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ELEMENTS AND THEIR PROPERTIES

SECTION ( I ) : INTRODUCTION

The trial functions must be compatible with the corresponding

element, to enable the coefficients aj in the trial function to be

determined uniguely. It can be shown that the trial function,
the location and number of the element nodes as well as the number
of unknowns per node cannot all be specified independently. The
type and order of the governing equation and the convergence
requirements of the variational procedure must also be taken into
account when selecting elements and their trial functions.

The general trial function representation over any element e

is the linear form.
A\
u = N® uf peenaa(3.1)

where N is the shape function matrix and u 1is the element
nodal vector.

For a Lagrangian element there is only one degree of freedom
per node namely the value of the function and hence eq(3.1) can be

wiritten as
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where 1,2.,..... s, Ky vu... s are the node identifiers and s

is the total number of nodes of element e.

For a Hermitian element, each of the Ek , must be regarded
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as being a column matrix itself, since the derivatives of the
function now appear as variables at the nodes also. If each of

the s nodes of element e has  degrees of freedom, then the

——

entries uy in eq (3.2) are to be considered as column matrices.
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and similarly the shape functions Ny are to be considered as row

matrices.
Nk = ENkp Ngg  -eeeenne Nkad
K=1, 2, 3, 4,..... s 8

The shape functions are functions of the independent variables
and the nodal co-ordinates. To derive shape functions for any
selected element, two methods are available.

The first which uses generalised co~ordinates and the sacond

interpolation functions.

SECTION ( II ) : Deriving Shape Functions From Generalised

............................................................................

This approach is particularly suitable for those simple ele-
ments based on low order polynomials which are complete.
To 1illustrate this procedure we use rectangular element e

with sides parallel to the global system Oxy
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The simplest oral function for the element contains only four

unknown constants aj; corresponding to the elements four nodes.
A

U = ag t odox t azy + agxy cewn (3.3)
which is sen to vary linearly along the element boundaries.
Applying (3.3) to the four nodes yields the eguation

Ul = oy + UoXy + a3yl + a4xlyl

us = aq + AoXo + azyo + a4x2y2
o~ .o ( 3-4 )
Uz = oaq + AoX=x + aAzyx + Agxz¥x
Ug = o3 + apxg + axyg +  agXg¥ge

In the matrix notation this equation(3.4) can be written as

u = Aa weun 3.5 )
where u is the element nodal vector
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We can write equation (3.3) as
u = Xa cewe (3.7 )
where X = E1 X y xy 8

Matrix A can be inverted provided that its determinant does

not vanish.
det A = -~ [&2 e (3.8)
where Z& is the area of the rectangle, which never vanishes,

From eq (3.5) we have

a =A~1 g ceen (3.9
Substituting equation (3.9) in equation (3.7) we have

A

u = Xxaluy eee. (3.10)
which can be written as

PFaN

u = Nu vewe {03211 )

where shape function matrix N can be written as

N =xal i (0 3.12)

SECTION ( III ) : Deriving 3hape Functions from Interpolation

Consider the rectangular element e shown in the previous
figure, but suppose that the trial function representation of
equation (3.3) is not kKrnown. The shape function relation for
can be written in the general form i.e.,

U = N u
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u = €Ny No Nz NgTB cewe (3.13 )
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Each shape function Nk, must have the value urnity at node kK and
A —
zero at every other node so that u will reduce to Ui when

equation (3.13) is applied to node K. This property allows
interpolating formulas to be used to derive the shape function.
Consider the approximation of the function u(x) by a pth

order polynomial where the values of u(x) are given as Ug, Un

‘:!
Uy wwmmwm . Up at the (p+l) points X3, Xosewewwnn s Xp
- P+l
eoeou(x) = 2% Lyg(x) uyg vewn( 3.14 )
i=1

where the Lj (x) are the Lagrange polynomials defined by

p +1 (%~ xj)
Li(x) = | | Xy = X3 vewn( 3.15 )
j=1,344
Kis XDy aomnvuns » Xp need not be spaced equally.

Applying equations (3.14) and (3.15) to side 1-2 of the
rectangle e in the figure allows along this side to be

wrritten as

~
Li = Ll(X) Ul + Lz(x) uz ....( 3.16 )
1-2
Where
Ll(x) T e s
wewe (3217 )
X - Xl
LQ(X) HD e e e e e



Similarly
A —r —
u = Li(x) uz + Lo(x) ug eewe (0 3.18 )
4-3
Similarly in the y direction to give the interpolation over

the element as

A ~ ~
u = Li(y) u + Lo(y) u cena ( 3.19 )
1-2 4-3
Where
y — ¥z
Lily) = e
Yi & Y2
wewe ( 3.20)
Yy - ¥
Lz()() T e e o o s e
Yz T Yi
A P+l
u = 2 Lij(x) ug cewwe (03221 )
i=1
~ —— — et
u = L (la(y) ug + Lo(x) Ll(x) up + Li(x) Lo(y) uz
+ Lo(x) La(y) ug
~ 4 —
u = Z Ni Ui
i=1
where
Ny = Ly (%) Lp(y)
N2 = Lz(X) Ll(Y)
Ng = Lij(x) Ly(y)
Ng = Lo(x) Lo(y)

Any two dimensional region can be subdivided into triangular,

and rectangular or quadrilateral elements.



1) Triangular Elements

The triangle is a particularly useful shape for any two
dimensional analysis, as assemblies of triangles can easily be
used to represent accurately regions enclosed by boundaries of
quite complex shape. For a typical triangular element e,
with nodes numbered anticlockwise as i, j, k and placed at the

vartices of the triangle. *@

, #
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We shall look for an element shape function Ni(x,y) such that

Nj has the value unity at mode i and zero at nodes j and k.
The global shape function Nj must be continuous across element

boundaries and only nonzero on elements associated with node i.

e
Assuming a linear form for Nj, we write

e

N = a +bx+cy e (3.22)

where a, b, ¢ are parameters defined for element e .

We evaluate (3.22) at each node and obtain

Ny = a + bxy + cyg
Ny = a + bxj teyy e (3.23)
Nk = a + bxy + oy
r .
Uy
- -1 .
Uk
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The equation (3.22) may be written ase

[ A
uj
N = E1 x v AL uj e e (3.24)
Uk
. A
where
A - .
X3 ¥k ~ Xk ¥j Xk Yi T OX{ ¥k X1 Y3 T X yiﬁ]
1
ATl m ey - g Yk = ¥i Yi - V3
2/\®
ZX Xk ™ Xj Xy " Xk Xj - X3
B e
and
1 i ¥i
1
el e
A
i XK Yk

z 2 (area of element e)

Using the linear plecewise approximation solution over the element

& may be written as

u® = Njugy + N3 uj + Ng up = N® g®

where N® = €Ny Nj Nk} and #° = gy u; ucl
1
Njy = == (ag + bjx + cy¥ )
A
1
Ny = === Caj + byx + e5v )



1
NK = atadatd ( Ay + bRK + CrY )
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bi =  ¥3 = vk by =  Yg = ¥ by =
C{ = Xk T X3 €3 = X T Xk s i

For a Quadratic triangular element , we use
approximation function of the form
€ = Ny . U=
u® = Njuy + N3y uj + N ug + Npup  + Ny oy,
where the six node triangular elggent is as shown
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THE LAGRANGIAN TRIANGULAR FAMILY

the quadratic

Ny uy = NE z€

in the figure

ELEMENT TYPE ORDER OF NO. OF TERMS]
POLYNOMIAL USED IN TRIAL
A3 TRIAL FUNCTION FUNCTION
LINEAR 1 3
QUADRATIC 2 3
CUBIC 3 10
QUARTIC 4 15
HauinTIC 5 21




Triangular elements of this family can be formed by selecting
a sufficient number of nodes to allow a unique solution for the
coefficients in the chosen polynomial trial function.
A complete polynomial of order n contains 1/2(n+1)(n+2)
coefficients and an s-node Lagrangian triangular element, based on
this polynomial, must contain the same number of nodes, hence

3 = 1/2(n+1) (n+2)

2) RECTANGULAR AND QUADRILATERAL ELEMENTS
Rectangular elements are not well suited to ivrregular two
dimensional regions, but are used in cowbination with the more

extensively adopted triangular elements.

Lagrandgian Rectangular Elspents -

Consider the two-dimensional element e in which there are m
equally spaced nodes in each row and n  equally spaced nodes in
each column. For a node ij, the shape function is defined by the
product of two Lagrangian polynomials as

n n
Niz = Ly * Lyi(y)

where Lj(x), Li(y) are defined by equations (3.17) and (3.20) and

the superscripts m and n are used to indicate the order of the

polynomial. VAN
Y i Yn o 4 :
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The Lagrange®s interpolation relation u for this mn Lagrangian

element can be written as

A - — — —
U = Njg ugp v Np2 U b el * Nim Uim * Ny uzg 4 ...
*oNom Uzp toee-eweo t Npg Upy v Npz Upz + weot Ny U,
~ nom
u = 3 Z Nij Uy j enn (3.23)
izl j=1

Lagrange elements of this family have interelement continuity in
I~

U only and have an incomplete interpolation polynomial. Except
for the first member of this family, the bilinear element, the
Lagrangian elements suffer from the disadvantages of having
internal nodes and giving poor curve fitting especially for higher
order polynomials. Therefore, other than the bilinear element,

they are rarely used.

3) SERENDIPITY ELEMENTS

ELEMENT TYPE ORDER OF
POLYNOMIAL USBED
A3 TRIAL FUNCTION

L INEAR 4
P e ol o o B

( QUADRATIC 8
¢ CUBIC 12
¢

The 3erendipity Family of Elenents

................................




These elements posses an equal number of nodes in the x and vy
directions. The description of these elements as linear,quadratic,
cubic refers to the variation of the trial function in the x
direction at constant y, or in the y direction at constant x.

The first three members of this family of elements are as shown
above

The trial functions for these elements are incomplete
quadratic, cubic and quartic polynomials respectively.The shepe
functions for the three elements in terms of the local
co~ordinates can be obtained by using the following incompletes
polynomial trial functions.

Linear
A

u ped al + a2 € + a3 N + a4 €n
Shape function for Corner Nodes

Ny = 1/4 (L + €& ) (1+n0ng)

Quadratic :
™~

¥] = al + a2 € 4+ a3 n + a4 62 + a5 en
+ ag N? + aye?n + ag en?
Shape Function For Corner Nodes
-1
Ny = 1/4 ( 1 + ¢ €5 Y {1 +n Ny Y( € €; + N Ny )

For Side Nodes

(1) € =0=> Ny= 1/2 (1-¢€?) (1+nng)
(ii) ny =0 => Ny = 1/2 (1 + €€ ) (1~-n%)
Cubic:
u o= g t a, € + azx N+ dy €? ¢ ar, €N+ ag n<

+ a763 + dg €2n + a9 an + 210 03 + allezn + a2 €n3



Shape Functions For Corner Nodes
Ny = 1/32 (1 + e€; ) (1L+NnnNg)ES (&2 +n?2) - 104

Shape Functions For Side Nodes

H

(a) € = 2 1

+ 1/3

>
e
3

Ny = 9/32 (L +ee ) (1-n2)(1+nng)
(b) €y = r 1/3

Ny = £ 1

i

Ny 9/32 (1 - €2 ) (1+00N;)(1+9 € ¢ )
Along element boundaries, the trial function of a Serendipity
element is a complete polynomial and hence there esists
interelement continuity of the trial function.
Serendipity elements form a useful class of rectangular

elements, which if combined with triangular elements, can be used

gquite effectively in regions with curved boundaries.

4) ISOPARAMETRIC ELEMENTS

In problems that have curved boundaries, it is necessary
use many straight sided (faced) elements along the boundaries in
order to achieve a reasonable geometric representation of these
boundaries. While other methods of creating curved elements exist,
the only method used extensively involves mapping from regular
(straight-edged or sided) elements. 3Since the shape functions of
the regular parent element are Known with respect to a local
co—~ordinate system, those of the generated curvilinear element can
also be determined

The mapping from local co-ordinates e, N to cartesian

coordinates x, y is through the shape function relationships

to



X o= Np X
weww ( 3.24)

it

y Np Y

Shape functions N, are functions of €, N and the column

matrices x and vy are the nodal co-ordinates with respect to

-~

the global system. The trial function u can be written with

respect to the local co-ordinate system as
S

u = Nu wewe (3.25 )
Where the elements of the shape function matrix N are functions
of € anc N

If the shape function matrices N, and N are identical in

form, the generated element is termed as isoparametric. If the

shape function matrix N, is a lower order representation than the

matrix N, the dgenerated curvilinear element is subparametric and

if Np is a higher order representation, the element is

superparametric.
SECTION ( Vv ): TRANSFORMATION FROM LOCAL TO GLOBAL CO-ORDINATES

Many shape functions can most simply be expressed with
reference to a particular local co-ordinate system. In such
cases, the resulting element matrix eqguations will contain the
unknown variables relative to the local system. These element
matrix eqguations must be transformed to their corresponding
equations with respect to the global system before assembly into
the system matrix equation.

Let ¢ be a scalar-value function of x and vy defined on an
~
element Qg . Then we can convert ¢ to a function ¢ of € and N
~
defined on Q by setting



i

g( x(e, N) , v(&, N) )
~ cenne (( 3.26 )

g( €, N )

g (x,y)

#

B(x,y)

where x(e, N) and y(e, N) are given by

Ne Ne
~ ~
X = I %3 Nj (¢, N) 3 y = 3 ¥3 Nj (e, N) v (3.27)
j=1 =1
e e
Thus element shape functions Nj = Nj (x, y) for Q are simply
~
obtained from Nj {( ¢, N) by
e
Ny Oxo vy ) = Ny (elx, y) , N(x, ¥) ) -een (3.28)
J =1, 2,...Ng
e
The derivatives of Nj are obtained by the chain rule
e r~ ~
(o] Nj Nj CO€ ONj on
wwwww - - o - — o Sanr e M + N ———- s, - -
Ox o€ Ox on aOx
weee {0 3.29 )
e al A
& Ny ONj D€ , N:  3n
oy de oy on Sy

The derivatives of x and y c¢an obtained as

N@ ~
O ka(es n)
s = p Kpg T
oe€ K=l be
O 6Nk(€, 0)
e e = z XK wwwwwwwwwwwwww
on K=l on
Ne ~
oy o Ni(e, N)
R —p— - XK wwwwwwwwwwwwwww
o€ K=l o<
Oy ka(G, n)
S v o o p-od )(k “““““““““““““““

on K=1 on



Substituting equations (3.30) the above equation (3.29) we get

™~ Ne ™~ ~ Ne ~
ij 1 6Nj ONK (e, N) ij ON
—— Z e ~{”““ Z Y T - Z Yi ”*“*”:}
X |J(e,n)| e K=1 an an k=1 be

Fa Ne ”~ o~ Ne S~
ij 1 ij ka(e, n) ij ON ‘
—— i St L Yy v - e 2 ¥k *““"“i}
oy [3Ce,n) | on k=1 be e k=1 &n
where | J( €, N ) ; is the Jacobian of the transformation.

SECTION (VI) : SELECTION OF AN ELEMENT

For a particular problem, the question of which element to
choose is a significant one. The complexity of programming, the
total computation cost and effort and the accuracy of the solution
are strongly affected by the element selected. The selection for
choosing the best element depends on the type of problem, the
geometry of the boundaries, the boundary conditiors, the accuracy
required, the size of the available computer, the maximum avail-
able computing cost as well as other factors.
To aid in the selection of an element, the guidelines are as
follows -

(i) The trial function must be able to represent all the
derivatives that occur in the functional

(ii) Elements satisfying both the completeness and conformity
condition should be used only after a careful examination of their
performance.

(iii) If the boundaries of the problem are regular, elements
of simple geometry are usually selected, whereas for curved

boundaries both regular and curved elements have to be used. To




match irregular boundaries, the choice is between many regular

elements or few, more complex, isoparametric elements.

(4) Derivative elements should be used where the solution
involves derivatives.
(%) It is advantageous to choose elements that have their

nodal parameters concentrated at the vertices,



