CHAPTER III

CURVATURE INHERITANCE IN RIM DISTRIBUTION

The critical study of the work due to Maartens and Maharaj (1986) suggest that there do exist proper CKV in FRW models and perfect fluid distributions. This suggested a clue to Duggal (1992) to modity the concept of curvature collineation suitable for proper CKV and other related proper symmetries. Accordingly, he introduced a new symmetry called as Curvature Inheritance (CI) defined by equation (I,3.3) 。

Our aim here is to explore the geometrical and dynamical properties of CI pertinent to RIM distribution.

Theorem(1) : If the spacetime admits CI, then

$$
\begin{equation*}
L_{\xi} R_{a b}=2 \alpha R_{a b} \tag{1}
\end{equation*}
$$

where a is scalar function of coordinates (Duggal, 1992). Here we call the symmetry vector ξ satisfying (1) as the vector generating Ricci Inheritance (RI). We can rewrite the condition (1) for $C I$ in the following explicit form as

$$
\begin{equation*}
\left(\nabla_{c} R_{a b}\right) \xi^{c}+R_{a b}\left(\nabla_{a} \xi^{d}\right)+R_{a b}\left(\nabla_{b} \xi^{d}\right)=2 a R_{a b} \tag{2}
\end{equation*}
$$

We study this expression with the following two specific types of the vector ξ.

Case (1): The Choice $\xi^{a}=u^{a}$

$$
\begin{equation*}
\left(\nabla_{c} R_{a b}\right) u^{c}+R_{d b} \nabla_{a} u^{d}+R_{a b} \nabla_{b} u^{d}=2 a R_{a b} . \tag{3}
\end{equation*}
$$

The concentration of this equation with $g^{a b}$ yields.

$$
\begin{align*}
& \left(\nabla_{c} R\right) u^{c}+R_{d}^{a}\left(\nabla_{a} u^{d}\right)+R_{d}^{b}\left(\nabla_{a} u^{d}\right)=2 \alpha R \\
& \text { i.e. }\left(\nabla_{c} R\right) u^{c}+2 R^{a d}\left(\nabla_{a} u_{d}\right)=2 \alpha R \tag{4}
\end{align*}
$$

For the RIM distribution $R=-\rho$ and hence
equation (4) reduces to

$$
\begin{equation*}
\left(\nabla_{c} \rho\right) u^{c}-2 R^{a d}\left(\nabla_{a} u_{d}\right)=2 a \rho . \tag{5}
\end{equation*}
$$

By using the equation ($1,4.5$) this result produces

$$
\begin{gathered}
\left(v_{c} \rho\right) u^{c}-2\left[\left(\rho+\mu h^{2}\right) u^{a} u^{d}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g^{a d}-\mu h^{a} h^{d}\right] \nabla_{a} u_{d}= \\
=2 a \rho
\end{gathered}
$$

If we substitute $u^{d}\left(\nabla_{a} u_{d}\right)=0$ and $\nabla_{a} u^{a}=\theta$, then the above equation leads to

$$
\stackrel{\star}{\rho}+\rho \theta+\mu h^{2} \theta+2 \mu h^{a_{h}} h^{d} \nabla_{a} u_{d}=2 \alpha \rho
$$

This, with the help of continuity equation (I,6.4), generates

$$
\mu h^{2} \theta+2 \mu h^{a_{h}}{ }^{d} \nabla_{a} u_{d}=2 \alpha \rho
$$

After using Maxwell equation (I,5.3), we get

$$
\begin{equation*}
\mu h^{2} \theta+\mu \hbar^{2}=-2 \alpha \rho \tag{6}
\end{equation*}
$$

1.e. $L_{u}\left(\mu h^{2}\right)=-2 \alpha \rho-\mu h^{2} \theta$.

Further, innermultiplying equation (3) with $u^{\mathbf{a}} u^{b}$ gives

$$
\begin{align*}
u^{a} u^{b}\left(\nabla_{c} R_{a b}\right) u^{c}+u^{a} u^{b} R_{d b} \nabla_{a} u^{d} & +u^{a} u^{b} R_{a d} \nabla_{a} u^{d} \\
& =2 a R_{a b} u^{a} u^{b} \tag{8}
\end{align*}
$$

We simplify each term of this equation in following manner.

$$
\begin{aligned}
& u^{a} u^{b}\left(\nabla_{c} R_{a b}\right) u^{c}= \\
& \\
& \quad=u^{a} u^{b}\left[\nabla_{c}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-i\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right] u^{c},
\end{aligned}
$$

(Vide $1,4.5$).

If we substitute $\left(\nabla_{c} u_{a}\right) u^{a}=0, u^{a} h_{a}=0$ and $\left(\nabla_{c} g^{a b}\right)=0$, then the above equation leads to

$$
\begin{equation*}
u^{a} u^{b}\left(\nabla_{c} R_{a b}\right) u^{c}=\left[\nabla_{c}\left(\rho+\mu h^{2}\right)\right] u^{c} \tag{9}
\end{equation*}
$$

Now we take the second term of L.H.S. of equation (8).

$$
\begin{aligned}
& u^{a} u^{b} R_{d b} v_{a} u^{d}= \\
& =u^{a} u^{b}\left[\left(\rho+\mu h^{2}\right) u_{d} u_{b}-1\left(\rho+\mu h^{2}\right) g_{d b}-\mu h_{a} h_{b}\right] \nabla_{a} u^{d}, \\
& \text { (Vide I, 4.5). }
\end{aligned}
$$

After using $u_{d} \nabla_{a} u^{d}=0$, this reduces to

$$
\begin{equation*}
u^{a} u^{b} R_{d b} v_{a} u^{d}=0 \tag{10}
\end{equation*}
$$

Similarly we observe that the third term on L.H.S. of

25

equation (8) also becomes

$$
\begin{equation*}
u^{a} u^{b} R_{\mathrm{ad}} \nabla_{a^{u}}{ }^{d}=0 \tag{11}
\end{equation*}
$$

Also the R.H.S. of equation (8) is simplified as

$$
\begin{equation*}
2 a R_{a b} u^{a} \cdot u^{b}=\alpha\left(\rho+\mu h^{2}\right), \quad(\text { Vide } I, 4.7) \tag{12}
\end{equation*}
$$

Thus by means of equations (9), (10), (11) and (12) the equation (8) is reduced to

$$
\begin{gather*}
{\left[\nabla_{c}\left(\rho+\mu h^{2}\right)\right] u^{c}=2 \alpha\left(\rho+\mu h^{2}\right),} \\
\text { i.e. } L_{u}\left(\rho+\mu h^{2}\right)=2 \alpha\left(\rho+\mu h^{2}\right) . \tag{13}
\end{gather*}
$$

Further, by the contraction of (3) with $h^{a_{h}}{ }^{b}$ yields

$$
\begin{align*}
h^{a} h^{b}\left(\nabla_{c} R_{a b}\right) u^{c}+h^{a} h^{b} R_{d b} \nabla_{a} u^{d} & +h^{a_{h} b_{R_{a d}} \nabla_{b} u^{d}}= \\
& =2 a R_{a b} h^{a} h^{b} \tag{14}
\end{align*}
$$

We simplify each term of this equation as follows

$$
\begin{aligned}
& h^{a_{h} b}\left(\nabla_{c} R_{a b}\right) u^{c}= \\
& =h^{a} h^{b}\left[\nabla_{c}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-1\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right] u^{c} . \\
& \quad(V i d e I, 4,5)
\end{aligned}
$$

By recalling $u^{a} h_{a}=0, h^{2} h_{a}=-h^{2}$,

$$
\left(\nabla_{c} h_{a}\right) u^{c}=\stackrel{\star}{h}_{a} \cdot \stackrel{\star}{h}_{a} h^{a}=-\frac{\star_{2}^{2}}{2} \text { and }\left(\nabla_{c} \rho\right) u^{c}=\stackrel{\star}{\rho},
$$

26

we get

$$
\begin{equation*}
h^{a} h^{b}\left(\nabla_{c}{ }_{a b}\right) u^{c}=\frac{h^{2}}{2}\left(\stackrel{\star}{\rho}-i \mu h^{\star}\right) \tag{15}
\end{equation*}
$$

Now, we simplify the second term on L.H.S. of (14)

$$
\begin{aligned}
& h^{a} h^{b} R_{d b} \nabla_{a} u^{d}= \\
& =h^{a_{h} b}\left[\left(\rho+\mu h^{2}\right) u_{d} u_{b}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{d b}-\mu h_{d} h_{b}\right] \nabla_{a} u^{d} \\
& \\
& \text { (Vide I,4.5). }
\end{aligned}
$$

If we substitute $h^{a_{u}}=0$ in this, then we get

$$
h^{a} h^{b} R_{d b} \nabla_{a} u^{d}=\frac{1}{2} h^{a_{h}}\left(\nabla_{a} u^{d}\right)\left(\mu h^{2}-\rho\right),
$$

Using the Maxwell equation ($1,5,3$) we get,

$$
\begin{equation*}
h^{a_{h} b_{R}} d b \nabla_{a} u^{d}=\frac{1}{2}\left(-\frac{1}{h^{2}}{ }^{2}-h^{2} \theta\right)\left(\mu h^{2}-\rho\right) \tag{16}
\end{equation*}
$$

Similarly we observe that the third term on L.H.S. of equation (14) also provides

$$
\begin{equation*}
h^{a_{h} b_{R_{a d}}\left(\nabla_{b} u^{d}\right)=\frac{1}{2}\left(-\frac{1}{2} h^{2}-h^{2} \theta\right)\left(\mu h^{2}-\rho\right) . . .(2)} \tag{17}
\end{equation*}
$$

Further the R.H.S. of equation (14) gives

$$
2 a R_{a b} h^{a_{h} b}=a\left(\rho-\mu h^{2}\right) h^{2} \text {, (Vide I,4.8). ...(18) }
$$

Thus employing equations (15), (16), (17) and (18) in equation (14) we obtain

$$
\begin{aligned}
\stackrel{*}{\rho} h^{2}-\frac{*}{*} h^{2} h^{2}+\left(-\frac{* h^{2}}{2}-h^{2} \theta\right)\left(\mu h^{2}-\rho\right) & = \\
& =a\left(\rho-\mu h^{2}\right) h^{2}
\end{aligned}
$$

This when simplified gives

$$
\begin{equation*}
\stackrel{{ }_{\rho}^{\rho}}{ }{ }^{2}-2 \mu \hat{h}^{2} h^{2}-2 \mu \theta h^{4}+\rho \hat{h}^{2}+2 h^{2} \theta \rho=2 a\left(\rho-\mu h^{2}\right) h^{2} \tag{19}
\end{equation*}
$$

Further, innermultiplying equation with $u^{a_{h}} \mathbf{b}$, we get

$$
\begin{align*}
u^{a} h^{b}\left(\nabla_{c} R_{a b}\right) u^{c}+u^{a} h^{b} R_{d b}\left(\nabla_{a}^{u}\right) & +u^{a} h^{b_{R}}{ }_{a d}\left(\nabla_{b} u^{d}\right)= \\
& =2 a R_{a b} u^{a^{b}}{ }^{b} . \quad \cdots \tag{20}
\end{align*}
$$

We simplify each term of this equation in following manner

$$
\begin{aligned}
& u^{a_{h} b}\left(\nabla_{c} R_{a b}\right) u^{c}= \\
& \quad=u^{a_{h} b}\left[\nabla_{c}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right] u^{c}
\end{aligned}
$$

(Vide I,4.5).
If we substitute $u^{a} h_{a}=0, \stackrel{u}{u}_{b}=\left(\nabla_{c} u_{b}\right) u^{0}$ and $\stackrel{\star}{h}_{a}=\left(\nabla_{c} h_{a}\right) u^{c}$ and knowing that $\stackrel{\star}{h}_{a}^{u^{a}}=0, h_{a} \stackrel{\star}{u}^{a}=0$, the above equation reduces to

$$
\begin{equation*}
u^{a^{b}}{ }^{b}\left(\nabla_{c} R_{a b}\right) u^{c}=0 \tag{21}
\end{equation*}
$$

The second term on L.H.S. of (20) also can be simplified as follows

$$
\begin{aligned}
& u^{a}{ }_{h} b_{R_{1 d}}\left(\nabla_{b} u^{d}\right)= \\
& =u^{a_{h} b}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{d}-\frac{1}{}\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{d}\right] \nabla_{b} u^{d}, \\
& \text { (Vide I,4,5). }
\end{aligned}
$$

By using the results $u^{a_{n}} h_{a}=0$ and $u_{a} \nabla_{b} u^{a}=0$, we get

$$
\begin{equation*}
u^{a} h^{b} R_{a d} \nabla_{b} u^{d}=0 . \tag{22}
\end{equation*}
$$

In similar way the third term on the L.H.S. of equation (20) provides

$$
\begin{equation*}
u^{a_{h}}{ }^{b_{d b}} \nabla_{a} u^{d}=0 . \tag{23}
\end{equation*}
$$

Further the R.H.S. of equation (20) becomes

$$
\begin{equation*}
2 a R_{a d} u^{u^{a} b}=0 . \tag{24}
\end{equation*}
$$

By making use of these values (21), (22), (23) and (24) it is observed that the equation (20) is identically satisfied.

Claim : For the RIM distribution obeying the Ricci Inheritance property along the flow vector $u^{\text {a }}$ implies Ricci Collineation iff $\theta=0$.

Proof : On subtracting equation (6) from equation (13), we get

$$
\stackrel{\star}{\rho}-\mu h^{2} \theta=4 \alpha \rho+2 \alpha \mu h^{2} .
$$

By using continuity equation (Vide $I, 6.4)$ in this equation,
we get

$$
\begin{align*}
& -\rho \theta-\mu h^{2} \theta=2 \alpha\left(2 \rho+\mu h^{2}\right), \\
& \text { 1.e. } \quad \alpha=\frac{-\left(\rho+\mu h^{2}\right) \theta}{2\left(2 \rho+\mu h^{2}\right)} \tag{25}
\end{align*}
$$

We know that the Ricci curvature Inheritance implies Ricoi Collineation iff $\alpha=0$.

$$
\text { But } a=0 \Longleftrightarrow \theta=0 \text {. }
$$

This completes the proof [Vide, (25)].

Case (ii): The choice $\xi^{a}=h^{a}$

> For this case equation (2) becomes

$$
\begin{equation*}
\left(\nabla_{c} R_{a b}\right) h^{c}+R_{d b} \nabla_{a} h^{d}+R_{a d} \nabla_{a} h^{d}=2 a R_{a b} \tag{26}
\end{equation*}
$$

The contraction of this with $g^{a b}$ yields

$$
\begin{equation*}
\left(\nabla_{c} R\right) h^{c}+2 R_{d}^{a} \nabla_{a} h^{d}=2 \alpha R . \tag{27}
\end{equation*}
$$

For the RIM distribution $R=-\rho$ and hence (27) reduces to

$$
\begin{equation*}
\left(\nabla_{c} \rho\right) h^{c}-2 R^{a d}\left(\nabla_{a} h_{d}\right)=2 \alpha \rho \tag{28}
\end{equation*}
$$

By using the equation ($1,4.5$), this result becomes

$$
\begin{aligned}
\left(\nabla_{c} \rho\right) h^{c}-2\left[\left(\rho+\mu h^{2}\right) u^{a} u^{d}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g^{a d}\right. & \left.-\mu h^{a} h^{d}\right] \nabla_{a} h_{d}= \\
& =2 a \rho
\end{aligned}
$$

If we substitute $I,(6.6)$ and (6.7) then the above, result leads to

$$
\begin{equation*}
\left[\nabla_{c}\left(\rho-\frac{1}{\mu} \mu h^{2}\right)\right] h^{C}=2 \alpha \rho \tag{29}
\end{equation*}
$$

Further, innermultiplying equation (26) with $u^{a} u^{b}$ gives

$$
\begin{equation*}
u^{a} u^{b}\left(\nabla_{c} R_{a b}\right) h^{c}+u^{a} u^{b} R_{d b}\left(\nabla_{a} h^{d}\right)+u^{a} u^{d_{R_{a d}}} \nabla_{b} h^{d}=2 a u^{a} u^{b} R_{a b} \tag{30}
\end{equation*}
$$

We simplify each term of this equation in following manner $u^{a} u^{b}\left(\nabla_{c} R_{a b}\right) h^{c}=$

$$
=u^{a} h^{b}\left[\nabla_{c}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-1\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right] h^{c}
$$

(Vide I.4.5).
If we substitute $u^{a_{h}}=0$ and $u^{a} \nabla_{c} u_{a}=0$ the above equation leads to

$$
\begin{equation*}
\left.u^{a} u^{b}\left(\nabla_{c} R_{a b}\right) h^{c}=\dot{[} \nabla_{c}\left(\rho+\mu h^{\dot{2}}\right)\right]^{\prime} h^{c} \tag{31}
\end{equation*}
$$

Now we take the second term of L.H.S. of equation (30) $u^{a} u^{b} R_{d b} \nabla_{a} h^{d}=$

$$
=u^{a} u^{b}\left[\left(\rho+\mu h^{2}\right) u_{d} u_{b}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{d b}-\mu h_{d} h_{b}\right] \nabla_{a} h^{d}
$$

(Vide I, 4.5).
After using $u_{a} h^{{ }^{a}}=0$ and $u^{a_{n}} h_{a}=0$, this reduces to

$$
\begin{equation*}
u^{a} u^{b} R_{d b} \nabla_{a} h^{d}=0 \tag{32}
\end{equation*}
$$

Similarly, we observe that the third term on L.H.S. of equation (30) also simplified as

$$
\begin{equation*}
u^{a} u^{b} R_{a d} \nabla_{b} h^{d}=0 \tag{33}
\end{equation*}
$$

Further, R.H.S. of equation (30) is simplified as

$$
\begin{equation*}
2 a u^{a} u^{b} R_{a b}=a\left(\rho+\mu h^{2}\right), \quad(\text { Vide } I, 4.7) \tag{34}
\end{equation*}
$$

Thus by utilising equations (31), (32), (33) and (34) in equation (30) we get

$$
\begin{equation*}
\left[\nabla_{c}\left(\rho+\mu h^{2}\right)\right] h^{c}=2 \alpha\left(\rho+\mu h^{2}\right) \tag{35}
\end{equation*}
$$

Further innermultiplying equation (26) with $h^{a^{\prime}}{ }^{\mathbf{b}}$, we have

$$
\begin{equation*}
h^{a_{h} b}\left(\nabla_{c} R_{a b}\right) h^{c}+h^{a_{h} b_{R}}{ }_{d b} \nabla_{a} h^{d}+h^{a} h^{b_{R}}{ }_{a d} \nabla_{b} h^{d}=2 a h^{a} h^{b} R_{a b} \tag{36}
\end{equation*}
$$

We simplify each termof this equation in the following
manner. manner.

$$
\begin{aligned}
& h^{a} h^{b}\left(\nabla_{c} R_{a b}\right) h^{c}= \\
& =h^{a_{h} b}\left[\nabla_{c}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right] h^{c}, \\
& \\
& \text { (Vide } I, 4.5) .
\end{aligned}
$$

If we substitute $u^{a} h_{a}=0, h^{a_{n}}=-h^{2}, \nabla_{c} g_{a b}=0$ and

$$
\left(\nabla_{c} h_{a}\right) h^{a}=-\frac{1}{2} \nabla_{c} h^{2}, \quad \text { we get }
$$

Now the second term on R.H.S. of equation (36) is simplified as follows

$$
\begin{aligned}
& h^{a} h^{b} R_{d b}\left(\nabla_{a} h^{d}\right)= \\
& =h^{a^{b}}\left[\left(\rho+\mu h^{2}\right) u_{d} u_{b}-1\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right] \nabla_{a} h^{d}
\end{aligned}
$$

(Vide I, 4.5).

If we substitute $h^{a_{u}}=0, h_{a} h^{a}=-h^{2}$ and $\left(V_{a} h^{d}\right) h_{d}=-\frac{1}{2} \nabla_{a} h^{2}$. we get

$$
\begin{equation*}
h^{a_{h} b_{R}}{ }_{d b} \nabla_{a} h^{d}=\frac{1}{4}\left(\rho-\mu h^{2}\right) h^{a} \nabla_{a} h^{2} . \tag{38}
\end{equation*}
$$

Similarly, we can observe that the third term on L.H.S. of (36) is simplified as

$$
\begin{equation*}
h^{a} h^{b} R_{a d} \nabla_{b} h^{d}=\frac{1}{4}\left(\rho-\mu h^{2}\right) h^{b} \dot{\nabla}_{b} h^{2} . \tag{39}
\end{equation*}
$$

Further the R.H.S. of equation (36) gives

$$
\begin{equation*}
\left.2 a h^{a} h^{b} R_{a b}=a\left(\rho-\mu h^{2}\right) h^{2}, \quad \text { (Vide } I, 4.8\right) \tag{40}
\end{equation*}
$$

Thus utilising equations (37). (38), (39) and (40) in equation (36), we get

$$
\begin{align*}
{\left[\nabla_{c}\left(\rho-\mu h^{2}\right)\right] h^{c} h^{2}+\left(\rho-\mu h^{2}\right)\left(\nabla_{c} h^{2}\right) h^{0} } & = \\
& =2 \alpha\left(\rho-\mu h^{2}\right) h^{2} \tag{41}
\end{align*}
$$

Further, innermultiplying equation (26) with $u^{a} h^{b}$, we get

$$
\begin{align*}
u^{a} h^{b}\left(\nabla_{c} R_{a b}\right) h^{c}+u^{a} h^{b} R_{d b} \nabla_{a} h^{d} & +u^{a} h^{b} R_{a d} \nabla_{a} h^{d}= \\
& =2 a u^{a} h^{b_{R}}{ }_{a b} \tag{42}
\end{align*}
$$

We can simplify each term of this equation in following manner

$$
\begin{aligned}
& u^{a} h^{b}\left(\nabla_{c} R_{a b}\right) h^{c}= \\
& =u^{a} h^{b}\left[\nabla_{c}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right] h^{c} . \\
& \\
& \text { (Vide I, 4.5). }
\end{aligned}
$$

By using the results $u^{a_{n}}=0, v_{c} g_{a b}=0$ and $\hat{h}^{*} u_{a}=0$ we get

$$
\begin{equation*}
\left.u^{a} h^{b}\left(\nabla_{c} R_{a b}\right) h^{c}=\rho\left(\nabla_{c} u_{b}\right) h^{b} h^{c}\right) . \tag{43}
\end{equation*}
$$

The second term on L.H.S. of equation (42) is simplified in following manner.
$u^{a} h^{b} R_{d b} \nabla_{a} h^{d}=u^{a} h^{b}\left[\left(\rho+\mu h^{2}\right) u_{d} u_{b}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{d} h_{b}\right] \nabla_{a} h^{d}$ If we use the results $u^{a_{n}} h_{a}=0,\left(\nabla_{a} h^{d}\right) h_{d}=-\frac{1}{2} V_{a} h^{2}$, we get

$$
\begin{equation*}
u^{a_{h}}{ }_{R_{d b}}\left(\nabla_{a} h^{d}\right)=\frac{1}{4}\left(\rho-\mu h^{2}\right)\left(\nabla_{a} h^{2}\right) u^{a} \tag{44}
\end{equation*}
$$

The third term on L.H.S. of (42) is simplified as follows.

$$
\begin{aligned}
& u^{a} h_{h} b_{R_{a d}} \nabla_{b} h^{d}= \\
& \quad=u^{a_{h}}\left[\left(\rho+\mu h^{2}\right) u_{a} u_{d}-\frac{1}{2}\left(\rho+\mu h^{2}\right) g_{a d}-\mu h_{a} h_{d}\right] \nabla_{b} h^{d}, \\
& \\
& \quad \text { (Vide I, 4.5). }
\end{aligned}
$$

Now, using the result $u^{a_{h}} h_{a}=0$, we get

$$
\begin{equation*}
u^{a} h^{b} R_{a d} \nabla_{b} h^{d}=-t\left(\rho+\mu h^{2}\right) u_{d} h^{b} v_{b} h^{d} . \tag{45}
\end{equation*}
$$

Further the R.H.S. of equation (42) becomes

$$
\begin{equation*}
2 a u^{a_{h}}{ }_{R_{a b}}=0 \tag{146}
\end{equation*}
$$

Thus by using the values (43), (44), (45) and (46) in (42), we get
$\rho\left(\nabla_{c} u_{b}\right) h^{b} h^{c}+\left(\rho-\mu h^{2}\right)\left(\nabla_{a} h^{2}\right) u^{a}-\mu h^{2}\left(\nabla_{b} u_{d}\right) h^{b} h^{d}=0 . \quad .(47)$

THEOREM : For RIM distribution, CI along vector \bar{h} degenerates into CC.

Proof : On subtracting equation (29) from (31) we get

$$
\begin{equation*}
3\left(\nabla_{c} h^{2}\right) h^{c}=4 a h^{2} . \tag{48}
\end{equation*}
$$

Further multiplying (29) by two and adding in equation (35) we get

$$
\begin{equation*}
3\left(\nabla_{c} \rho\right) h^{c}=2 \alpha\left(3 \rho+\mu h^{2}\right) \tag{49}
\end{equation*}
$$

Substituting the values (48) and (49) in equation (41) we get

$$
4 a \rho h^{2}=0
$$

$$
\text { i.e. } \quad \alpha=0, \quad \text { since } \rho \neq 0, h^{2} \neq 0 . \cdots(50)
$$

Hence

$$
\begin{aligned}
& L_{\xi} R_{b c d}^{a}=2 a R_{b c d}^{a} \\
& \Longrightarrow L_{\xi} R_{b c d}^{a}=0 \text { which describes CC. Here the proof of }
\end{aligned}
$$ the theorem is complete.

Corollary : If RIM distribution admits CI along the magnetic field \bar{h}, then

$$
\rho_{\cdot} c^{h^{c}}=0=\mu\left(\nabla_{c} h^{2}\right) h^{c}
$$

The proof follows from the equations (48), (49) and (50).

Remark : In case of homogeneous magnetic field we observe that Ricci Inheritance symmetry \Longrightarrow CC.

Conclueion: In this chapter, we have examined the implications of curvature inheritance symmetry with reference to the spacetime of RIM distribution.

In Case (1), we have found that the curvature inheritance degenerates into curvature collineation along the symmetry vector \bar{u} if either expansion vanishes or the
matter density ρ is balanced by magnetic field $(\theta=0)$;

In second case, dealing with the curvature inheritance where the magnetic field vector \bar{h} acts as symmetry vector, we have shown that it leads to curvature collineation. Moreover, the matter density and the magnitude of magnetic field remain invariant along this vector.

