
vectors. éxplicitly the decomposition of u;y;( in terms of the Relatlvistic

Serret-Frenet tetrad is

_ 8 By g, B bay L. (B D %
U’;“k = (u,pu u )Ukup“ + (ulpuQu, Q% + (puTP )y P
_,a,b 2, (,apb 2 apb pL
+ ( u:bu Ra)ukR + ( u;bP ua)Pku + (u;bP Pa)PkP
aph 2 apb 2 . (.anb 3
+ WpPQ P QT+ (W PPR PR + (-u5 Q7u )Quu

b % a ~b )
+, (u?bo Q)Q,Q" + (uiQ’P)QP" ‘“?beRa)QkRp'

a b
* EUpRUPIRUT L ] RPQ R, % + EROP )R, PH

a b [
+ (u;bR Ra) RkR .

b L
= K,u Pt + (u2P°P )P P a b 2 ,ab
1Yk b Tal K+ (B PPQ PO + (WP Ra)PkRR‘

+ uhaPa, )00t « W% Ja Pt + (3 Q°R, QR
L a - a b L
+ (u;?)R Q R, Q" + (u=bR PIRP™ + (WG ROR IR R .

The decomposition of the tensor gradient of ﬂown\:}e!d in terms of the
bt

Relativistic Serret-Frenet frame s accomplished Ain terms of Riccli co-
efficients of rotation. The concomitant expressions for the symmetric
shear field, skew symmetric rotatib'n. field and the expansion scalar field
associated v;ith the time like flow vector fields are evaluated in terms of
the Riccl rotation co-efficients as computational aids for utilization in

later investigations.



. /‘,.,

_ ) %
e =+ KiueP® + T120PPt +7.430P Q% + Y00P RY Y1450,

) 8 g g 3
+ Y123QP" + Yy g3QR” + Y 34R Q% + Y o RPY Y4 4R R

Here yapc fepresent the Ricci rotation co-eficients defined through

(Weather burn 1963)
Yasc = W a;m ABAY
where ')\2'1 = ul, )\9'2=P1 . )\13=Cft ' A24=R9“.

The capital Latin subscripts refer to tetrad indices and the small Latin

scripts refer to tensor indiées.

d) COMPUTATIONAL AIDS :

The following results will be needed in this and later chapters.

1) u‘?’kUSL =0 (identically) . We note that Y

asc =Yeac

) U%kpz = =(Kyup + Y g00P + Y030 + Yy4Ry)
1 Qg = = CyqpPh * v133% * ¥ 134R)

9’ = -
V) U Ry = - Oy 109Pk *Y 143% * Y144RY

v) u?i(uk = K,PY, (RSF- 1)

‘ k _ . % ) %
vi) “%kp (¥129P" *+7132Q" *v 142~ )

i [P, S L 2
k _ ] '3
vit)  uh R = - (y 4500 ¢ Y1247 * V144RY)

i) Upae * Y = Kq(uPy * P+ 2 (v y0oPPy + vy33Q Qg + vy 4aRRe)
+ (Y03 * Yq32) (P Qy + POy 04%v40)P R+ RPy)

+ (Yyaq * Y143 @Ry + QR -



X) U ey = KyueP g POy 307 v1230PQ + a3 Y132004Py
3 R .
*+ (Y142 = Y1240Pk7g * (i24 = M142) RePy

P (ug.p ~ Upq) = - [ Kqug + ('Y1-23 TY132)Q, + (Y104 - Y140y 1 w0}

uk (u’“k - "k&) a K,Pz . (C)

PRk ( U - U ) = K e (d)
k

RP (e~ Uea) = Y126~ Yid2 e (8)

xi) Expansion =0 = "%2 = - (Y122 *Yiaz ¥ Y144)'

xii)  Shear tensor =0 g = 3 (u2 gt Uy Lhu - uk,ug) 38 L
204y = 2 (Y122Pkpz *Y133% %t 7144Rk’:i) * Y32 PQ* P Q)
Y142 PRe + (B RY) +v195 QU + QPy) + Y1;3(QKR$L + Ry
Yyaa (ReQp + R Q) +¥ypq (PR + AR
~ 8 (¥ * Y133 * V140 PPy * Q + RRy ) wla)
okP' = b (B =5 (i35 * 114Pc * (V132 * V12909,
+ (Y42 *Y 12 1Rg - (0)

°kg“£= =0 | e {(C)

1
-3 (Y 35 *Y 1230 P =5 (Y 120 *Y 144 * BY 43300

- % (Y14 134) R v ()

(o}
KER™ = = 3 DUy + Y100 + (v 143 +7 1349 ]

1
..-6- (6Y142+Y122+-Y133 +Y144)Rk e (€)



(XI) Rotation = Wl = 3 (UQ.;k .- Upsg * Yl ~ Uy Yg )

2wg = (Y30 = Y123PkQ* (Y123 = Y1320%R + (Y 140 V129)PcRe

* 0124 = Y 122RPy (Y 13 = Y1340 QR2H(Y1347143R, Qg (@)

R’ _ N ) .
20g P = (Y135 =Y 412300 * (Y49 = Yq240Ry ()
Lk )
20 PTQY = Y53 - Yy32 ver(C)
k —14 -
QwikaR = Y24 ~ V142 wer()
k = -
o R
2w Q" = (¥y3 = Y4230 *+ (Y34 “Vig3)Ry - ()

2, THE JAUMANN TRANSPORT

History of classical continuum mechanics tells us that the operator

Ju was invented by Jaumann in 1911, in the form

Ju xa = Xa - Xka [kua] s k =11_2_'3 -*
a . a
Ua = "d"x—“o xa = ._d—x_.
dt dt
Jaumann

The superiority of this,\operator over other operators like, Lie, Fermi has
been described by Prager (1961). The formal extension of this operator

to relativistic continuum mechanics was made by Radhakrishna et.al. (1981) .

Definition : A tensor field Ag' is said to be Jaumann transported

if and only if

..a. -
JuA.b.. =0
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where J AT = (AT ) e AT 0% 4

wde K
= Al .8 w .c - e

Wap =%(ua,b S Ut U+ &bu a ) (rotation tensot)
1} 9

. k a
u, = ua;ku . u'u, = 1 (a,0,CoKy voe = 1,2,3,4)

~ and a semicolon denotes covariant differentiation.

2 a) THE JAUMANN TRANSPORT OF THE 3-DIMENSIONAL
PROJECTION OPERATOR h,

b :

The aim of this section is to prove two theorems on the transport
of certain projection operators. In order to establish them, the stationary
character of a general tensor field is introduced. We need the following

- properties of Jaumann transport for assisting in the proof.

(1) The metric tensor field is Jaumann transported always (identically).

We have, (Radhakrishna et.al. 1981)

Jugab = 0 identically,

c
becau = c c
e J 9 Yabc! ¥ Iehwia ™ Jacwih
=.@, ba *“’ab)’ since g, are covariant constant.
Jugab =0 s since w is skew symmetric.

Definition : A tensor is said to be stationary, if it is Jaumann
transported.

Thus, the gravitational potentials g“. are stationary..

(2) We observe that the flow vector is not Jaumann transported identi-

cally, for, we have,
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Ju., = u +ukwk

ua a 3" by definition.

K{pa‘ , by (RSF-1) and “’ka is a material tensor.

I
This shows that, in/general, the flow is not stationary.

Remark : If the flow is geodesic, we have, -

i, =0 (or P2 = )

and so, obviously a geodesic flow is stationary ;(Jaumann transported

fiow).

(3) We now examine the Jaumann tranpsort of the 3-dimensional

projection operator. We consider,

Juab = du9ab - Yy¥alp -
= - uaJuub - uu]'uua, s_ince Jugab =0
= - uaub - uaub , Since Juub = Uy
Juhab = - K1 (Paub + Pbua), by (RSF-1) wes(2.1)
Thus, Juhab does not vanish ingeneral.
We find that
a
P Juhab = - K1 (~ub)
KiYp
ab -
P U Juhab - k1 L] (LT (2-2)
Theorem 1 : Juhab =0 iff K1 =0
Proof : From (2.1), we have,
JuPap = ~Kq (UaPy + upPy) .

Hence K1 = 0; implies Juhab = 0.
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conversely, when Juhab =0, we get, from (2.2) that

Remark : The 3-dimensional projection operator is stationary when and
only when the first curvature of the streamline vanishes’

( the flow is geodesic).

2 b) THE JAUMANN TRANSPORT OF Pab

We find that the 2-dimensional projection tensor Pab is not Jaumann
transported always. The case of the ‘Jaun)ann }»rapsport of Pab is given
in the following theorem. As usual the acronym TFAE denotes 'The Follows
_ing-(statements) Are Equivalent'

Theorem 2 : TFAE : (I) J uP 0

ab

() Ky + 2 (yy93-7y30) =0

, Yi2a = Tia2 -
Proof : We have,

J P

uPab = Jul9ap = YaUp * PaPp )

Juua + paJuPb + P_J P_, by linearity.

Ju9ab - Ugdu¥p - Yp bYu’ a’

. . . k . k . _
“ugup - ujup + Pa(P Wy )+ Pb(Pa - P Wy ), Since J g, =0

= UyUp - ugUy b "k K u%ab
JuUp = Up
- K
= =K (u Py + Poup) + P (Kyup + KyQp) - PP wly
K
+ Pb(K1ua + KZQa) - Pbpkw' a by (RSF-1,2)

-K1 (uan + Paub - Paub - Psua) + Ky (Pa()b + PbOa)

K _pp

k
K. b bPk® . a on rearrangement.

- PP

4

WAR. BALASAHEB KHAR
MivaJl umvsasm.gnfn&mn:.n
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Kk

JuPab = KalPRQy + PpQ.) - PP wy -

K S g
Pbpk w'as oON simplification.

R
JuPap = Ko(PQp + PpQ.) - Pl 3 (Yq30 - Y2300 + (Y140 = Y1007
TPy Y3~ Y1230% * (Y2 ~"i2eRe 1 0 L L (2a)

Now, we find the circumstances when all the 10 inner products of Jupab

.with the tetrad ( ua, Pa, Qa, R ) vanish. The eight double inner

products which vanish identically are

b a.b a b

a
uu

= - aqgb - -0

Jupl =0, PP Jupab = 0, Q'Q Jupab =0, R'R Jupab = 0,
a.b _ anb _ anb ~ apb _

u QJuPab-o, UnR JPap = O Q'R Jupab =0, uP JuPab-O.

1) ‘Jupab when transvected with Qb yields

b _ b k k |
Q Jupab =Q [Kz(PaQb * Pan) h F’apk“’-b - pbpk“’-a ]
o - b, kK
= - KoPy - PR Q70
b _ b k
QJupab --Pa(K2+PkQ wb) .
Consequently, we get
anb _ _ pa by k
P QJuPab = .P Pa (K2 + PkQ w,b)
a.b _ b k
P Q Jupab = K2 + Q Pkw,b

a.b . . .
PPQ P, = Ko+ 3 (Y123 - Y132) ( by computational aid )..(2.4)

b

b

(1) Contracting J P, with P’ and R?, we have,

b
P J p = b' -
uTab = PTIK,(P,Q, + PpQy) - & Ky (Paup + Ppuy)

' oF r )
- 3 PP (upy - up ) - 3 PP (U, - ug,) ]
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bor r
='K/zQa\*’l’K1“a"l’papp (ur;b'Ub;r)+%P(ur;a"”a;r)
since Pb, _ b~ _ pb. _
'Pb"'1‘ PQb-Pub-O
PbJP = - K,Q +;Ku +{;Pr(u -u.. )
u ab 27a 1"a ra asr
a b _ pa 1 r -
REPYPap = R - KyQ + & Kpu, + 4 P (g Ua;r)]
a,b _ anr -
RTPTY P = 2 RP (u, -u,p)
a b _ b,a
RPJUPab- %(RPwab) o
- % (‘Y124 - Y142) o0 (2'5)

Now, (1) impties (II).

gupab =0 implies K, = -3 (Y55 - Y 3ok by (2.4)

Yio4 =Yqan DY (2.5)

Again, (1) implies (1), on simplification. o Q-b) .

This completes the proof.

3. SECOND ORDER JAUMANN TRANSPORTS

Second order Lie transports have been exploited by Carter and
Quintana (1977) and third order Lie transports have been used by Katkar
(1989) for gravitational radiation. We now study the second order Jaumann

transport of the s-dimensionat projection operator. Our aim is to prove:

Theorewm3 : TFAE
0 Jddhy, = O
2) K1 =0 vyp0 = Yig2
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Proof : Juhab = - uaub - U uy

Juhap = - (ugup)
we have, )
Juhap = - Ky WPy + uP)

JuduPap = Yy [- K, (uan * ubpa) ]

= - K,(uanmbPa) - K, [K1Pan+ua(K + Ksz)

k K
" U Prwe K PpPatup(Kiug+koQy) - upPrw .y |

1Yp

by (RSF - 1, 1),

- y - 2 -
JuJuhab = ~K1(uan+ubPa) 2K*, (Panmaub) K1K2(ua0b+ub0a)

k k ~ . .
+ K1Pk(ua“’- bt U, a)’ by rearrangement «e.(2.6)
We observe that,

k k _, .. kr . .

kl’ Te »

- - K 2
JuJuhab = - K,(uanfubPa) - 2", (Pan+uaub,) - K1K2(u30b+uan)

. kr _ o -
* Klpk 3 uag (ur;b ub;r urub + urub)

. kr
+ KyPy 3 Up9d (ur;a T Yar - G

Uy * urua), since from (2.7)

. K _ o2 _ ‘

= K lugpprupPy) - 2k, (P Ppvujup) - KKy (U Qu+u Q)

- ) ‘ .
+ 3% K1 {uaP (u KPu) + ubP (u

rib Ybir T ™M Y 'K1Pr”a)

r;a Ja;r

since Prur =0 by (RSF-1).
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e 2
= - K1(uan+ubPa) - 2K%, (Pan+uaub) - KK, ("'aQb + uan)

r 2 r
+ % KquaP (ur;b - ub;r) +3K 1Ya¥p * 3 KyupP" (ur;a"ua;r)

2 . r
1 = -
+ 3 K 1 YpYa since P Pr.' 1.

Hence, we obtain,

&

. 2 '
Joduhap = = Ky (UgPprupP) - 2K%) (P P +u up) - KyKo(u,Qp+up Q)

r r
+ 3 KyP "a("'r;b'ub;r) + 3 KyP u, (ur;a ~ Yar )

2

+ K1uaub .

We note that K1 appears in every term.

Obviously} when K1 = 0, we get, JuJuhab =0,

We now find that following 8 inner products of J J h_ . with

b
the tetrad (U8, P, @2, R?) vanish.

a.b _ ' papb -
PQ JuJuhab =0 PR JuJuhab =0

a.b _ a.b
QPJuJuhab-O QQJUJ

I
L]

uhab -

bna - apbh
RYQ JuJuhab =0 R"P JuJuhab =

N
Q

a~b apb
R®Q Ju“'uhab 0 R"R JuJuhab =

|
o

Non-vanishing inner_ products :

. . b
(1) Contracting JuJuhab with u

b - . -
u JuJ‘uhab = - K

2 rb
1Y, Puu_(u

- - 1 -
Py - 2K KyKoQ, + 2 Ky a‘Yr:b ”b;r)

1

r 2
+ 3 KP (Upg - ua;r_) + Kytug
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Now we infer that

ab a 2 rb _
uu JuJuhab = U [~K1F'a - 2K1 u, - K1K20a + % K1P u ua(“r;b ub;r)
r 2
-3 KyP (ur;a - l"a\;r) * Ky, ]
- 2 r.b - r.a -
=- 2K, + § K,Pu (ur;b- Uper ) - % KPu (ur;§ ua;r)
+ K12 ~ since u?P_ =0, v¥u, = 1,08, = 0.
uaubJJh =-K2+§KPrub(u -u )-%KPrua(u -u.._)
uuab - 1 1 rib bsr 1 ra ar
—-K2+—’§1ub[-{Ku + (Y -Y ) + Vo, = Yian)RP)
- 1 72 1°b 123 " "132 b 124 = "142'7p
a
- Kt FURugs (Y 153 =Y 430, + (Yypq =Y 440)R) ]
K
_ 2 1. 2
= K1 +3 2( K1)2+ 1 K1
- oLok2. &L K
1 2 2
ab . _ k2
uu JuJuhab = K;
‘ b
2) J uJuhab when transvected with P, yields.
b _ by . 2 r b
Prdyduhap = Ky + 2K{7Py + & K Pu P~ (u ) - Uper )

bp _ _ b b~ _
sincePPb-1,Pub-O, PQb~0

consequently, we get ,

ash  8rp 2 1 r b -

u“P JuJuhab =y [K1ua + 2K1 Pa + 3 K,P uaP (ur;b ub;r) ]
agh . rsb

UTPTY Jhoy = Ky e 3 K,P P (ur;b - U )

uanJuJ uh ab = K1 ’ , since double inner product

of symmetric with skew
symmetric always vanishes.
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b

‘ a
(3) Again, contracting J,J,hy, With R” and u

b b o 2 )
R JydyMab RL- K,(uan+ubPa)-2K1 (Pan+uaub) K1K2(anb+uan)

r r 7]
+ 1 KP ua(ur;b"ub;r)"'%K1P ub(ur;a'ua;r) + Kugu )

* r b . b b
= % K1P uaR (ur;b - U, ), since R Pb =0, R u = 0
by .
R Qb - On
anb = .8 r. b -
UR gy = u” [ 3 KyPuRY (upy - up. ) ]
apb _ rnb
uRM Ny = 3 KPR (ur;b - Upee )

=3 Ky (Y994 = Y142 )

(4) JuJuhab when transvected with Qb. yields.

b _ r b
_Q JuJuhab - K1K2ua +3i KIP an (ur;b - ub;r )
Consequently, we get,
a b - r~b » —
uQ Yy = KK, 3 KiPQ (U,.;b - Up., )
anbJJh = K,K, + % K, (v -Y )
uuab 12 1 123 132
; . b a
(5) Again contracting Ju‘juhab with P~ and P
b Ry 2 r. b
P JuJuhab - K1ua + 2 K1’:.a + 3% K1P uaP (ur;b - ub;r )
asb _ 2
PP JuJuhab =-2 K1

This shows that JuJuhab = 0 implies that K1 = 0.
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4. ON THE NONSTATIONARY CHARACTER OF RELATIVISTIC
SERRET-FRENET TETRAD :

We examine in this section the Jaumann transport of the whole RSF-

tetrad and show that it is not feasible.

+

i) We have already shown that
Ju? = kP2,

u 1

Since k1 # 0 for the existence of the RSF-tetrad, we infer that

a
J&{ #'0 .
" a_p?k_ ok .8
i) JUP = P;ku P o

a 1, a1y oy )l
kgu™ + [ky + 5 (Vg3 Y430 ) 1Q7 + 5 (Y45 Vypy IR,

by (RSF-2) and computational aids : [XII(b)] -

O
0

[}
"

u 0 implies and implied by k1 =0

1 _
ky + 5 (Vo3 - Y132 ) =0

Y142 Y124
a_ ak Ak .2
iii) JUQ = Q;ku Q W

. ] a 1 . a
[-ky + 3030 =Y 453 ) IPT + [kg + 3 (¥y5, -V 43)IRT,
by (RSF-3) and computational aids [XIII(f)]

a _ ; 1 -
4@ =0 iff ky =< (Y935 = Yyo3)

1 -
k3 =5 (Y143 = Yq34)



iv)  J,R% = R‘?kuk - Rkw,;a
i

_ a_ 1 _ a _ a
= kgQ 3 [ Y40 =Y 104 JP7 *+ {ryqq - ¥4340Q7 |

by (RSF-4) and computational aids [Xlli{e)].

=1 - a ., - . a
=7 Urag = Y1240% * [kg + 3 (y143 -7 434 1Q
a _ o L _
\JUR = 0 implies and implied byy142 =Yqy04

_1 -
k3 =3 (Yi437 Y134 ) -

It follows that (A is the tetrad index)

JuAaA £ 0, for )\aA = (ua,Pa.Qa.Ra) and k1 # 0 and

so the RSF-tetrad is not stationary.
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