
« b.1 * »I c gl* » I % n i tt > * 1» »jL» a.L» kJL» |JL) * 1 a *1 &

d>4>*i‘4>4>>4>4>4>'A>4‘4‘4‘d‘4>4‘4»4‘4i4»4“A>4»>i^4"ti‘"l>4*_«_ _^S_ _^^x_ _^S _™L _SL J8L .j|^E_ JHL _9ft_ _3&_ .^^K. _^B_ JHL. »^HE_ JBE. .^SE. _^BL. J^B. _^9L. _&&_ _^B_rjp yjp rp ^p »jpi ^p rp rjp ryi Sjp ^p irpi »Jp ^p ^p i^p 1^1 ?p tfja *Ji ^p »Jp fjl

FINITE ELEMENT MESH GENERATION

The first step in finding an approximate solution using finite
element method is dividing the physical region or domain Q into
subdomain or finite elements i.e. to construct a finite element
mesh representing Q

In one-dimensional problems, we partition an interval into
line elements connected at nodal points at their ends. For two
dimensional problems we construct finite element mesh by a collec
tion of triangular or rectangular elements. If the boundary dQ
is curved, there is some discretization error since the finite
element mesh will not perfectly coincide with the given domain Q .
However, as the mesh is refined, this discretization error can be
made almost equal to zero.

We can generate a grid by finding a correspondence between
points (x,y) in the irregular physical domain and points (€ , n)
in the regular computational domain

A conceptual approach to grid generation is to fix the values
of € and H on the physical boundaries first and then locating
the interior points by determining the intersection of co-ordinate
lines of opposite families drawn between corresponding boundary
points.

In a sense, the problem of grid generation can be posed as a
boundary value problem ~~

Given
€ - €b (x, y) and n a n5(x, y)

on the boundary dR generate e a € (x, y) and n = n(x, y) in the
region R bounded by dR . The physical co-ordinates (x, y) ,

typically cartesian are the independent variables and the
generalised co-ordinates (e, fl) are the dependent variables.

t
--------------- >13^Grid generation as a boundary value problem in the physical

Grid generation as a boundary value problem in the computational
domain.

The grid can be generated with less computational effort by
working in the computational domain. Thus fixing the location of
the points on the boundary gives x ~ x^ (e, fl) and y - y^ (e, n).
The generation of the grid in the interior is expressed as the
following boundary value problem : given x ~ x^ (e, n) and
y ” yb (e, n) on dR , generate x = x(e, n) and y = y (e, fl) in
the region bounded by dR.

Since the interior points in the computational domain form a
regular grid and the boundaries coincide with co-ordinate lines,
the determination of x (e, n) and y (e, n) is easier than
working in the irregular physical domain, particularly if a
partial differential equation is to be solved to generate the
solution, x (e, n) and y (e, fl) .

In defining the relationship between points in the physical
and computational domains i.e. x = x(e, fl) and y = y (e, fl)

It is necessary that there is a one to one correspondence. It
would be unacceptable for a single point in the physical domain to
map into two points in the computational domain -

Once the mapping x ~ x (e, n) and y - y (e, fl) has been
established, the requirement of a one-to-one mapping can be
determined by evaluating the determinant of the transformation
Jacobian, |J|. For the mapping to be one-to-one, |J| must be
finite and non-zero. Depending on how the grid has been
generated, |J| can be evaluated at each grid point, analytically
or numerically to check for a one-to-one mapping. During
development, computer plotting of the grid will quickly locate any
points where the mapping is double valued.

An original method to generate a finite element mesh in a
planar domain of arbitrary shape.

The characteristics of this generator are :-
1) The mesh density is imposed by the user, it can vary as
desired on the contour of the domain and also inside the domain.
2) The number of elements generated can be imposed approximately,
what allows to control the number of degrees of freedom of the
discretized field.

SECTION (II) : AUTOMATIC MESH GENERATION

Automation of finite element mesh generation holds great
benefits for mechanical product development and analysis. In
addition to freeing engineers from mundane tasks, automation of
mesh generation reduces product cycle design and eliminates
human-related errors. Host of the existing mesh generation

methods are either semi-automatic or require specific topological
information- A fully automatic mesh generation method can produce
quadrilateral or triangular elements. The input includes the
region’s boundary curves the element size and the mesh density.
We begin by first constructing a coarse grid i.e. the region is
meshed into subregions. Each subregion is then meshed into small
er subregions. This procedure is repeated a number of times until
the final mesh is produced.

The unstructured mesh needed to initiate the adaptive mesh
procedure can come from any mesh generator.

The most expedient method was found to use the structured
mesh divided into triangles. This mesh is then refined in a
control loop using a function which provides the size and the
elongation of the desired mesh.

The refinement of the grid is obtained through triangle subdi
vision. A triangle to the refined is branched into two triangles
by cutting it on its longest side. This process is done on all
triangles requiring this option and the reconnection of unmatched
sides is performed last. Particular attention must be taken for
curved boundaries because when a side representing a curved
boundary is cut, the new nodes inserted on that side must be
relocated on the boundary to remain consistent with the geometric
representation.

section (in): ft Boundary Value Problem in partial. Blfltrsofeiai
gfluations

We consider the partial differential equation

£ ou 6 ou
----- (p---------) +----------(p------------) + r =0 in Q ..(4.1)
ox ox by by

with the boundary conditions
u = g(x„y) on dQ(4.2)

where p and r may be constants or fuctions of x and y
only. The variational formulation of equation (4.1) requires the
functional

J 1
2

n n £p (6u 2
■--)ox

Q

ou 2+ p (----)
by

- 2 u dx dy
---(4.3)

where the boundary conditions (4.2) are to be satisfied. We
divide the domain Q into finite elements. The approximate
solution w(x,y) for the whole domain Q may be written as

M N
w(x,y) - 2 Ne 0® - 2 Ni 0i - N 0 ---(4.4)

e=l i=l
where M is the number of elements with N nodes in Q,

N £nj No N. Nn1 and 0 ~ £*! 02 *3 y "1^N J

Nj satisfy hte conditions

Nj (x»y) = N^(x,y), if (x,y) € Qe

= 0 , otherwise
___(4.5)

and 0e are the nodal values associated with element e.
Substituting equation (4.4) in (4.3), we get

1
2

n n

Q
[c M ON© 2 M ON® 2
p (2 ----0©) + p (2 ---- 0©)

e-l ox e~l by

H (4.6)
2r 2 Ne 0© 6 dx dye=l J

Using equation (4.5) we assume that (4.6) can be written in the
form

M
--- (4.7)J = 2 J®

e=l
where

1
2 jfp ON© 2

(--- *>e)
ox

oN® 2
+ P (----!25e)

oy
Q©

- 2r N© 0e Je dx dy

is the contribution of the element Q® to the functional 3.
The conditions for the minimization with respect to the
values 0j , i ~ 1 to N gives the following system of equati

e
63 M 63----~ s ---- - 0 , i = 1 to N „ „ „
o0£ e~l 60 £

e
63

The equation ---- ; 0 is called the element equation.
60 j

Differentiating equation (4.8) with respect to 0© „ we get
e T T

63 1 * •* oN® oN® oNe 6Ne
----- — — fp (---- ----- + ---------)

O0£ 2 , L l ox ox oy by
Qe

(4.3)

(4.9)

<e

r N© Jk dx dy --- (4.10)

Thus the element equation becomes

e e
A # - b - 0 ____(4.11)

where

T T
e r r oN® oNe oNe oNe

A xs P (------- ---------- + — -------) dx dyJ U ox ox oy by
Q®

e. r r n > T

b SI JJ rN® dx dy.

Q®

Considering the linear three node triangle with nodes i,o,k

the linear piecewise approximation can be written as,

ue = NjUj + Nj Uj + Nk uk = N® y>&

where Ne - i|T N Cui uj uk3i N3 Nk 3 and l M3

1
Nj ~----------- (aj + bjx + c^y)

2AAe

Nj ----------- (aj + bjx + Cjy)
2/\®

1
Nk ~----------- (ak + bkx + cky)

2Ae
ai = xj Vk ~ xk Vj , a5 •>-(

>.XH uC
>♦wXi , ak = xi Vj ” xj Vi

bi = Vj “ yk . b3 1X.
>,SI Vi * bk ~ yi - *3

ci = xk ” xj » c3 = Xi " Xk . ck = X3 - xi

where

e

1 *i Vi
1

1 *0 Vj
2

1 *k Vk

~ 2 (area of element e)
Substituting these equations in equation(4.11) we get

e e e
A 0 - b ~ 0

where

e
e p

A

e e
b =---

i-2 2
bj+cj bib3 + cic3 bibj +

bibj + cicj
2 2

bj + Cj bjbk +

bibk +
L cick bjbk + CjCk bk +

1
*

ui

1 9

e
0 = U3

1
. uk.

PROGRAM LISTING
PROGRAM FEM(INPUT, OUTPUT),
{THIS PROGRAM USES AUTOMATIC GENERATION OF MESH POINTS FOR FINITE
ELEMENT METHOD USING TRIANGULAR ELEMENTS}
{m 65520, 16384, 65360}
CONST

TYPE

VAR

NX = 8",
NY = 8;
NN :: NX*NY;

{ HUMBER OF NODES OH X AXIS }
{ HUMBER OF NODES ON Y AXIS }

ELEMEHTTYPE RECORD
ELEMENTHUMBER : INTEGER;
X_COORDINATES :ARRAY[1..3] OF REAL;
Y COORDINATES:ARRAYLI..3] OF REAL
END;
MATRIXTYPE - ARRAY [1..HN,1..NH] OF REAL; RTYPE~ARRAY[l..NN] OF REAL;
VECTORTYPE - ARRAY[I..3] OF INTEGER;

MAX, I, .J, N, L: INTEGER;
NELEM,XTOT,YTOT,XNODE,YHODE,HNODE:INTEGER;
SOL_VECT, XCOOR.DINATE, Y COORD I NATE, F_VECTOR, GLOBAL_VECT: RTYPE;
X_INITIAL, Y_INITIAL, X_FIHAL, Y_FINAL, Q, -ii, K:REAL;
ELEMENT:ELEMEHTTYPE;
GLOBAL.MAT,K_MATRIX:MATRIXTYPE;

PROCEDURE
\

RCOOEDINATES< VAR XI, Y1, N1, M2: INTEGER;
VAR XINI, XF, YINI, YF:REAL;
VAR XCO,YCO:RTYPE);

(THIS PROCEDURE GENERATES THE X AND Y COORDINATES
FOR THE ENTIRE MESH)
VAR

XX,YY:REAL;
BEGIN

XX.: - (XF-XINI) /XI;
YY: -(YF - YIND/Yl;
XCO[l]:=XINI;
YCO[1]:“YIN1;
FOR L:- 2 TO HI DO
BEGIN
XCO [L'J: -• XCO [L 1] S XX;

END;
FOR I: --- 2 TO 112 DO BFGTN
YCO[I] : "• YCO[1 i] -t YY;
END;

END;

PROCEDURE ELEMENT COORDINATE; i(VAR NN, X, Y: INTEGER;E:ELEMEHTTYPE;
VAR XCO,YCO:RTYPE;VAR Q,K:MATRIXTYPE;
VAR GF,F:RTYPE; R:REAL);

{THIS PROCEDURE CALCULATES THE NODE NUMBERS OF EACH ELEMENT
AND THEIR COORDINATES}
VAR

NODENUMBER,I,J,L,M,P,Q:INTEGER;
NODE:VECTORTYPE;

BEGIN ■WITH E DO BEGINNODENUMBER: 1;E.ELEMENTNUMBER:-0;FOR J:= 1 TO Y DO BEGINFOR I:- 1 TO X DO BEGINE.ELEMENTNUMBER:-E.ELEMENTNUMBER 4 1;NODE[1]:-NODENUMBER;E.X_COORDINATES[1]:=XCO[I];E.Y_COORDINATES[1]:=YCO[J];NODE [2 3 : "-NODENUMBER 4 1;E.X_COORDINATES[2]:=XCO[I+1];E.Y_COORDINATES[2j:=YCO[J];NODE[3] : •" X + N0DE[2] + 1;E.X_C00RDIHATES[3]:-XC0[I*I];E.Y_CGORDINATES[3]:=YC0[J+1];NODENUMBER:"NODENUMBER 4 1 ;KMATRIX(NN,E,R,NODE,F,GF,G,K);END;NODENUMBER:^NODENUMBER + 1 ;
END;

NODENUMBER :=1;FOR J:= 1 TO Y DO BEGINFOR I:~ 1 TO X DO BEGINE. ELEMENTNUMBER: =E. ELEMENTNUMBER 4- 1; NODE [1] : ‘-NODENUMBER;E.X_COORDINATES[1]:=XCO[I]; fi.Y_COORDIHATES[1J:=YCO[J];NODE [2] : ^NODENUMBER 4 X 4- 1;E.X_COORDINATES[2]:=XCO[13;E.Y_COORDINATES[2]:-YCO[J+l];NODE[3]:-NODE[2] + I;E.X_COORDINATES[3]:-XCO[141];E.Y_COORDINATES[3]:=YCO[J+l]; NODENUMBER:-NODENUMBER 4 1 ; KMATRIX(NN,E,R,NODE,F,GF,G,K);END;NODENUMBER:^NODENUMBER 4 1 ;END;END;
END; END; END; END;

PROCEDURE KMATRIX<NN:INTEGER; VAR E:ELEMENTTYPE;R:REAL;MODE : VECTOETYPE; VAR F, GF:R^YPE;
VAR G,K:MATRIXTYPE);

{THIS PROCEDURE COMPUTES THE GLOBAL MATRIX FOR ALL THE ELEMENTS}
VAR

X, Y:ARRAY} 1... 3] OF REAL;
A:MATRIXTYPE;
DELTA,ALPHA:REAL;
BETA,GAMMA:ARRAY [1..3] OF REAL;
U,M, L,P, Q, N1,N2, W3j. INTEGER;
FV:ARRAY[I..33 OP kEau\

BEGIN
FOR M: -1 TO 3 DO
BEGIN
X[M] : -E. X_COORDINATES[M] ;
Y[M]:=E.Y_COORDINATES[M J;

END;
DELTA: =X[2]*Y[3J-X[3] *Y[2] + X[1]*Y£ 2 3-X[13 *Y[3 3 +X[3]*Y[13-X[2 3*Y[13
ALPHA: =(X[23*Y[33 -X[33*Y[23)/DELTA;BETA[13:=(Y[23“Y[33)/DELTA;
BETA[23:=(Y[33"Y[13)/DELTA;BETA[33:-(Y[1]-Y[2 3)/DELTA;
GAMMA[1]:=(X[3]-X[2])/DELTA;
GAMMA[2 3:=(X[3 3-X[1]}/DELTA;
GAMMA[3]:=(X[1]-X[2])/DELTA;
FOR M:-1 TO 3 DO
BEGIN
FOR N: = 1 TO 3 DO
BEGIN
A[M,N}:~(R/{2* DELTA))*{BETA[M3*BETA[N 3 +GAMMA[M3 *GAMMA[N 3);
END;
FV[M3 '• - (1/6) * Q * DELTA;

END;'
HI :=NODE[13;N2:-NODE[2];
N3:-NODE[3];
FOR L:= 1 TO 3 DO BEGIN
U:=NODE[L3;K[U,N13:-A[L,13;K[U,N23:=A[L,23;K[U,N33:=A[L/33;F[U]:=FV[L];
END;
FOR P:-1 TO NN DO
BEGIN
FOR Q:=l TO NN DO
BEGIN
0[P, Q3 - -G[P, Q3 + K[P,Q3; END;
OF[P3:=GF[P3 + F[P];END;

END;

PROCEDURE SWAP(VAR N, I,P:INTEGER; VAR A:MATRIXTYPE; F:RTYPE);
{THIS PROCEDURE INTERCHANGES THE ROWS OF THE GLOBAL MATRIX .
AND GLOBAL VECTOR AFTER PIVOTIMG}
VAR

L:INTEGER;
T:REAL;

BEGIN
FOR L:-1 TO N DO
BEGIN
T:=A[I,L3;
A[I,L] =A[P, L] ;
A[P, L]:~T;
T:-F[I];
F[I]:-F[P];
F[P]:=T;

END;
END;

PROCEDURE GAUSS{ N:INTEGER; VAR AtMATRIXTYPE; VAR F, X:RTYFE>;

{THIS PROCEDURE USES GUASS ELIMINATION TO SOLVE A SET
OF SIMULTANEOUS LINEAR SYSTEM OF EQUATIONS}

VAR
I, J,K,P,L, M: INTEGER;
SUM,PIVOT,T:REAL;

BEGIN
FOR I::-- 1 TO N DO
BEGIN
PIVOT ABS(A[I,I]>;p: -1 •
FOR L:= HI TO N DO
BEGIN
IF (PIVOT < ABS(A[L,I]}) THEN
BEGIN
PIVOT:=ABS(A[L,I]);
P:=L;

END;
END;
IF (POI) THEN SWAP(N, I,P,A,F);
FOR K:=I+1 TO N DO
BEGIN
FOR J:=1+1 TO N DO
BEGIN
A[K,J]:=A[K,J3 - ACK.I] *{A[I,J3/A£I,I3->;F[J]:=F[J] - A.[K,I] * (A[I,J]/A[I,I]);

END;A[K,I]:=0;
END;

END;
X[N3:=FCN3/A[N»N3;
FOR I:=N-1 DOWNTO 1 DO
BEGIN
SUM:= 0;
FOR K:= 1+1 TO N DO '
BEGIN
SUM:=SUM 4 A[I,K] * X[KJ;

END;
X[I]:= (F[I3 - SUM)/A[I,I];

END;
FOR I:= 1 TO N DO
BEGIN '
WRITELN(' The value of the' function at node M/ is \X[I]:6:2)

END;
END; {End of Gauss Elimination}

MAIN PROGRAM BEGINS HERE }
BEGIN
WRITELN ('' THIS IS A PROBLEM OF STEADY STATE HEAT CONDUCTION IN 2--D’);
WRITELN(’ENTER THE VALUE OF K’);
READLN(K);WRITELH('ENTER THE VALUE OF Q’);
READLN(Q);
WRITELN< ’ ENTER THE NUMBER OF NODES ALONG X_AXIS’);
READLN(XNODE);
WRITELN{’ENTER THE NUMBER OF NODES ALONG Y_AXIS’);
READLN(YNODE);
NNODE:-XNODE * YNODE;
XTOT:= XNODE - 1 ;
YTOT:= YNODE - 1;
NELEM:=XTOT*YTOT*2;
WRITELN('THE TOTAL NUMBER OF NODES IN THE DOMAIN ARE \ NNODE);
WRITELN (■' THE X AND Y COORDINATES FOR ALL NODES’);
WRITELN;
WRI TELN (’ENTER THE INITIAL VALUES OF X AIJD Y’);
READLN{X_INITIAL,Y_INITIAL);
WRITELN('ENTER THE FINAL VALUES OF X AND Y’);
READLN(X_FINAL,Y_FINAL);
{THIS PART OF THE PROGRAM INITIALISES THE K MATRIX ,GLOBAL MATRIX ,
GLOBAL VECTOR AND LOAD VECTOR}
FOR I:-1 TO NNODE DO
BEGIN
FOR TO NNODE DO
BEGIN
K_MATRIX{I, J]:=0;
GLOBAL_MAT[I, J]:^0;

END;
F_VECTOR[I]:-0;
GLOBAL_VECT[I]:=0;

END;
RCOORDINATES(XTOT,YTOT,XNODE,YNODE,X_INITIAL,

X_FINAL,Y_INITIAL,Y_FINAL,XCOORDINATE,YCOORDINATE);
ELEMENT_COORDINATES(NNODE,XTOT,YTOT,ELEMENT,XCOORDINATE,YCOORDINATE,

GLOBAL_MAT,K_MATRIX, GLOBAL_VECT,F_VECT0R, K);
WRI TELN {-’ Global Matrix Global Vector ');
FOR I:-1 TO NNODE DO
BEGIN
FOR J:-l TO NNODE DO BEGIN
WRITE{GLOBAL_MAT[I, J]:6:2);

END;
WRITELH (’ ’,GLOBAL_VECT{I]:6:2);

END;
GAUSS(NNODE,GLOBALJMAT,GLOBAL_VECT,SOL_VECT);

END.

t

PROGRAM- OUTPUT

THIS IS A PROBLEM OF STEADY STATE HEAT CONDUCTION IN 2-D

ENTER THE VALUE OF K? 1

ENTER THE VALUE OF Q? 1
ENTER THE NUMBER CDF NODES ALONG X_AXIS? 4

ENTER THE NUMBER OF NODES ALONG Y_AXIS? 4

THE TOTAL NUMBER OF NODES IN THE DOMAIN ARE 16
ENTER THE INITIAL VALUES OF X AND Y? (0,0)

ENTER THE FINAL VALUES OF X AND Y? (1,1)

The value of the function at node 1 is -2.57
The value of the function at node 2 is -0.27
The value of the function at node 3 is 0.79

The value of the function at node 4 is 1.21
The value of the function at node 5 is 0.70
The value of the function at node 6 is 1.78
The value of the function at node 7 is -1.31
The value of the function at node 8 is 1.13
The value of the function at node 9 is 6.91
The value of the function at node 10 is -1.07
The value of the function at node 11 is -1.14
The value of the function at node 12 is -0.16
The value of the function at node 13 is -3.34
The value of the function at node 14 is -2.74
The value of the function at node 15 is 2.25
The value of the function at node 16 is .00

GLOBAL VECTOR

-2.67
0.30

0.89

4.74

-0.89
-0.89
0.30
0.59
0.00

0.89
1.19
1.48

-0.89
1.78

2.07
2.37

\

