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ELEMENTS ANfi THEIR PROPERTIES

SECTION ( I ) : INTRODUCTION

The trial functions must be compatible with the corresponding 

element, to enable the coefficients aj^in the trial function to be 

determined uniquely. It can be shown that the trial function, 

the location and number of the element nodes as well as the number 

of unknowns per node cannot all be specified independently. The 

type and order of the governing equation and the convergence 

requirements of the variational procedure must also be taken into 

account when selecting elements and their trial functions.

The general trial function representation over any element e

is the linear form.
A
u = Ne ue ..... ( 3.1 )

where N is the shape function matrix and u Is the element 

nodal vector.

For a Lagrangian element there is only one degree of freedom 

per node namely the value of the function and hence eq(3.1) can be 

written as

A

U1
u2

uk
(3.2 )

US
L. J

where 1,2,.....  k,___ s are the node identifiers and s

is the total number of nodes of element e.

For a Hermitian element, each of the u^ , must be regarded

«A
smr^H USU0



as being a column matrix itself, since the derivatives of the 

function now appear as variables at the nodes also. If each of 

the s nodes of element e has q degrees of freedom, then the 

entries u^. in eq (3,2) are to be considered as column matrices.

ukl

uk2
uk

and similarly the shape functions are to be considered as row 

matrices.

Nk Nkl Nk2

k X, 2, 3, ^1,....., S

The shape functions are functions of the independent variables 

and the nodal co-ordinates. To derive shape functions for any 

selected element, two methods are available.

The first which uses generalised co-ordinates and the second 

interpolation functions.

SECTION ( II ) : Deriving Shape. Fynettens From Gene.ra.li.sed.

Co-ordinates

This approach is particularly suitable for those simple ele­

ments based on low order polynomials which are complete.

To illustrate this procedure we use rectangular element e 

with sides parallel to the global system 0xy
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The simplest oral function for the element contains only four 

unknown constants aj corresponding to the elements four nodes.

U - «1 + &2X + a3y + <*4xy .... ( 3.3 )

which is sen to vary linearly along the element boundaries. 

Applying (3.3) to the four nodes yields the equation

U1 s al + a2xl + a3yi + a4xiyi

“2 s al + a2x2 + a3y2 + a4x2y2

u3 ” al + a2x3 + a3y3 a4x3y3

u4 ~ al + a2x4 + <*3y4 + a4x4y4

In the matrix notation this equation(3.4) can be written as

u = A a --- ( 3.5 )

where u is the element nodal vector
■ _ ■
U1

u

and

= Cui 3
u2

1

1

1

X

u3

r *C
|

i__
_

X1 yi xiyi

x2 y2 x2y2

x3 y3 x3y3

x4 y4 x4y4
J

....( 3.6 )



a = [ at

We can write equation (3.3) as

u = X a

al
}

a2

a3

( 3.7 )

where X = El x y xy jl
Matrix A can be inverted provided that its determinant does 

not vanish.

det A = - ___  ( 3.8 )

where ^ is the area of the rectangle, which never vanishes. 

From eq (3.5) we have

a - A u ---  ( 3.9 )

Substituting equation (3.9) in equation (3.7) we have

u = X A 1 u
which can be written as 

/\
u = N u

where shape function matrix N can be written as
N = X A-1

(3.10 )

( 3.11 )

( 3.12 )

SECTION ( III ) : D§.r,lying Shape.. Functions, from Interpolation

Formula

Consider the rectangular element e shown in the previous 

figure, but suppose that the trial function representation of 

equation (3.3) is not known. The shape function relation f01-

can be written in the general form i.e.?
/-\

u = N U



u

r
ui

C Ni n2 n3 n43
u2

u3 (3.13 )

u4L J

Each shape function must have the value unity at node k and
A „

zero at every other node so that u will reduce to uk when 

equation (3.13) is applied to node k. This property allows 
interpolating formulas to be used to derive the shape function.

Consider the approximation of the function u(x) by a p't'’t 

order polynomial where the values of u(x) are given as u^, u2, 

u3......... Up at the (p+1) points xl9 x2,........ xp

p+1
u(x) - 2 Lj_(x) uj ....( 3.14 )

i=l
where the Lj (x) are the Lagrange polynomials defined by

P +1 (x- Xj)

Li (x) xi ” Xj ___ ( 3.15 )
0-1,jfi

xl» x2* .........xp neecl b® spaced equally.
Applying equations (3.14) and (3.15) to side 1-2 of the 

rectangle e in the figure allows along this side to be 
written as

/S ___ ___

u I = L^(x) Ujl + L2(x) u2 ....( 3.16 )J1-2
Where

x ~ x2
L1(x) - ------------

X1 ~ x2
x - Xi

L2(x) = -----------
x2 ~ xx

( 3.17 )



Similarly
A
u = Lx(x) u3 + L2(x) u4 ( 3.18 )

4-3
Similarly in th© y direction to give the interpolation over 

the element as
A
U

A
i-i (y) u + L2(y) u

1-2
. ( 3.19 )

4-3
Where

where

Li(y) =

L2(x)

A
U
A
u

A
U

y - y2

Vl ” *2

y - yi

^2 ~ ^1
p+1
2 LjCx) uj 

i=i

( 3.20 )

( 3.21 )

Ll(*)L2(y> U1 + L2(>0 l»i(x) u2 + Lx(x) L2(y) u3
+ L2(x) L2(y) u4
4 _
2 Njt U£

i=l
NX ” LjlCx) L2 (y)

N2 = L2(x) Lx(y)

N3 = Ljl(x) Li(y)

n4 “ l2(x) L2(y)

SECTION ( IV )s TYPES QF ELEMENTS
Any two dimensional region can be subdivided Into triangular, 

and rectangular or quadrilateral elements.



1) iJLian.qulaj;,, Elements

The triangle is a particularly useful shape for any two 

dimensional analysis, as assemblies of triangles can easily be 

used to represent accurately regions enclosed by boundaries of 

quite complex shape. For a typical triangular element e, 

with nodes numbered anticlockwise as i, j, k and placed at the

We shall look for an element shape function Nj(x,y) such that

Nj has the value unity at mode i and zero at nodes 3 and k.

The global shape function must be continuous across element

boundaries and only nonzero on elements associated with node i.
e

Assuming a linear form for Nj, we write 
e

= a + bx + cy .....(3.22)

where a, b, c are parameters defined for element e .

We evaluate (3.22) at each node and obtain

Nj - a + b*i + cyi

~ a + bxa + cya

Nk ~ a + bxk + cyk

(3.23)

“i

U3

uk

where a = da b oj
and



1
A 1

1
x3
*k

Vi
y5
yk

The equation (3-22) may be written a©

Ne Ci x y 3

where

A-1
2&e

*3 Vk “ xk Vj

y3 ~ yk 

" ^3xk - Xi

ui

u3
uk

xk Vi ~ xi yk

yk - yi

X,- ~ Xl.

and

:e
1
1

*i

x3

Vi

*3
Vk

(3.24)

xi y3 " X3 yi

yi “ y3
X;

= 2 (area of element e)
Using the linear piecewise approximation solution over the element 
e may be written as

ue ~ Njuj + Nj Uj + Nk uk = N® 0®
where N® = CNj Nj Nk3 and 0e ~ EPi uj uk 3

1Nj =----- ( aj + bjx + c^y )

Nj =;------ ( aj + bjX + Cjy )
2&e



1
Nk ~------ C ak + bkx + cky )

2Ae

ai = xj Vk " xk Vj * a3 = xk y± ~ xi Vk » ak =
bi = Vj “ Vk - bj = Vk “ Vi . bk ~

ci ~ xk ~ xj » cj ~ XI “ xk » ck ~

For a Quadratic triangular element „ we use 
approximation function of the form

ue ~ Hiui + Nj Uj + Nk uk + Nmum + Nn un + 

where the six node triangular element is as shownA.
id------•— i»Vl> v

THE. LAGRANGIAN TRIANGULAR FAMILY.

xi yj - xj yi

the quadratic

Ni Ui = Ne iZi®

in the figure

NO. OF TERMS 
IN TRIAL 
FUNCTION

3

6

10

15

21



Triangular elements of this family can be formed by selecting 
a sufficient number of nodes to allow a unique solution for the
coefficients in the chosen polynomial trial function.

A complete polynomial of order n contains l/2(n+l)(n+2) 
coefficients and an s-node Lagrangian triangular element, based on 
this polynomial, must contain the same number of nodes, hence 

3 = l/2(n+l)(n+2)

2) BESTAMsmaa mo qvaprilateral elements
Rectangular elements are not well suited to irregular two 

dimensional regions, but are used in combination with the more 
extensively adopted triangular elements.

E.S.9r.an.gian. Rectangular. Elements s-
Consider the two-dimensional element e in which there are m 

equally spaced nodes in each row and n equally spaced nodes in 
each column. For a node ij, the shape function is defined by the 
product of two Lagrangian polynomials as

m n
Nij . = 4(x) * nCy)

where Lj(x), Lj(y) are defined by equations (3.17) and (3.20) and 
the superscripts m and n are used to indicate the order of the 
polynomial. /V

Vn r i '
yn~l ( ►—±—m—*—i i i-- m- - - •---- -if---

— 4----jt - - f — -
Vi «

_ _ - -e -4- i - -*--
zz^lzz.z.^zzz^zz'

y2 1 
yi

Xl *2 xm-i
0 x

Lcu^Kxn^ar) Re<chxrvjuJar e)e-nr^eyx-f 6



The Lagrange's interpolation relation u for this mn Lagrangian
element can be written as
A _ _
U := N11 U11 + N12 u12 + ■ .... + Nlm ulm + n21 U21 + ....

+ N2m u2m + ....... + Nnl unl + Hn2 un2 +___+ Nnm unm
a n m
u = 22 Njj Ujj ___ ( 3.23 )

i-1 3=1
Lagrange elements of this family have interelement continuity in 
A
u only and have an incomplete interpolation polynomial. Except 
for the first member of this family, the bilinear element, the 
Lagrangian elements suffer from the disadvantages of having 
internal nodes and giving poor curve fitting especially for higher 
order polynomials. Therefore, other than the bilinear element, 
they are rarely used.

3) SERENDIPITY ELEMENTS

ELEMENT TYPE ORDER OF 
POLYNOMIAL USED
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The Serendipity Family fi.f. Elements



These elements posses an equal number of nodes in the x and y 
directions. The description of these elements as linear.quadratic, 
cubic refers to the variation of the trial function in the x 
direction at constant y, or in the y direction at constant x.

The first three members of this family of elements are as shown 
above

The trial functions for these elements are incomplete
quadratic, cubic and quartic polynomials respectively.The shape 
functions for the three elements in terms of the local
co-ordinates can be obtained by using the following incomplete 
polynomial trial functions.
Linear :

/\
U ~ CtjL t ft 2 ^ £3 fl + €fl

Shape function for Corner Nodes
Ni = i/4 ( i + « ) ( i + n rtj )

Quadratic :
A
u = ai + a2 € + a3 n + a4 €2 + en

+ a6 n2 + a7e2n + a8 €fl2 
Shape Function For Corner Nodes

-1
Nj = i/4 ( i + e €£ ) ( i + n nj )( e ej; + n ri| )

For Side Nodes
(i) - 0 => Nj ~ 1/2 ( 1 - e2 ) ( 1 + n flj )
(ii) flj = 0 => Nj ~ 1/2 ( 1 + € €j; ) ( 1 - n2 )

Cubic:
u = ajL + a2 « + «3 n + a4 e2 + a5 en + a6 n2

+ a7e3 + a8 e2n + a9 en2 + a10 n3 + a1JLe2n + a12 en3



Shape Functions For Corner Nodes
N| - 1/32 ( 1 + € ) ( 1 + fl flj )ft 9 ( €2 + D2 ) - 10 fi

Shape Functions For Side Nodes 
(a) ej = ± 1

Hi - ± 1/3

Nj s 9/32 (i+eej) (i-n2)(i+nni)

(b) €j = ± 1/3 

nj = ± i
N= 9/32 ( l - e2 ) (i + nni)(i + 9eei )

Along element boundaries, the trial function of a Serendipity 
element is a complete polynomial and hence there esists 
interelement continuity of the trial function.

Serendipity elements form a useful class of rectangular 
elements, which if combined with triangular elements, can be used 
quite effectively in regions with curved boundaries.

4) ISOPARAMETRIC ELEMENTS
In problems that have curved boundaries, it is necessary 

use many straight sided (faced) elements along the boundaries in 
order to achieve a reasonable geometric representation of these 
boundaries. While other methods of creating curved elements exist, 
the only method used extensively involves mapping from regular 
(straight-edged or sided) elements. Since the shape functions of 
the regular parent element are known with respect to a local 
co-ordinate system, those of the generated curvilinear element can 
also be determined

The mapping from local co-ordinates €, n to cartesian
coordinates x, y is through the shape function relationships



X Nm x
... ( 3.24 )

y “ Nm y
Shape functions Nm are functions of €, fl and the column 

matrices x and y are the nodal co-ordinates with respect to 

the global system. The trial function u can be written with 
respect to the local co-ordinate system as

/N

u = N u ___ ( 3.25 )
Where the elements of the shape function matrix N are functions 
of € and fl

If the shape function matrices Nm and N are identical in 

form, the generated element is termed as isoparametric. If the 
shape function matrix Nm is a lower order representation than the 

matrix N, the generated curvilinear element is subparametric and 
if Nm is a higher order representation, the element is 

superparametric.

SECTION ( V )■: TRANSFORMATION FROM LOCAL IQ GLOBAL CQ-ORPINATES

Many shape functions can most simply be expressed with 
reference to a particular local co-ordinate system. In such 
cases, the resulting element matrix equations will contain the 
unknown variables relative to the local system. These element 
matrix equations must be transformed to their corresponding 
equations with respect to the global system before assembly into 
the system matrix equation.

Let 0 be a scalar-value function of x and y defined on an 

element Qe . Then we can convert 0 to a function 0 of e and n 

defined on Q by setting



... ( 3.26 )
0(X ,y) = s*( x(e, n) , y(€, n) )

A M • H

0(x ,y) ~ 0( €, n )

where x(e, n) and y(e, 0) are given by
Ne Ne

A
x == 2 *3 N3 (€, fl) ; y - 2 y3 N3 (€* n)

3=1 j ~1
e e

Thus element shape functions Nj ~ Nj (x, y) for Q are
obtained from Nj ( e, fl) by

e
Nj ( x, y ) = Nj ( e(x, y) . n(x, y) ) - - -

3 = 1. 2,...Ne
e

The derivatives of Nj are obtained by the chain
e /a

6 Nj 6Nj 6e oNj on

ox 06 ox on ox
e /V /V

6 Na 6Nj
M*. W. —P 'f'

Nj an

oy oe dy a n dy
The derivatives of x and y can obtained as

ox
Ne

= 2 *k

A
6Nk(e, n)

d€ k=l oe

ox
No

= 2 *k

A
oNk(e, n)

6n k~l on

oy
Ne

= 2 xk

/a
6 Nk(e, n)

oe k~l oe

oy
Ne

= 2 xk

Z''
6Nk(e, n)

on k=a 6n

...(3.27) 

simply

. ( 3.28 )

rule

( 3.29 )



Substituting equations (3.30) the above equation (3.29) we get
A Ne a Ne A

6N5 1 r 6n3 &Nk(€, n) 6Nj 6Nk
--- — — j— 2 y(<--------— — ----- 2 yk—
OX |J(€,n)| 06 k~i on on k=i

A Ne A A Ne /N.
6N5 i r 6n3 oNk(e, n) 6Nj 6Nk
--- — — f— 2 yk---------— “ ----- 2 Vk ----—
oy |J(€,n)| b on k~l 0€ 06 k-i 6n

where | j( e, n ) i is the! Jacobian of the transformation.

-i

SECTION (VI) = SELECTION Q£ m ELEMENT
For a particular problem, the question of which element to 

choose is a significant one. The complexity of programming, the 
total computation cost and effort and the accuracy of the solution 
are strongly affected by the element selected. The selection for 
choosing the best element depends on the type of problem, the 
geometry of the boundaries, the boundary conditiors, the accuracy 
required, the size of the available computer, the maximum avail­
able computing cost as well as other factors.
To aid in the selection of an element, the guidelines are as 
follows

(I) The trial function must be able to represent all the 
derivatives that occur in the functional

(ii) Elements satisfying both the completeness and conformity 
condition should be used only after a careful examination of their 
performance.

(iii) If the boundaries of the problem are regular, elements 
of simple geometry are usually selected, whereas for curved 

both regular and curved elements have to be used. Toboundaries



match irregular boundaries, the choice is between many regular 
elements or few, more complex, isoparametric elements.

(4) Derivative elements should be used where the solution 
involves derivatives.

(5) It is advantageous to choose elements that have their
nodal parameters concentrated at the vertices.


