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CHAPTER III

THE METHODS.Z.QR.-CDMEUI.'LII-IC EIGENVALUES..MD-EIGMyECTQES
(3.1) introduction

There are two types of Methods -for computing eigenvalues and 
eigenvectors namely (i) Iterative methods, (ii) Direct or 
trans formation methods.
The iterative methods are most useful when the matrix is large 

and sparse and having good estimate of the eigenvector.
The power method, Deflation method, Inverse iteration 

technique, Simultaneous iteration for real symmetric matrices by 
Clint and Jennings are some known iterative methods for computing 
eigenvalues and eigenvectors. Here we discuss the Power method in 
detai1.
(3.2) THE POWER METHOD
The matrix power method is the iterative method which is used to 

obtain the largest eigenvalue and the corresponding eigenvector of,
an nxn matrix.
The method is as follows,
Let A be an nxn matrix with linear elementary divisors whose 

eigenvalues satisfy,
Ia 3.1 = »V = *V =.... = i'V >t*r+l! * IV (1)
The eigenvalues >«2> • ■ • > XT will be refered as the dominant 

eigenvalues. By assumption there exists n linearly independent 
eigenvectors x^,X2,...,xn and an arbitrary vector Z^^can be



expressed in the form
Z(0) = E «iXi (2)

where are scalars, not all zero.
Let us define the iterative scheme

Z(k) = A Z<k_1) (3)
k = 1,2,3,---

where Z^Hs arbitrary, then
Z(k> = AZ<k-1) = A2Z<k-2> = .... = AkZ*P>

Z{k) = E «i (4)

Here provided that «£, «g,..... «r are not all^ zero. The
fright hand side of equation (4) is altimately dominated by the

term E In particular if r = 0 and we assume that
CC ^ 0, we have

Z<k) = ^ [ „lXl + E «!<*!/»!> *i j

“ X1 { oclxl+ sk 1 <5>

for k sufficiently large, where «k is a vector with very small 
elements. The vector Z^kHs an approximation to the unnormalized 
eigenvector x^ and is accurate if is sufficiently small.

Since Z<k+1> = >^+1 {«1x1+ *k+1}

It follows that for any i



/z(k+l>^i
- -x .

ocj^x^i + (ev+i>ik+1

oc1(3<1>i + (^k)i

■4 x | as k- -VCC!

The rate of convergence depends on the ratios
i x2/>*i i» IX3A11, , . , , , and if these ratios are smaller the

convergence is faster.
Computer Implementation:

The Power method can be implemented in a computer as 

follows:
Step 1 : Input the matrix A.

Step 2 : Choose the initial vector g(0) as

z(0> _ (1 ! x ___>T
Step 3 : Form Z(p+1> and U(p+1)as 

U(P+D = a Z(p>,

Pp+1 = maxi U<P+D|, 

z(p+D= i/Pp+1 {j(P+l),

where p = 1,2,3,....
i

Step 4 : The la’egest magnitude eigenvalue is the

largest magnitude component of u(p+D and the corresponding

standardized eigenvector is Z^p+1^ (when p is large).



{3.3) JACOBI METHOD :

Jacobi method is the one of the most stable direct method for 
computing the complete eigensystern of a real symmetric matrix.

The basis of this algorithm is the similarity transformation, 
which aims to reduce the original matrix to diagonal form by 
carrrying out a sequence of plane rotations.

The method is based on following theorems and definition

Theorem (1): All the eigenvalues of a Herrnitian matrix are real. 

Teorem(2): If an n*n matrix is real symmetric then there exists a

real orthogonal matrix R such that R-^A R = B. Where D is a 

diagonal matrix.

Unitary matrix: A matrix R is said to be unitary if and only if 

R* = R_1.

The orthogonal matrix is a particular case of unitary matrix.

The aim of Jacobi's algorithm is to reduce to aero the off
t

diagonal elements of a matrix A by means of the transformations.

Bef ine_ E (s): '£
j. i=l i^j

2 (1)

D (s) 2 (2)



and if we choose the parameteres so that
\

E(s+i) * E(s) 

we have that

D(s+0 * D(s).

Let A be a n*n real symmetric matrix. Then construct 
successively the sequence of matrices A^sj such that

A(s+1) ~ R<p> <a)A(s>BT(p, q)

Where R(p,q) is a rotation through an angle in the plane (p,q). 
The plane and the rotation angle & is chosen to ensure that &pq+^

is identically zero. Where is taken through the elements of

A(sy lying above the diagonal and of maximum modulus.

We know that a similarity transformation using the plane rotation 
R(p,q), affected the entries in rows and columns p and q only. The 
modified elements are given by

a(s+1) _ a (s) cos0 4. a (s) sip ‘ip iq a(s+l)Pi

a(s+1) - _ a(s) sj_n^ + a( s)cosO =iq ‘ip iq .(s+i)*qi

a (s + 1) PP a.(s)PP cos 2a( s) 6apq cos& sinO + a(s)qq sin^O (3)



(s + 1)qq As)pp sir/e 2a(s)<Ldpq cosft sin© +a (sqq ^ cos^

>(s+l}pq (a^ ®^ —VKqq a.LB}) cos© sin© + ( cos2© -PP PH
sin2©

= a(s+1)qp

If the rotation angle © is chosen to annihilate &pq+^

we require
"(app^ ~ &qqy) sin2© + 2a^,q; cos2S = 0,(s>

1. e
tan2© =

2a(s5
('a(s) _ a{s)\ q pp aqq J

(4)

the angle © is chosen so that
“7T / ri ^ JT

if a-^p^ - &qq^ - Q then © is chosen to be

from equation (3)

E(S+.) = E(S) -2 <4l>)2

giving

»<S+.) = D< = > + 2(4|)>Z

(5)



Then the matrix &(s) will be a diagonal matrix, 

that is as s—,

0

From equation (3) we have that

a (s+1)PP a{s) PP

= -a.(s)PP (1 -cos^8> + 2a^)c°se sinO + a^|p • 9 r-

={a<s>qq a^p^sin^© + 2 a (s)pq cosO sinQ

If a (s)qq a (s)PP 0

we have I a^,p+^ - app^ * = *apq^* 

since IeI = n/4

If we have reached the stage when la^q^li e 

it follows that i app+^ - app^t - e

Thus this algorithm generates a sequence of matrices which tend 

to a fixed diagonal matrix, which is similar to our initial 

matrix. The diagonal elements are the eigenvalues of the initial

matrix.



Calcu I ation of tbe,_.e..iAeny..ec.tors
An nxn matrix A has exactly n eigenvalues % t , x^,..... >-n and

corresponding n eigenvectors x^^x^^,,.,,x^nl 

Let D = diag(x i, x£, . . . . , xn) and

X = (x^ 1 ^, x^ * ^, . . . x^ri^) be respectively the diagonal matrix 

v/ith ij,').,, . . . . , x as diagonal elements and an nxn matrix with

x^^ as its i^*1 column vector. Then from Ax = xx we can write 

v AX = XD

Premultiplying both sides by X-^ Y?e get 

X_1AX = D
If A is an nxn real symmetric matrix and if we employ the Jacobi 

method, then X = R^R2^3 ■••Thus while computing the 

eigenvalues we post multiply R^_^ by currently generated R^. The

resultant matrix is X, each of whose columns is an eigenvector; in 

k-th column is the k-th eigenvector of A corrseponding to the k-th 

eigenvalue i.e x^.

Mote : Here we have to remember that at each stage in the

reduction of a real symmetric matrix to diagonal form one must 

v/ork Y?ith complete matrix. Again the elements reduced to zero in 

on e step may become nonzero in later step and the process is an 

infinite, particularly for larger matrix.



(3.4) GIVEN*.S METHOD:
This method is applicable to an n*n real symmetric matrix A. 

It consists in carrying out a sequence of orthogonal 
transformations on A to produce a tridiagonal form.

In this process an element reduced to zero by one rotation never 
becomes nonzero in later rotation.

Let
0 0 0 ...... 0
c -s 0...... 0
s c 0...... 0
0 0 1 ....... 0

S,

1

0
0
0

0 0 0 0 1 :

be an orthogonal matrix where c and s are to be determined when 
A is subjected to the transformation A-^ = S^AS^ then (l,3)th 

element of A-^ = (3,l)th element of A^ = -sau+ ca13 these vanish 
if we choose tan& = s/c = a13/a12l or equivalently

5 ~ ai 3/ ( a? z 4 a^3 

c = alz/ ( af£+ af3

such a transformation can be treated as a rotation in the (2,3 ) 
plane. Then the matrix A^ has the form

BAIA8AHEB RWAPEEKftR UBSAI*
WSHVAJi f-!'- ■■■■ <OiWAM»



O'?

X X 0 X . . , , X

X X X X . . . . X

0 X X X . . . . X

Z2 X X X X . , . . . X X

• ■ • • • ■

X X X X . . . . . X X

where x is any general value possibly not equal to zero. 
Successive rotations, thus carried out in the planes
(2.3) ,(2,4),...,{2,n) where the ©Js are so chosen that the new
(1.3) rd, {1,4)th,.....{1,n)th elements vanish. After (n-2) such 
rotations we obtain An_2 which has the form

The

X X 0 X. . . . 0 0
X X X X. . . . X X

0 X X X. . . . X X

An-2 “ 0 X X X. . . . X X

-
0

L.
X X X. . . . X X

second row of An_-2 is treated in the same way as the first
row. The rotations here are made in the planes
(3,4),<3,5),....(3,n).Thus after {n-l)(n-2>/ 2 rotations ,a
symmetric tridiagonal matrix T of the form



T

x x 0 0 ... 0 0 0
x x x 0 ... 0 0 0
0 x x x ... 0 0 0
0 0 x x ... 0 0 0

0 0 0 0....x x x 
0 0 0 0. ... 0 x x

is obtained, 
previous zeros, 
the two matrice

lere no successive transformation affects the 
The eigenvalues of T and A are identical since 

s are similar.

i



(3.5) ElflEHSYSlEM.QF..A-SYMMEYRIC. .TRIDIMQML..MMRH
The Given's transformation gives us a symmetric matrix to a 

symmetric tridiagonal form. The eigenvalues of such matrices are 
computed using Strum sequence property and bisection. The method 
is as follows,
Let T denote a symmetric tridiagonal matrix with elements

tn = di

'i, i + i ti + i, i = ei

assuming that none of the e^ is zero.

Thus

T

dl

el

0

el

d2

e2

0 0 0 
^2 0 . 0 

d3 e3 0

0

0

0

0
0

0

0 0 0 0 en-2 dn-l en-l

0 0 0 0 0 en-l dn

Let pr(x> denote the determinant of the leading principal minor

of T XI.



Thus

Pr(*> det dl“x el
d2-x

0 0 
0 0

0 0 0 0
e2 0 0 0

0 er-2 dr-l_x er-l

0 0 er-l dr-x

We define pq<x) 

Pl(^)
= 1

= dl~X‘

expanding pr(x) by the final row the result 

Pr(*> = (dr-*)Pr_i(*>- er-lpr-2(x>
i

Since pn(x) - det(T-xI) 

we may compute it by means of the relations
P0(x) = 1 

P ^(X) = d^-x

Pr(x) = (dr-x)pr_1(x) - e|_1Pr_2(x), r = 2,3,....n ..(1)

Here the zeros of pr(x) strictly separate those of pr_i{x).

Using the formulas (1) we can evaluate the numbers
Pq(x),pi(x) .... pn(x) for some value of x. The number of

agreements in sign between successive members of the sequence 
{pr(x)> is denoted by s(x).

i



Then using the sturm sequence property we can locate approximate 
intervals in which each of the eigenvalue lie.
The sturm sequenceproperty :The number of agreements in sign

s{x) of successive members of the sequence {pr(x)> is equal to the
number of eigenvalues of T which are strictly greater than x.

Using Sturm sequence property together with the method *of 
bisection allows us to determine any eigenvalue to prescribed
accuracy. The first step is to locate an interval [x^^, x^)] in

which only the eigenvalue x lies, by means of sturm sequence 
prucelure.

For some k<n we have
s(x£°>) = k, s(xj°>) = k+1.

Let u^^ = l/2[x£^+x£0) ] and s(u^^) which must either have the

value k or k+1. If s(u^^) = k, then x lies in the interval
[xJO)>u(0)]; otherwise it is in [u^O), x|,0) ]. This process may be

repetitively applied to determine a tight interval for x.
The above technique is used to find the eigenvalues in 

aparticular interval, or the first few,or the last few eigenvalues 
of an nxn symmetric tridiagonal matrix.


