CHAPTER IV
CONFORMAL MOTIONS AND CURVATURE INHERITANCE (JOINT EFFECT)

LNTERPLAY BETHEEN CKY AND CI 1

In chapter II, we have studied the properties of RIM distribution admitting a group of conformal motions.

The chapter III is devoted to the study of symmetry group of conformal motions leading to curvature inheritance in RIM distribution. These two aspects of conformal motions and curvature inheritance are treated separately in earlier chapters.

This chapter IV throws light on the implications of RIM distribution admitting both group of conformal motions and curvature inheritance simultaneously.

Theorem : (Duggal, 1992)
A CI is CKV if

$$
\begin{equation*}
\nabla_{a b} \psi=\frac{\alpha}{2}\left[\frac{R}{3} g_{a b}-2 R a b\right] . \tag{1.1}
\end{equation*}
$$

By using the values $\left[1,(4.5)\right.$ and (4.6)] for R and $R_{a b}$ respectively in above equation, we get
$\nabla_{a b}^{\psi}=\frac{a}{2}\left[-\frac{\rho}{3} g_{a b}-2\left[\left(\rho+\mu h^{2}\right) u_{a} u_{b}-1\left(\rho+\mu h^{2}\right) g_{a b}-\mu h_{a} h_{b}\right]\right]$.

The contractions of this with $u^{a} u^{b}, h^{a} h^{b}$ and $u^{a} h^{b}$ after simplification give the following results.

$$
\begin{align*}
& \left(\nabla_{a b^{\psi}} \psi\right) u^{a} u^{b}=-\frac{\alpha}{2}\left[\frac{4 \rho}{3}+\mu h^{2}\right] \tag{1.3}\\
& \left(\nabla_{a b^{\prime}} \psi\right) h^{a_{h}}{ }^{b}=\frac{a}{2}\left[\frac{\left(3 \mu h^{2}-2 \rho\right) h^{2}}{3}\right] \tag{1.4}\\
& \left(v_{a b} \psi\right) u^{a} h^{b}=0 . \tag{1.5}
\end{align*}
$$

Further, equation (1.2) after transvection with $g^{a b}$ yields $\left(\nabla_{c d} \psi\right)_{g}^{c d}=\frac{\alpha \rho}{3}$,

This result when coupled with equation (II, 2.14) produces

$$
\begin{equation*}
L_{\xi} \rho=2\left(a \rho+R_{b}^{a} \nabla_{a} \xi^{b}\right) \tag{1.7}
\end{equation*}
$$

By making use of (1.3) in equation (II, 2.15), we derive $L_{\xi}\left(\mu h^{2}\right)=-8\left(\nabla_{c d} \psi\right) g^{C d}+4 B \psi+\frac{a}{2}\left[\frac{4 \rho}{3}+\mu h^{2}\right]-2 R_{b}^{a} V_{a} \xi^{b}$.

This after using (1.6) and simplifying provides
$L_{\xi}\left(\mu h^{2}\right)=a\left(-\frac{4}{3} \rho+\frac{\mu h^{2}}{2}\right)+4 B \psi-2 R_{b}^{a} \nabla_{a} \xi^{b}$.
Now by substituting the values from (1.4) and (1.6) in (II, 2.10), we get

$$
\begin{equation*}
L_{\xi} B=\alpha\left(\frac{\rho}{3}-\frac{1}{2} \mu h^{2}\right)-2 B \psi-2 C h^{a}\left(L_{\xi} h_{a}\right) . \tag{1.9}
\end{equation*}
$$

Claim : If RIM distribution admits CKV and CI both then

$$
h^{a_{L}} h_{a}=0 \Longleftrightarrow \rho=\frac{3}{8} \mu h^{2} .
$$

The proof follows from the results (1.7), (1.8) and (1.9).

2. THE SPECIAL CONFORMAL MOTIONS

We recall the defining conditions for special conformal motions (Vide Chapter I, Note (ii))

$$
\begin{equation*}
\nabla_{\mathbf{C d}}{ }^{\psi}=0 . \tag{2.1}
\end{equation*}
$$

These conditions with (1.6) imply

$$
\begin{equation*}
a=0 \tag{2.2}
\end{equation*}
$$

Hence we infer that the curvature inheritance degenerates into curvature collineation if CKV is special CKV.

Further the conditions (2.1) simplify equations (1.7) and (1.8) as follows.

$$
\begin{align*}
& L_{\xi} \rho=2 R_{b}^{a} \nabla_{a} \xi^{b} . \tag{2.3}\\
& L_{\xi}\left(\mu h^{2}\right)=-2\left(\rho+\mu h^{2}\right) \psi-2 R_{b}^{a} \nabla_{a \xi} b \tag{2.4}
\end{align*}
$$

In particular if $\nabla_{a} \xi^{b}=\xi u_{a} h^{b}$ then (2.1) with (I, 1.9) gives

$$
\begin{equation*}
L_{\xi}\left(\mu h^{2}\right)=-2\left(\rho+\mu h^{2}\right) \psi \tag{2.5}
\end{equation*}
$$

This shows that the conformal factor depends explicitly on the magnetic fleld only.

3. EXPLICIT RELATION BETWEEN a AND ψ (A CASE STUDY $)^{\prime}$

It is proved by Duggal, 1992 that "the spacetime admitting CKV and proper CI simultaneously is conformably flat". This result is used to develop the relation between ψ and a by considering a suitable example.

Any metric $g_{i k}$ leading to conformally flat apace can be expressed in terms of Minkowaki metric $\eta_{i k}$ as
follows.

$$
\begin{equation*}
g_{i k}=x^{2} n_{i k} \tag{3.1}
\end{equation*}
$$

where X is a function of coordinates.
The scalar curvature R pertaining to the metric $g_{i k}$ is related to the function x through the equation (G1das, 1982).

$$
\begin{aligned}
\left(\nabla_{c d} X\right) g^{c d}+\frac{1}{6} R X^{3} & =0, \\
\text { 1.e. }\left(\nabla_{c d} X\right) g^{c d}-\frac{1}{6} \rho X^{3} & =0, \quad \text { (Vide } 1,4.2)
\end{aligned}
$$

from equation (3.1) we can write

$$
\begin{equation*}
L_{\xi}\left(g_{i k}\right)=2 \xi(\log x) g_{i k} \tag{3.4}
\end{equation*}
$$

This implies a functional relation

$$
\begin{equation*}
\psi x=\xi(x) \tag{3.5}
\end{equation*}
$$

We recall the earlier result (Vide, 1.6)

$$
\begin{equation*}
\left(\nabla_{c d} \psi\right)_{g^{c d}}=\frac{-\alpha R}{3} \tag{3.6}
\end{equation*}
$$

By using (3.3), (3.5) and (3.6) we derive

$$
\left(\nabla_{c d} \psi\right) g^{c d}=\frac{1}{6} \psi R x^{2}+\left(\frac{1}{x}\right)\left[v_{c d} \xi(x)\right] g^{c d} .
$$

This implies

$$
a=\psi\left(-\frac{1}{2} x^{2}\right)-\frac{3\left[\nabla_{c d} \xi(X)\right] g^{c d}}{R X}
$$

1.e.

$$
\begin{equation*}
a=\left(-\frac{1}{2} x^{2}\right) \psi+\frac{3}{\rho x}\left[\nabla_{c d} \xi(x)\right] g^{c d} \tag{3.7}
\end{equation*}
$$

Hence we got an explicit relation between a and ψ via known function X.

4. SPACETIME MODEL ADMITTING CONFORMAL MOTIONS

We develop here a static spherically symmetric spacetime model concomitant with RIM distribution admitting a group of conformal motions.

The static spherically symmetric metric in
Schwarzchild coordinates is given by the line element.

$$
d s^{2}=A^{2}(r) d t^{2}-B^{2}(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \theta^{2}\right) . . .(4.1)
$$

12838

We choose comoving system so that the orghogonality condition between flow field and magnetic field imply

$$
\begin{align*}
& u^{a}=u^{4} \delta_{4}^{a}, \quad u^{4}=\frac{1}{A} \tag{4.2}\\
& h^{a}=n^{1} \delta_{1}^{a} . \tag{4.3}
\end{align*}
$$

For this choice the line element (4.1) yields the field equations for the RIM distribution (I, 4.5) are given by

$$
\begin{align*}
& \mu h^{2}=\frac{1}{B^{2}}\left[\frac{2 A^{\prime}}{A r}+\frac{1}{r^{2}}\right]-\frac{1}{r^{2}}, \tag{4.4}\\
& \frac{1}{2} \mu h^{2}=\frac{1}{B^{2}}\left[\frac{A^{\prime} B^{\prime}}{A B}-\frac{A^{\prime \prime}}{A}-\frac{1}{r}\left(\frac{A^{\prime}}{A}-\frac{B^{\prime}}{B}\right)\right], \tag{4.5}\\
& \left(\rho+\frac{1}{2} \mu h^{2}\right)=\frac{1}{B^{2}}\left[\frac{1}{r^{2}}+\frac{2 B^{\prime}}{B r}\right]-\frac{1}{r^{2}} . \tag{4.6}
\end{align*}
$$

(Primes denote differentiation w.r.t. r).
Further the Maxwell equation (I, 5.1) for the line element (4.1) and for the choice (4.2) and (4.3) we obtain

$$
\begin{align*}
& \frac{\frac{\partial}{\partial t}\left(u^{4} \sqrt{-9}\right)}{\sqrt{-9} u^{4}}+\frac{h^{1}, 4}{h^{1}}=0, \\
& \frac{u^{4} \cdot 1}{u^{4}}+\frac{\nabla_{b} h^{b}}{h^{1}}=0 . \tag{4.8}
\end{align*}
$$

On integrating these two equations, we get the value of h_{1} in the form

$$
\begin{equation*}
h_{1}=\frac{-B f^{2}}{r^{2}}, \text { where } f=f(r) \tag{4.9}
\end{equation*}
$$

Now we find the value of A, we impose an extra condision of conformal symmetry

$$
\begin{equation*}
L_{x} g_{a b}=2 \Psi g_{a b} . \tag{4.10}
\end{equation*}
$$

These sixteen equations with the choice of arbitrary vector

$$
\begin{equation*}
\bar{x}=\lambda(r) \frac{\grave{o}}{\dot{\partial} r} \tag{4.11}
\end{equation*}
$$

and using the metric symmetry (4.1) we get

$$
B=\frac{n}{\psi}, \begin{aligned}
& \text { where } n \text { is arbitrary constant of } \\
& \text { of integration. }
\end{aligned}
$$

Also the value of A is given by one of the integrals as

$$
\begin{equation*}
A=m r, \quad \text { with } m \text { as constant. } \tag{4.13}
\end{equation*}
$$

For these values of A and B the equations (4.4) to (4.6) generate the following results

$$
\begin{align*}
& \frac{1}{2} \mu h^{2}=\frac{3 \psi^{2}}{n^{2}}\left[\frac{1}{r^{2}}\right]-\frac{1}{r^{2}} \tag{4.14}\\
& -\frac{1}{2} \mu h^{2}=\frac{\psi}{n^{2}}\left[\frac{2 \psi}{r \psi}+\frac{1}{r^{2}}\right] \tag{4.15}
\end{align*}
$$

$$
\begin{equation*}
\left(\rho+\mu h^{2}\right)=\frac{2}{n^{2}}\left[\frac{2 \psi}{2 r \psi}+\frac{1}{r^{2}}\right]-\frac{1}{r^{2}} \tag{4.16}
\end{equation*}
$$

Adding and subtracting (4.14) and (4.15) we get

$$
\begin{gather*}
\frac{2 \psi^{2}}{n^{2} r^{2}}-\frac{1}{2 r^{2}}+\frac{\psi \psi^{\prime}}{n^{2} r}=0 \tag{4.17}\\
-2 \mu h^{2}=\frac{-4 \psi^{2}}{n^{2} r^{2}}+\frac{2}{r^{2}}+\frac{4 \psi \psi}{n^{2} r} \\
\text { 1.e. } \mu h^{2}=\frac{2 \psi^{2}}{n^{2} r^{2}}-\frac{1}{r^{2}}-\frac{2 \psi \psi \prime}{n^{2} r} \tag{4.18}
\end{gather*}
$$

Equations (4.17) and (4.18) imply

$$
\begin{align*}
& -2 \rho=\frac{1}{r}\left[\frac{1}{r}-\frac{6 \psi \psi^{\prime}}{n^{2}}\right], \\
& \text { 1.e. } \rho=\frac{1}{r}\left[\frac{3 \psi \psi^{\prime}}{n^{2}}-\frac{1}{2 r}\right] . \tag{4.19}
\end{align*}
$$

To find the value of ψ^{2}
From equation (4.18) we write

$$
\begin{equation*}
2 \psi \psi^{\prime}+\frac{4 \psi^{2}}{r}-\frac{n^{2}}{r}=0 \tag{4.20}
\end{equation*}
$$

This provides an immediate integral in terms of integral constant C_{1} in the form

$$
\begin{equation*}
\psi^{2}=\frac{n^{2}}{4}+\frac{c_{1}}{4 r^{4}} \tag{4.21}
\end{equation*}
$$

That implies that

$$
\begin{equation*}
2 \psi \psi^{\prime}=\frac{-c_{1}}{r^{5}} \tag{4.22}
\end{equation*}
$$

On substituting this value in (4.21) gives

$$
\begin{equation*}
\frac{c_{1}}{r^{5}}-\frac{4}{r}\left[\frac{n^{2}}{4}+\frac{c_{1}}{4 r^{4}}\right]+\frac{n^{2}}{r}=0 \tag{4.23}
\end{equation*}
$$

Thus the static spherically symmetric spacetime model admitting a group of conformal motions corresponding RIM distribution is given by

$$
\begin{equation*}
d s^{2}=m^{2} x^{2} d t^{2}-2 n\left[n^{2}+\frac{c}{r^{4}}\right]^{-\frac{1}{2}} d r^{2}-r^{2}\left(d \theta^{2}+s n^{2} \theta d \phi^{2}\right) \tag{4.24}
\end{equation*}
$$

Discussion : We have successed in constructing a spacetime model compatible with RIM distribution admitting a group of conformal motions.

The value of parameter a describing the curvature inheritance is explicitly related with the value of ψ through equation (3.7). Therefore we infer that the above model also satisfies the $C I$ symmetry property.

APPENDIX

A) THE VALUES OF KINEMATICAL PARAMETERS

1. Expansion Scalar (θ)

$$
\begin{align*}
& \theta=\nabla_{a} u^{a} \text { (since by definition) } \tag{1}\\
& \theta=\frac{1}{\sqrt{-9}} \frac{\partial}{\partial x^{2}}\left(u^{4} \sqrt{-9}\right) \\
& \theta=\frac{1}{\sqrt{-9}} \frac{\partial}{\partial t}\left(u^{4} \sqrt{-9}\right) \text { (since only } u^{4} \text { is existing) } \\
& \theta=\frac{1}{A B r^{2}} \frac{\partial}{\partial t}\left(\frac{1}{A} A B r^{2}\right), \\
& \theta=\frac{1}{A B r^{2}} \frac{\partial}{\partial t}\left(B r^{2}\right), \\
& \theta=0 . \tag{2}
\end{align*}
$$

2. Acceleration ($\left.\mathrm{u}^{\mathrm{a}}\right)$
$\hat{u}^{\mathrm{a}}=\left(\nabla_{b} u^{a}\right) u^{b}$,
1.e. $\quad \stackrel{\star}{u}^{a}=\left(u^{a}{ }_{b}+u^{c} r_{c b}^{a}\right) u^{b}$.
1.e. $\quad{ }^{\star a}=u_{b}^{a} u^{b}+u^{c} u^{b} r_{C b}^{a}$.

For $a=1 \Longrightarrow$

$$
\stackrel{\star}{u}^{\star}=\underset{b}{\nabla} u^{1} u^{b}+u^{c} u^{b} r_{c b}^{1}
$$

ie. $\hat{u}^{\star 1}=0+r_{44}^{1} u^{4} u^{4}$ (since only u^{4} is existing).
ie. $\stackrel{* i}{ }^{1}=0+r_{44}^{1}\left(u^{4}\right)^{2}$.

$$
\text { since } \left.\quad u^{4}=\frac{1}{A} \text { and } \Gamma_{44}^{1}=\frac{1}{2 B^{2}} \frac{\partial}{\partial r}\left(A^{2}\right)\right)
$$

we get, $\stackrel{\star}{u}^{1}=\frac{1}{2 B^{2}} \frac{\partial}{\partial r}\left(A^{2}\right)\left(\frac{1}{A}\right)^{2}$
This implies

$$
\begin{equation*}
u^{\star_{1}}=\frac{A^{1}}{B^{2} A} \tag{3}
\end{equation*}
$$

Also we get

$$
u^{\star 2}=u^{\star 3}=u^{\star 4}=0
$$

(since only u^{4} is existing and $u^{* 4}=u^{4}, u^{4}+\Gamma_{44}^{4} u^{4} u^{4}$).
Therefore we get

$$
\begin{align*}
\stackrel{u}{u}_{a}^{u_{u_{a}}^{*}} & =\stackrel{*}{u}_{1}^{*} \stackrel{u}{u}_{1}=g_{11}\left(u_{u}^{1}\right)^{2} \\
\text { 1.e. } \quad \stackrel{u}{u}^{*} \stackrel{u}{u}_{a}^{*} & =-\frac{\psi}{n^{2} r^{2}} \quad(\text { Vide IV, 4.13, 4.14) } \tag{4}
\end{align*}
$$

3) Shear Tensor Components

$$
\sigma_{a b}=\ddagger\left[\nabla_{b} u_{a}+\nabla_{a} u_{b}\right]-t\left[\left(\nabla_{c} u_{a}\right) u^{c} u_{b}+u_{a}\left(\nabla_{c} u_{b}\right) u^{c}\right)-\frac{1}{3} \theta n_{a b} .
$$

Since $\theta=0$ and only u_{4} is existing and $u^{a_{a}}=1, u_{a, i}=0$ we find

$$
\left.\sigma_{a b}=t\left[\nabla_{b} u_{a}+\nabla_{a} u_{b}\right]-u_{4} r_{a b}^{4}+i r_{a 4}^{4} u_{b}+u_{a} r_{b 4}^{A}\right]
$$

Clearly

$$
\begin{align*}
& \sigma_{a}^{a}=0 \\
& \text { and } \\
& \sigma_{12}=0,\left(u_{1}=0=u_{2} \text { and } r_{12}=0\right) \\
& o_{13}=0,\left(u_{1}=0=u_{3} \text { and } r_{13}^{4}=0\right) \\
& \sigma_{23}=0,\left(u_{2}=0=u_{3} \text { and } r_{23}^{4}=0\right) \\
& o_{24}=0,\left(u_{4,3}=0, \quad u_{3}=0, r_{43}^{4}=0=r_{34}^{4}\right) \\
& \sigma_{14}=1\left[u_{4}-u_{4} r_{14}^{4}\right], \quad\left(\text { since } u_{1}=0\right) \\
& \text { 1.e. } \sigma_{14}=\left[A^{\prime}-A \frac{1}{2 A^{2}}\left(2 A A^{\prime}\right)\right],\left(\operatorname{since} u^{4}=\frac{1}{A}\right) \\
& \sigma_{14}=\left(A^{\prime}-A^{\prime}\right) \\
& \sigma_{14}=0 . \tag{5}
\end{align*}
$$

Hence $\sigma^{2}=\sigma^{a b} \sigma_{a b}=0$.
4. Rotation Tensor Components

$$
\begin{gathered}
\left.w_{a b}=\frac{1}{i}\left[\nabla_{b} u^{a}-\nabla_{a} u^{b}\right]-\frac{f}{i}\left(\nabla_{c} u_{a}\right) u^{c} u_{b}-u_{a}\left(\nabla_{c} u_{b}\right) u^{c}\right], \\
\\
(\text { since by definition }) .
\end{gathered}
$$

By using $r_{a b}^{4}=r_{b a}^{A} u_{a, 4}=0, u^{a} u_{a}=1$. and u^{4} is existing we get

$$
\begin{aligned}
& w_{a b}=\frac{1}{2}\left[u_{a \prime b}-u_{b \prime a}\right]-\frac{1}{2}\left[u_{a} \Gamma_{b 4}^{A}-\Gamma_{a 4}^{A} u_{b}\right] \\
& w_{11}=0 \\
& w_{12}=0 \quad\left(\text { since } u_{1}=0=u_{2}\right) \\
& w_{13}=0 \quad\left(\text { since } u_{1}=0=u_{3}\right) \\
& w_{23}=0 \quad\left(\text { since } \quad u_{1}=0=u_{3}\right) \\
& W_{24}=0 \quad\left(\text { since } u_{2}=0=u_{4,2}=0, r_{24}=0\right) \\
& w_{43}=0 \quad u_{4,3}=0, \quad u_{3}=0, \quad r_{34}=0 \\
& w_{41}=\left[u_{4,1}-u_{4} r_{14}\right] \quad\left(\operatorname{since} u_{14}=0\right) \\
& \text { 1.e. } W_{41}=\frac{1}{2}\left[A^{\prime}-A \frac{1}{2 A^{2}}\left(2 A A^{\prime}\right)\right] \\
& \text { 1.e. } W_{41}=t\left(A^{\prime}-A^{\prime}\right) \\
& w_{41}=0 .
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
w^{2}=w^{a b} w_{a b}=0 \tag{6}
\end{equation*}
$$

Further the relative anisotrophy

$$
\begin{equation*}
\Longrightarrow \frac{\sigma^{2}}{\rho}=\frac{0}{\rho}=0 \Longrightarrow \sigma=0 \tag{7}
\end{equation*}
$$

This proves that the flow of RIM distribution admitting conformal motion is essentially accelerating.
B) THE VALUES OF DYNAMICAL VARIABLES

We recall the equation (IV, 4.20)

$$
\rho=\frac{1}{r}\left[\frac{3 \psi \psi^{*}}{n^{2}}-\frac{1}{2 r}\right]
$$

using the equation (IV, 4.23) this yield e

$$
\begin{equation*}
\rho=\frac{1}{r}\left[-\frac{3 C_{1}}{2 n^{2} r^{5}}-\frac{1}{2 r}\right] \tag{8}
\end{equation*}
$$

Recall the equation (IV, 4.19)

$$
\mu h^{2}=\frac{2^{2}}{n^{2} r^{2}}-\frac{1}{r^{2}}-\frac{2 \psi \psi^{\prime}}{n^{2} r}
$$

By using the equations (IV, 4.22 and 4.23) this yields

$$
\begin{equation*}
\mu h^{2}=\frac{3 C_{1}}{2 n^{2} r^{6}}-\frac{1}{r^{2}} \tag{9}
\end{equation*}
$$

